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ABSTRACT

In this paper, we consider the problem of real-time multimedia
transmission among several peers (users). The peers use a
heterogeneous wireless multi-hop mesh network for the delivery of
these high-bandwidth streams. One of the main challenges of the
considered problem is the division of the scarce wireless resources
among the various peers. To address this problem, we propose an
efficient, distributed and collaborative framework for wireless
resource exchanges that enables peers to divide available wireless
resources among themselves based on their quality of service
(QoS) requirements, the underlying channel conditions and
network topology. The scalable coding of the video content and
decomposition of video flows into various sub-flows (priorities)
allow peers to transfer the video at different quality levels,
depending on the network load. Users collaboratively decide
which of their sub-flows to admit, and which paths these sub-flows
should be transmitted on in order to maximize a system defined
utility. Our results show that with user collaboration, these
distributed algorithms provide system and user performance
comparable to a centralized exhaustive implementation.

Index Terms— Multimedia communication

1. INTRODUCTION

The resource management problem for wireless networks involves
distributing available wireless resources (air-time at the wireless
stations) among users given their QoS requirements, underlying
channel conditions, and the network topology. Different
centralized and distributed approaches have been proposed to solve
this resource management problem. Centralized approaches solve
the end-to-end routing and path selection problem as a combined
optimization using algorithms designed for Multi-Commodity
Flow [1] problems. Such an optimization ensures that the end-to-
end throughput is maximized while constraints on individual link
capacities are satisfied. In contrast, distributed approaches use, for
instance, game theoretic algorithms to resolve resource allocation
issues for wireless networks [2]. However, previous research has
not considered the benefits of collaborative and distributed
resource and information exchanges among wireless peers.

We are concerned with multi-hop wireless mesh topologies.
We assume that the mesh network topology is fixed over the
duration of the video sessions and that the various nodes of the
mesh network employ polling-based (reservation-based) admission
control similar to that employed in 802.11e WLAN networks [3].
Furthermore, we assume an overlay network topology [4] that can
convey information about the expected SNR, as well as the
guaranteed bandwidth under dynamically-changing physical layer
modulation to each wireless node. To improve the system
utilization (number of admitted users) as well as the QoS for
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admitted users, we use scalable video coding schemes that enable
each video flow (bit-stream) to be divided into several sub-flows
(layers) depending on their relative priority in terms of the overall
impact on the decoded video distortion. Under this framework we
design distributed algorithms for collaborative resource exchanges
where given the average (or worst case) underlying channel
conditions, source peers collaboratively solve a resource
management problem by determining how many sub-flows to
admit, and which paths these sub-flows should be transmitted on.
Subsequently, given the resource allocation decisions, each peer
optimizes its own video quality using cross-layer adaptation:
adaptive modulation strategy at the physical layer (PHY), adaptive
MAC retransmission limit, and distortion-optimized scheduling at
the application-layer (APP) layer [5][6].

This paper is organized as follows. We introduce the notion of
sub-flow, then discuss the partitioning of a scalable video flow into
multiple sub-flows and introduce a quality-rate model to guide the
various resource allocation tradeoffs in Section 2. In Section 3 we
present distributed algorithms for collaborative path partitioning
and air-time reservation. We present simulation results in Section 4
and conclude in Section 5.

2. SUB-FLOWS AND QUALITY-RATE MODEL
2.1. Partitioning scalable bit-stream into sub-flows
In [5], it has been shown that partitioning a scalable video flow
into several prioritized sub-flows can improve the number of
admitted flows in an 802.11e enabled wireless network, as well as
the overall quality received by the peers. Each sub-flow may be
viewed as a separate quality layer of the scalable bit-stream. We
use a 3D wavelet codec that uses a spatio-temporal wavelet
transform followed by embedded coding [7]. In this paper, we
label data belonging to each temporal decomposition level as a
separate quality layer [6]. Each sub-flow has an associated priority
based on its distortion impact and delay-deadline constraint.
Furthermore, each sub-flow is admitted independently by the
wireless network despite dependencies among sub-flows that may
limit the gains from decoding some if others are not received. The
collection of sub-flows belonging to one source-destination pair is
referred to as an Aggregate Flow.

Let there be N, aggregate flows in the network. We label

aggregate flow g, asset W, (with 1 <y < N, ). We partition
these N, aggregate flows into N total sub-flows and label sub-
flowxas f, 1 <z < N.Sub-flow f, is a part of the aggregate
flow ¥, ,if f, € ¥,.

2.2. Quality-rate
resource exchange

model: utility for collaborative
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Different rate-distortion models may be used to derive a distortion
metric for scalable and fair resource allocation. We define a
generic quality-rate model ¢, (b, ): where the bit-rate b,
corresponds to the rate requirement of the sub-flow, and the
function ¢, depends on the sub-flow content characteristics,
encoding parameters etc. The quality received by aggregate flow
W, may be computed as @, = Z g, (b, ).
pAS

Collaborative resource exchange algorithms are used to admit
sub-flows and determine a path for each admitted sub-flow. In
particular, for each sub-flow f, we define an indicator variable
w, € {0,1} that takes values 1 and 0 based on whether the sub-
flow is successfully admitted into the network, or not. Hence, the
decoded video quality for the aggregate flow W, based on all its

sub-flows that are either admitted or denied admission is:
€Yy
where P, is the set of paths selected with one path p, € P, per

sub-flow f,. We combine the individual quality experienced by
each aggregate flow into one end-to-end utility function:

Uprg = 2.0, (P) =33 wg, (b)), @
v

y Lev,
which maximizes the total quality (MTQ) of all N, aggregate

flows. When maximizing Uyrpgwe may admit more sub-flows

from one aggregate flow than another (because sub-flows are
admitted strictly in order of their contribution to the overall
utility), potentially leading to a large variation in quality across the
different aggregate flows. To avoid being unfair to one (or more)
aggregate flows we can also maximize the minimum quality
(MMQ) experienced by any aggregate flow in the system, thereby
minimizing the quality variation across aggregate flows. The
MMQ utility may be written as:

Ummg = myin(Qy(Py)) = mym[ >0 wegp (b)), (3)

€Y,
In this paper, we use the following quality-rate model [8]:
¢ (b)) = ¢z + A log (b, ), ©

where ¢! and ), (typically increasing with the sub-flow’s
distortion impact) are flow-specific parameters that depend on the
underlying video characteristics, encoding parameters etc. Note,
however, that other models could be used. In section 3 we describe
our designed resource management algorithms that maximize these
utilities.

3. COLLABORATIVE RESOURCE EXCHANGES

We allow peers to jointly determine which sub-flows they can
admit into the network, and what paths they should select for each
admitted sub-flow, based on the average underlying channel
conditions, the bit-rate requirements of each sub-flow and their
contribution to the different utilities as defined in equations (1) and
(2). Peers collaborate in terms of exchanging information about
selected paths, bandwidth requirements, and time reservation [3] at
intermediate nodes. In this paper, all collaborative resource
exchange decisions are made only when either a new source-
destination pair is established, or an existing connection is

terminated, hence, negligible computational cost is incurred. Let us
consider an intermediate peer v, that receives a set of sub-flows

from its neighbors, where each sub-flow f, has an associated rate
b, , and experiences different channel conditions based on which
neighboring node it is transmitted from. Consider that the
neighboring peer selects PHY mode @, while transmitting f, to
v, . 67 determines the bit error rate e(f; ) , the equivalent
packet error rate for a packet size L,, &2 (L,,07), and the
maximum achievable PHY layer transmission rate 7,0 as in [9].
Hence, the expected goodput g7 experienced over this link is
g =(1-e (L, )T (67). (5
We assume that the service interval (SI) fg; for each peer is

partitioned into a listening service interval té]]%)o

transmission service interval th)
(Tx)

and tg;

and a

. We assume that tg, téliX)

are determined a priori by the deployed protocol and

are the same at each node. Furthermore, we assume that

£ g LN

the limited listening time.
Each receiving peer polls its neighbors for a different amount

of time (within its fixed L4

such that congestion exists mainly because of

X>) based on the number of sub-flows
competing for this air-time, their priorities, and rate requirements.
In particular, at v, , a fraction 7 (0 < 1 < 1) of the peer’s
listening time is allocated to f,. This corresponds to providing

(BX)

sub-flow f, a transmission opportunity 7, g7~ within every

service interval {7 . Hence, the expected rate for f, arriving at

(RX) HBX)
v, is gerd 2L— 1f gt 2L — < b, then f, does not
ST tsr

receive its rate requirement. We decide to drop sub-flows that do
not receive their rate requirement as the incremental benefit of
decoding partially received sub-flows outweighs the cost in terms
of resources assigned to them. Consequently, we also drop all the
sub-flows that depend on this sub-flow.

Given a selection of paths (with one path per sub-flow) we
can determine which sub-flows may be admitted into the network,
based on the available air-time at each peer, such that the desired
utility is maximized. In order to determine which sub-flows
should be admitted, we need to sort sub-flows in order of their
impact on the end-to-end utility function.

In order to maximize Uppg, we admit sub-flows in

decreasing order of the fraction A\, /bz (: 04, /3()1). This

fraction represents the tradeoff between quality (proportional to
log b, ) and resources allocated (proportional to b, ).

In order to maximize Uy, we admit sub-flows for all
aggregate flows quality layer by quality layer (i.e. in order of the
temporal level to which the sub-flow corresponds). Within sub-
flows corresponding to the same quality layer we admit them in
decreasing order of the fraction A, / b, .

For each sub-flow in order of this sorted list we determine the
time reservation fraction at all intermediate peers. At each
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intermediate peer v, along the path of this sub-flow, we

bytsr
o (BX
9z té] )

determine the desired time fraction 7, = . If that is less

than the remaining available listening time fraction p°

(0 < p% < 1), at the peer then the flow is admitted at v, . If the

flow can be admitted at all peers along its path then the flow is
admitted into the network, and the time reservation fractions at
each intermediate peer are modified appropriately (i.e. this fraction

7 is reserved at node v,, and the listening available time
fraction p® is decremented appropriately). If the bandwidth

requirement for the sub-flow is violated at any intermediate node,
we discard it from the list, and also all other sub-flows that depend
on this sub-flow.

3.1. Centralized algorithm for optimal sub-flow
admission control and path provisioning
We may use the aforementioned admission control system in
conjunction with a centralized algorithm in order to determine the
optimal set of paths. An exhaustive approach to determining the
optimal set of paths is to consider all sets of combinations of paths
(with one path per sub-flow) and pick the set that maximizes the
appropriate end-to-end utility. If there are a total of K, available
paths per sub-flow, then we must compare the utilities of all
N
H K, possible path-sub-flow assignments before determining
z=1
the optimal set of paths. Since the total number of sub-flows, and
correspondingly paths per sub-flow can be large, an exhaustive
search can be prohibitively expensive.

3.2. Distributed algorithms for optimal sub-flow admission
control and path provisioning
In order to avoid having a centralized and computationally
expensive algorithm, we design distributed solutions to the
wireless multi-user admission control and path provisioning. In
these approaches, each source peer solves the path provisioning for
each of its sub-flows individually, in a greedy manner. We thus
decompose the joint optimization into a set of successive path
selection problems, where in each step the source peer determines
one path for each sub-flow given the paths selected for the other
sub-flows. The complexity of this distributed approach is
N
Z K, , which is significantly lower than that of the exhaustive
z=1
approach.

Under our proposed collaborative distributed  path
provisioning algorithm, source peers collaboratively determine the
sorted list of sub-flows in decreasing order of their contribution to
the utility function being considered (Uyypg or Uy ). For each

sub-flow in this sorted order, the corresponding source determines
(based on the air-time available at intermediate peers) if there
exists a path that provides it with its desired bandwidth end-to-end.
If no such path exists, the source peer discards this sub-flow and
all other sub-flows that depend on it. Alternatively, if multiple
such paths exist, the source peer selects the path that leads to the
smallest amount of congestion (the congestion at a node v, may

be written as 1 — p®, with p® being the fraction of available

listening time). In this paper, the source peer selects among

multiple available paths based on two different end-to-end
congestion metrics. The first choice is bottleneck air-time

congestion. Bottleneck congestion f; for path pi (the i-th path of
sub-flow x) is defined as the maximum congestion experienced at

any node along pi . The second choice is mean end-to-end air-

time congestion. Mean congestion gb; for path pi is the mean

congestion experienced across all nodes along the path. Bottleneck
path congestion is preferable when the network topology contains
bottleneck nodes (i.e. nodes through which several sub-flows must
necessarily pass, as in a star topology). Otherwise, it is preferable
to use mean end-to-end congestion metrics.

Figure 1. Network topology, average channel SNR (dB)
4. SIMULATION RESULTS

The network topology we used for our experiments, as proposed in
[10], is shown in Figure 1 with average channel SNRs (in dB) and
source-destination pairs marked by like shapes (with sources
marked by a double border). We consider the transmission of four
different aggregate flows, with different sequence characteristics
and bit-rates, over this network infrastructure. The sequences
selected are CIF (352x288) with 300 frames at 30 frames per
second. We use a Group of Pictures (GOP) structure with 16
frames in each GOP, and a temporal decomposition with four
temporal levels. Aggregate flows Wy (Coastguard) and Wj

(Foreman) were encoded at 1.5 Mb/s, W5 (Mobile) at 2.0 Mb/s,
and W, (Hall) at 500 Kb/s. The quality parameter A\, is

determined for each sub-flow as the average of the priorities of the
packets within the sub-flow. Each packet’s priority is determined
in terms of distortion impact upon loss or gain of the packet. We
normalize the individual packet priorities to a maximum of 1000.
More details on this may be obtained from [5]. In Table 1 we show
numerical results for the optimization of Uppg using both the

centralized optimal and collaborative algorithms with both end-to-
end congestion metrics and under medium and high network load.
In our experiments, the centralized optimal algorithm admits ~69%
(11) of 16 sub-flows in the “medium” network load case, and
~44% (7) of 16 sub-flows in the “high” network load cases.

From Table 1, when optimizing Uysrg for the medium load

case, the use of the bottleneck congestion metric is slightly more
beneficial (<0.1%) than the use of mean congestion because one
more sub-flow of aggregate flow W, is admitted. Instead, in the
high load case, the mean congestion metric leads to an improved
performance (>1.0%) over bottleneck congestion.
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Table 1. Admitted sub-flows for optimization of {/ m7¢ under medium and high network load

. Number of admitted
Load Algorithm Conges?lon Optimized U MTQ sub-flows Resulting U MMQ
Metric
Uy | Wy | U3 | Ty
Centralized Optimal - 1157.86 3 3 2 3 217.33
Medium . L Bottle-neck 1152.92 2 3 2 4 218.49
Collaboranveliswibted | Niretime 1151.75 2 [ 3 | 2 | 3 217.33
Centralized Optimal - 1134.43 2 2 1 2 215.38
High . L. Bottle-neck 1119.72 1 2 1 3 217.33
Coilleborativalisiriied |50, oo 1134.43 2 | 2 | 1] 2 215.38

Table 2. Comparison of decoded PSNR, and utility

contribution
Aggregate o Decoded Contribution to
Flow o4 PSNR Unirg
N Medium 26.08 243 88
® High 22.42 233.05
- Medium 34.03 218.49
* High 33.65 21733

Increased load levels require each sub-flow to incur minimal
impact across all nodes traversed, thus, the mean air-time metric
more closely approaches the optimal solution, and in this case,
actually obtains the optimal solution. Under both medium and high
load, the distributed algorithm performance lies within 2.0% of the
optimal solution in terms of the utility.

When optimizing U mmg we found that the distributed

algorithm with bottle-neck metric has the same performance as the
optimal one, and both achieved a U My of 218.49 under medium

load, and 217.33 under high load. These numbers are similar to
resulting U Mm@ tesults in Table 1. This suggests that there are

several path-sub-flow combinations that optimize U Mmg - In

general, the almost monotonic relationship between the quality
layer of the sub-flow and A, /b, for real video streams ensures

that optimization of Uy often results in optimizing Uy -

Table 2 shows the decoded PSNR and the contribution to
Upyrg of aggregate flows Wy and W, (the flows with the

smallest and largest number of admitted sub-flows, respectively).
The shown decoded PSNR is the average PSNR of the Y channel
over 3 simulations. Each simulation concurrently transmits all four
aggregate flows over the network using the time reservations
determined using the collaborative distributed algorithm and
bottle-neck congestion metric in order to optimize U, MTQ -
Independent error patterns and PHY layer rates corresponding to
the underlying channel SNR (as in Figure 1) are generated for each
simulation. Table 2 shows that there is a >3 dB decrease in average
decoded PSNR of W3 under the high load case, for which only the
base quality-layer is admitted, compared to the medium load case
where the base layer and one enhancement layer are admitted. ¥,
loses <1 dB in average decoded PSNR between medium and high
load. Observing the contributions of W5 and Wy to Upypg in
table 2, it is clear that lower utility contributions directly lead to
lower decoded quality. Note, however, that because the sub-flows
are characterized by unique parameters qg and A, from the
quality-rate model, a particular sequence may have a lower impact

on the overall system utility than another, while having a higher
decoded PSNR (e.g. ¥,).

5. CONCLUSION

We consider a scenario with multiple pairs of peers transmitting
scalably encoded video, partitioned into multiple sub-flows, to
each other over a shared infrastructure. We propose distributed
algorithms for resource management and exchange that allow
peers to collaboratively perform admission control, path
provisioning and air-time reservation at intermediate nodes in
order to optimize particular network utilities pertaining to the
experienced decoded video quality over all users in the network.
We compare these algorithms under networks experiencing both
high and medium load and provide some insights into determining
the best choice of parameters for our collaborative distributed
algorithms under these conditions. We show that the distributed
resource management algorithms perform within 2% of the
centralized optimal solution for these utilities.
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