
Congestion Game Modeling for Brokerage based
Multimedia Resource Management

Hyunggon Park and Mihaela van der Schaar∗
∗Multimedia Communications and Systems Lab., Electrical Engineering Department

University of California, Los Angeles (UCLA)
Email: {hgpark, mihaela}@ee.ucla.edu

Abstract— We introduce the concept of resource brokers,
which enables efficient and fair management of the available
network resources for multimedia users in large networks
while reducing the complexity of a central resource allo-
cation authority. To manage the available resources, the
resource brokers deploy axiomatic bargaining solutions from
economic game theory in order to explicitly consider the
utility impact for different resource allocation schemes.
We focus on the Kalai-Smorodinsky bargaining solution
because it can successfully model relevant autonomous
utility-aware fairness policies for multimedia users. Based
on the interpretations of the bargaining solutions, we can
model the proposed resource allocation scheme as a utility-
driven congestion game, thereby ensuring that the presented
resource management game will reach a steady-state after
a finite (small) number of changes across resource brokers
(i.e., at least one Nash equilibrium exists).

I. INTRODUCTION

In this paper, we consider a decentralized and hierar-
chical resource management scheme for non-collaborative
multi-user networked multimedia applications. To achieve
this goal, we use the concept of (intermediate) brokers,
which has been successfully deployed in several applica-
tions (e.g., [1]–[3]). The deployed resource management
scheme is briefly explained as follows. First, the central
authority, referred to as the central resource manager
(CRM) in this paper, mitigates the complexity associated
with administrating the resources for a large number
of users by partitioning the whole network into several
sub-networks, which are controlled by resource brokers
(RBs). When the CRM distributes the total resources, it
can deploy several fairness policies such as maximum
fair resource allocation, proportional resource allocation,
etc. Secondly, the RBs control their portion of the total
resources by deploying different utility-aware fairness
policies that explicitly consider the utilities of the users.
Finally, end-users dynamically associate themselves with
a sub-network based on their possibly achievable utilities.
Since the goal of each end-user is to increase its video
quality, the end-users prefer a sub-network that guarantees
higher quality. Such a resource management scheme may
be used in many networks aimed at supporting multimedia
users (e.g., IEEE 802.11e WLAN).

Game theoretical approaches have been proposed to
resolve resource allocation issues for various networks in
a distributed and scalable manner [4]–[7]. However, prior
research has not considered the resulting impact on the

multimedia quality for various content-aware and delay-
sensitive streaming applications. Video users can espe-
cially benefit from an efficient resource allocation as they
require a high amount of resources (e.g., bandwidth) in a
timely manner (given a delay constraint). Moreover, since
multimedia is loss-tolerant (i.e., graceful degradation can
be obtained), different resource-quality tradeoffs can be
performed during this resource allocation, depending on
the content characteristics. Distributed resource allocation
schemes also need to consider the non-collaborative be-
havior of the users. Unlike conventional resource man-
agement policies, which manage the resources without
considering the actual benefit in terms of utility derived
by the users, we propose a distributed allocation approach
based on the axiomatic bargaining solutions from well-
suited game-theoretic concept [8]. Even though several
bargaining solutions exist in the literature, we consider in
this paper one bargaining solution that effectively model
the interaction of different non-collaborative video users
by the RBs: the Kalai-Smorodinsky Bargaining Solution
(KSBS) [9]. As we will show, the KSBS guarantees the
same quality drop from each user’s maximum achievable
quality.

To model the evolution of the proposed system over
time, we interpret the characteristics of bargaining so-
lutions in terms of multimedia quality, and use them
to model the proposed resource management game as
a utility-driven congestion game [10]. The primary ad-
vantage for modeling the considered resource allocation
scheme as a congestion game is that there exists at least
one Nash equilibrium. This implies that the decentralized
non-collaborative interaction of users trying to maximize
their achievable utility does eventually converge to a
stationary distribution over the sub-networks without the
specific control of the CRM.

This paper is organized as follows. In Section II, we
propose the brokerage based resource management, and
the utility-driven congestion game based on the KSBS is
derived in Section III. In Section IV, we discuss the speed
of convergence to an equilibrium point and simulation
results are provided in Section V. The conclusions are
drawn in Section VI.

II. BROKER-BASED RESOURCE MANAGEMENT

We consider a novel decentralized resource manage-
ment mechanism that provides scalable and flexible re-
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source allocation based on different utility-driven fairness
policies. In the considered networks (e.g., a wireless LAN,
wireless cellular or overlay network relaying on the Inter-
net infrastructure), different network entities, which are a
central authority, referred as the CRM, multiple RBs, and
multimedia users. The CRM controls the total available
resources but it does not directly interact with the final
users. Instead, the CRM allocates the total resources to
multiple RBs based on a pre-determined fairness policy.
The RBs take turns to allocate the available resources to
multimedia users based on their own fairness policies.

The hierarchic resource management process is il-
lustrated in Fig. 1. In Fig. 1 (a), the CRM allocate
total resources RMAX to N RBs (R1, . . . , RN ), hence,
∑N

j=1
Rj ≤ RMAX . Users then switch sub-networks (de-

noted by sub-network association information) according
to the quality benefits provided by the RBs. After the
negotiation process, RB j deploys the bargaining solution
F j to divide the available resources Rj to users (Fig. 1
(b)). Each RB j allocates its resource Rj to the users in its
sub-network Cj . The allocated resources to the users are
denoted by rj

1, . . . , r
j

|Cj |
, where |Cj | denotes the number

of users in sub-network Cj and
∑|Cj |

i=1
rj
i ≤ Rj . The

external information γj
i is the desired maximum quality

of user i in sub-network Cj . Several advantages for this
hierarchical brokerage based resource management and
their implementations are summarized below:

1) CRM Level: The role of the CRM is to allocate the
total available resources to RBs based on fairness policies
and the declared information by RBs (e.g., multimedia
application characteristics). The steps involved in imple-
menting the dynamic resource allocation at the CRM side
are:

• Session Initialization: The CRM gathers basic infor-
mation in a network such as the number of total RBs.
The RBs then declare the corresponding information,
called external information, to the CRM.

• Gathering Information from RBs: The CRM gath-
ers the external information from RBs Ψ = (ψ1,
. . . , ψN ), which depends on the deployed resource
allocation fairness policy G of the CRM.

• Allocating Available Resources to RBs: The CRM
decides the resource allocation (R1, . . . , RN ) based
on the gathered external information from RBs and
the deployed fairness criteria G : Ψ → R

N
+ defined

as

G(ψ1, . . . ,ψN ) = (R1, . . . , RN ),

where
∑N

j=1
Rj ≤ RMAX .

However, the CRM does not need to explicitly consider
the characteristics and resource requirement of all the
multimedia users in its network. Hence, this hierarchical
resource management can successfully reduce the com-
plexity of managing numerous end-users by the central
authority. This hierarchical brokerage system enables ef-
ficient and scalable management of a large number of
simultaneous users by the same CRM.
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Fig. 1. Proposed brokerage based resource management system

2) RB Level: An RB can provide adaptive admission
control that explicitly considers the utility (multimedia
quality) of the multimedia users. This feature can be
implemented by deploying bargaining solutions. Bargain-
ing solutions are useful to guarantee a certain level of
multimedia quality in a sub-network. Note that RBs use
the quality benefit to ”advertise” the guaranteed quality
provided by their sub-networks, as multimedia users try
to maximize their quality.

As opposed to the role of the CRM, the resource
allocation process in RBs is performed as follows.

• Session Initialization: Based on obtained resource
allocation (R1, . . . , RN ) from the CRM, every RB
calculates its quality benefits for each possible num-
ber of users in its sub-network. This information
is then broadcasted to all users, since users need
to know the benefits derived by switching sub-
networks. We denote this quality benefit by qj(xj)
for j = 1, . . . , N , where xj represents the number
of users in sub-network Cj .

• Negotiation Processes (Updating and Broadcasting
Sub-network Status): Based on the quality benefits
advertised by the RBs, the multimedia users asso-
ciate themselves with a specific RB that maximizes



the quality. Since users can switch sub-networks, the
number of users in a sub-network can change over
time, and thus, the quality benefit is also varying.
Therefore, RBs keep track of the number of users in
their sub-networks while providing its sub-network
status to users.

• Gathering Information from Users: After the negoti-
ation processes are finished, RB j polls users in its
sub-network Cj , and gathers the external information
(γj

1, . . . , γj

|Cj |
) from users, which depends on its

deployed resource allocation fairness policy F j (i.e.,
bargaining solutions).

• Allocating Resources to Users: RB j decides the
resource allocation (rj

1, . . . , r
j

|Cj|
) based on the gath-

ered external information from users (γj
1, . . . ,γ

j

|Cj |
)

in its sub-network Cj , and the deployed fairness
policy F j : Γj → R

|Cj|
+ defined as

F j(γj
1, . . . ,γ

j

|Cj|
) = (rj

1, . . . , r
j

|Cj|
),

where
∑|Cj |

i=1
rj
i ≤ Rj .

• Polling Users: Based on the determined resource
allocation (rj

1, . . . , r
j

|Cj |
), RBs poll users in their sub-

network.

3) Multimedia User Level: Every autonomous and
rational user selects to join the sub-network of the RB
that can provide the maximum guaranteed quality. Hence,
users only consider the quality benefit (i.e., the expected
gain in terms of quality provided by a sub-network) when
they join a sub-network. In addition, users can switch to
another sub-network if it can provide an increased quality
benefit compared to the current one, and they can keep
switching sub-networks until they cannot obtain increased
quality benefit (i.e., a Nash equilibrium).

To maximize its achievable quality, a user needs to
select the sub-network leading to the highest quality
benefit. The following steps describe how this selection
is performed:

• Session Initialization: Every user broadcasts its util-
ity function parameters to every RB, and then, listens
to the quality benefit in each sub-network.

• Determining Sub-network Groups: Users choose the
sub-network that guarantees the largest quality ben-
efit, i.e., user i currently in sub-network Cj will stay
in, or switch to, sub-network Cj′ such that

j′ = arg max
j′∈{1,...,N}

{qj′(xj′ )} > qj(xj).

• Video Transmission: Users start to transmit video
data as soon as they decide to stop switching RBs
(i.e. at a Nash equilibrium or when they decide that
the additional quality benefit is not significant). Var-
ious algorithms can be adopted for video streaming.
However, this goes beyond the scope of this paper.
The interested reader is referred to [11] for a review
of this topic.

Note that like an enterprise-network, users truthfully
exchange their information only with RBs not the CRM.

III. UTILITY-DRIVEN CONGESTION GAME

In this section, we model the previously discussed re-
source management scheme as a utility-driven congestion
game. We begin by reviewing fundamental concepts of
congestion games.

A. Congestion Game Definitions

Congestion games were defined by Rosenthal [12] and
the following definitions can be found in [10].

Definition 1 (Congestion Model): A congestion model
is a tuple 〈M, A, (Ωi)i∈M , (cf )f∈A〉, where M is a
nonempty finite set of players, and A is a nonempty finite
set of facilities. For each player i ∈ M , its collection of
pure strategies Ωi is a nonempty finite family of subsets
of A. For each facility f ∈ A, cf : {1, . . . , n} → R is the
benefit function of facility f , with cf (k), k ∈ {1, . . . , n},
the benefits to each of the players of facility f if there is
a total of k players.

Definition 2 (Congestion Game): A congestion game
G is a tuple G = 〈M, (Ωi)i∈M , (ui)i∈M 〉, where M and
(Ωi)i∈M are as in Definition 1 and for i ∈ M , ui : Ω → R

is defined by ui(σ) =
∑

f∈σi
cf (nf (σ)), where for each

set of strategies σ = (σ1, . . . , σn) ∈ Ω = ×i∈MΩi, and
each f ∈ A, nf (σ) = |{i ∈ M : f ∈ σi}| is the number
of players of facility f if the players choose σ.

Note that the players and the facilities included in the
definitions can be considered as the users and the sub-
networks, respectively, in this paper. Moreover, the benefit
function cf (k) is only a function of the number of players
in the facility f in the above definition.

B. Axiomatic Bargaining Solutions and Interpretations

As we discussed in Section II, RBs use axiomatic
bargaining solutions for the resource management. Specif-
ically, we focus on the KSBS, which can provides the
desired relationship between the utilities of autonomous
and rational multimedia transmitting users. 1 (see e.g., [8],
[14] for more details on the basics of bargaining solu-
tions).

In axiomatic bargaining theory, a solution is selected
out of the set of possible resource allocation choices that
satisfies a set of rational and desirable axioms. Different
bargaining solutions are differentiated by their unique
fairness axioms. More details on general axiomatic bar-
gaining theory can be found in [8]. A bargaining solution
is a function F : B → R

n
+, with F (S,d) ∈ S, where

B denotes the set of all bargaining problems (S,d). S is
the feasible utility set, and d ∈ S is the disagreement
point [8]. In this paper, the disagreement point is the
origin (i.e., d = 0) since this corresponds to the zero
utility case, where a user does not join any sub-network
because its minimum quality requirement is not satisfied.
Based on the axioms of the KSBS [9], the KSBS X∗ =

1The Nash bargaining solution (NBS), which is the other well-known
bargaining solution, cannot be efficiently used for non-collaborative
multimedia applications as it maximizes the sum of qualities from all
rather than focus on the individual quality of each user [13].



F (S,d = 0) can be expressed as [13]

X∗ = max
X

{

X ∈ S

∣

∣

∣

∣

X1

X1
M

= · · · =
Xn

Xn
M

}

, (1)

where Xi > 0 for all i and Xi is a utility of player i, and
X i

M = maxXi∈S,Xi≥0 Xi. The point (X1
M , . . . , Xn

M ) is
called the ideal point. Note that the KSBS X∗ can be
obtained as the intersection point of the bargaining set
and the line joining the disagreement point and the ideal
point. An illustrative example is shown in Fig. 2.

As already discussed in [13], to consider multimedia
applications, we define utility function Ui(·) for user i as

Ui(ri) = 2552/Di(ri),

where ri denotes allocated rate and Di(ri) represents the
distortion of multimedia contents measured as the mean
square error (MSE). Note that for video compression
applications, the utility function Ui(ri) is an increasing
concave function with respect to the allocated rate ri [15].
By taking the logarithm of the utility function, we can
derive a widely used quality measure for video quality,
Peak Signal to Noise Ratio (PSNR), defined as

PSNRi = 10 log10

2552

Di(ri)
= 10 log10 Ui(ri),

where PSNRi denotes the PSNR for user i.
The resource allocation based on the KSBS can be

interpreted as follows in terms of PSNR [13].
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if there are no desired maximum utilities from users (i.e., the KSBS is
determined by the maximum achievable utilities (X1

M
, X2

M
) in S). If

each user has its desired maximum achievable utility (X̂1

M
, X̂2

M
), then

the KSBS is (X̂∗

1
, X̂∗

2
) in S. Note the two KSBSs are different since

the ideal points are different (i.e.,(X1

M
, X2

M
) 6= (X̂1

M
, X̂2

M
)).

Since the KSBS X∗ satisfies (1), it can be shown that
the quality drop from the maximum achievable quality of
every user is the same by taking the logarithm in (1).
Hence, if the KSBS is deployed for the utility-driven
fairness policy in sub-network Cj managed by a RB

j, then the quality drop from the maximum achievable
quality of every user in the sub-network is the same, i.e.,

△Q1 = · · · = △Q|Cj|,

where △Qi , (Qi
M−Q∗

i ) represents the quality decrease
(or drop) from user i’s maximum achievable quality.
Qi

M = 10 log10 X i
M is the maximum achievable PSNR

for user i, and Q∗
i = 10 log10 X∗

i is achievable PSNR
determined by the KSBS. This is the key property for
modeling as the congestion game, which will be discussed
in the next section.

C. Bargaining-based Congestion Game Modeling

For video compression, achieving a PSNR level higher
than a certain quality threshold (e.g., 35dB PSNR) is not
meaningful, because it does not impact the visual quality.
Hence, we assume that each user has its own desired
maximum quality level at which it will prefer to operate.
Based on this assumption, the KSBS has the property
that the quality drop from the desired maximum quality
level is also the same, which is shown in the following
proposition. This is illustrated in Fig. 2.

Proposition 1: If the KSBS is deployed for the utility-
driven fairness policy in a RB and each user has its own
desired maximum utility, then the quality drop from the
desired maximum quality of every user in the sub-network
of an RB is the same.

Proof: Let X̂M = (X̂1
M , . . . , X̂

|Cj|
M ) be the desired

maximum utility for every user in the sub-network of
the RB j. Since the desired maximum utility cannot
exceed the achievable maximum utility for user i the ideal
point becomes the desired maximum utility X̂M and the
corresponding KSBS X̂∗ = (X̂∗

1 , . . . , X̂∗
|Cj|

) ∈ S satisfies

X̂∗
1/X̂1

M = · · · = X̂∗
|Cj |

/X̂
|Cj|
M ,

where X̂∗
i > 0 for all i as (4). By taking the logarithm,

we have
△Q̂1 = · · · = △Q̂|Cj|.

Note that △Q̂i , (Q̂i
M − Q̂∗

i ) represents the quality
drop from user i’s desired maximum quality.

Proposition 2: If the KSBS is deployed as utility-
driven fairness policy in RBs with desired maximum
utilities, then the proposed resource allocation scheme is
a congestion game.

Proof: To model the proposed resource management
game as a congestion game, we construct the proposed
resource allocation scheme as follows:

1. We can consider N RBs as N facilities of a
congestion game.

2. We can consider n users as n players in a conges-
tion game.

3. We can consider either quality drop for the KSBS
or achievable quality for the EBS as a benefit for a
user by joining a sub-network of an RB.

The first and the second conditions for the congestion
game are obvious based on the definition of the congestion
game. We focus on the third condition. As we discussed



in Section III-A, the benefit function should be only a
function of the number of users to be modeled as a
congestion game. We can design a quality benefit function
in this problem as a benefit function for a congestion
game.

If all RBs deploy the KSBS as a utility-driven fairness
policy, the quality drop of users is the same in a sub-
network. Even though the amount of quality drop can
be varied by the characteristics of users in a sub-network,
the sub-network can determine the maximum quality drop
for a certain number of users by considering all possible
combinations. Therefore, the maximum quality drop for a
user i in the RB j can be considered as a benefit function
qj(xj), expressed as

ui(σ) = cσi
(nσi

(σ)) = cj(xj) = qj(xj),

where xj = nj(σ) denotes the number of users in sub-
network Cj for the set of strategies σ. The quality benefit
function qj(xj) for RB j can be expressed as

qj(xj) = Qi(xj)− Q̂i
MAX for all i ∈ Cj , (2)

where Qi(xj) denotes the minimum achievable quality for
user i if there are only xj users including the user i in
sub-network Cj . Since Qi(xj) is the minimum achievable
quality for all possible xj users, it can be interpreted as the
guaranteed achievable quality by sub-network Cj . Note
that qj(xj) = −△Q̂i. Since the desired maximum utilities
are determined by users and they are fixed, users only
consider the quality benefits by sub-networks. In other
words, each user chooses the sub-network guaranteeing
the smallest quality drop (i.e., the largest quality benefit).

We observed that the quality benefit functions for the
KSBS fairness policy in (2) is only a function of the
RB and the number of users in the sub-network of that
RB. Moreover, the quality benefit function qj(xj) is non-
increasing function, and thus, users prefer larger qual-
ity benefit. Therefore, the proposed resource allocation
scheme with the KSBS can be modeled as a congestion
model 〈M, A, (σi)i∈M , (qj)j∈A〉, where M = {1, . . . , n}
and A = {1, . . . , N}, and hence, the corresponding
congestion game is G = 〈M, (σi)i∈M , (qσi

)i∈M 〉.
Since the proposed resource management scheme based

on the KSBS is a congestion game, it has a Nash
equilibrium as a direct consequence of [10]. Hence, we
can conclude that the proposed utility-driven resource
management based on the KSBS has at least one pure
Nash equilibrium, i.e., stationary users distribution.

IV. SPEED OF CONVERGENCE TO THE NASH

EQUILIBRIUM

In this section, we investigate the speed of convergence
for the utility-driven congestion game. From the previous
section, we already know that there should be at least
one pure Nash equilibrium. Hence, the next question is
how fast a Nash equilibrium is reached. Note that the
speed of convergence is especially important for delay-
constraint multimedia applications. The proposed system
is assumed to be implemented based on Elementary

Stepwise System (ESS), where each user decides their sub-
networks sequentially [16]. The switching orders can be
determined based on currently derived multimedia quality,
as the improvement of visual impact highly depends on it.
Hence, users currently deriving lower quality in RBs may
decide to switch sub-networks earlier. If multiple users
are allowed to switch sub-networks simultaneously, an
equilibrium distribution of users cannot be ensured due to
problems of repeatedly switching resource brokers, which
implies that no user can start to transmit their data. This
issue has been discussed in several works, e.g., [17]–[19].
Hence, we assume that only one user can switch at time,
and this assumption forces fast convergence to a Nash
equilibrium. The following theorem provides a bound for
the speed of convergence.

Theorem 3: If every RB deploys the KSBS as a fair-
ness policy, then the required number of sub-network
switches for the n users to reach a Nash equilibrium is
at most n− 1.

Proof: Let Q be the n × N matrix of all quality
benefits for n users and N RBs, defined as

Q = [qj(x) : 1 ≤ j ≤ N, 1 ≤ x ≤ n] ,

where qj(xj) is defined in (2). Note that qj(1) = 0 for
all j = 1, . . . , N since there is no quality drop if there
is only one user in a sub-network. Furthermore, notice
that qj(xj) is a non-increasing function of the number of
users xj in sub-network Cj since the available resource
for an RB is fixed and it is shared with users in the sub-
network. Let qk be the set of quality benefits from all RBs
after k switches of users, called quality benefit status. It
is defined as

qk = {q1(y1), . . . , qN (yN )}, (3)

and qk can be transmitted from RBs to users. Note that
(3) implies yj users are in sub-network Cj , and the
corresponding quality benefit is qj(yj) for all yj such
that

∑N

j=1
yj ≤ n, and 0 ≤ yj ≤ n. Since every user is

rational, it is trying to switch to the sub-network which
can provide it a higher quality benefit as opposed to
the current one. Therefore, a user i in sub-network Cw

chooses sub-network Cv if and only if

qw(yw) < qv(yv+1) = max{q1(y1+1), . . . , qN (yN+1)}.
(4)

After (k + 1) switches (i.e., one more switch of the user
i after k switches), the quality benefit status qk+1 is
expressed as

qk+1 = {q1(z1), . . . , qv(zv), . . . , qw(zw), . . . , qN (zN )},

where zj = yj for all j except w and v. Since the user i
switches from sub-network Cw to sub-network Cv , zv =
yv + 1 and zw = yw − 1. And

∑N
j=1

zj ≤ n and 0 ≤
zj ≤ n for j = 1, . . . , N since there is no change of the
total number of users.

Another user i′ in sub-network C′
w after (k+1) switches

chooses the sub-network C′
v if and only if

qw′(zw′) < qv′(zv′+1) = max{q1(z1+1), . . . , qN (zN+1)}.



Note that qv′(zv′ + 1) ≤ qv(yv + 1) since

qv′(zv′ + 1)

= max{q1(z1 + 1), . . . , qv(zv + 1),

. . . , qw(zw + 1), . . . , qN (zN + 1)} (5)

= max{q1(y1 + 1), . . . , qv(yv + 2),

. . . , qw(yw), . . . , qN (yN + 1)} (6)

≤ max{q1(y1 + 1), . . . , qv(yv + 1),

. . . , qw(yw), . . . , qN (yN + 1)}

= qv(yv + 1).

The inequality for (5) and (6) follows from the fact that
qj(xj) is non-increasing function, and the solution for (6)
follows from (4), i.e., qw(yw) < qv(yv+1). Therefore, we
conclude that if a user switches to the sub-network which
provides the largest quality benefit after k switches, its
switch decreases the maximum value of the quality benefit
status qk+1. Note that this process stops after l switches
if

minql ≥ maxql+1.

Hence, we can interpret this problem as simply filling
the unoccupied n largest qj(xj) in matrix Q. List the
elements of the matrix Q from the largest value to the
smallest value, which can be expressed as

q1(1), q2(1), . . . , qN (1), qj(xj),

for all j = 1, . . . , N, xj = 2, . . . , n. Note that qj(1) =
0 for all j = 1, . . . , N . Now the original problem is
filling the unoccupied largest elements by switching from
smaller elements. Since at least one sub-network must
be filled with users, one of qj(1) for j = 1, . . . , N is
occupied. Hence, n largest elements must be occupied by
at most n− 1 switches.

From Theorem 3, we conclude that the required num-
ber of sub-network switches for users to reach a Nash
equilibrium has the upper bound of (n − 1), which is
linear to the number of users. Therefore, we know that
users need to wait for at most (n − 1) switches before
then can actually transmit multimedia sequences. These
results can be extended to the case, where new n′ users
participate in this network after a Nash equilibrium is
already established. Since the network is already at a
Nash equilibrium, the only required steps to reach an-
other new Nash equilibrium with n′ users are to switch
to the sub-networks that provide higher quality benefit,
which requires at most n′ switches. Therefore, it is also
concluded that a new Nash equilibrium is achieved in
one switch when a new user is joining the network that
is already in a Nash equilibrium.

V. SIMULATION RESULTS

A. Required Number of Switches for a Nash Equilibrium

We present simulation results that show the conver-
gence (i.e., Nash equilibrium) of user’s distribution over
several sub-networks with finite number of switches (Ns).
We assumed that there are 10 users (n = 10) transmitting
video sequences, and there are 3 sub-networks (N = 3).

The total resources are equally divided in scenario I, and
proportionally divided given a fixed proportion (5:3:2) in
scenario II. To analyze the average number of switches
(AVG), we uniformly distribute all users to all available
sub-networks, and then, count the number of switches
before reaching a Nash equilibrium. This simulation is
repeated 100 times. Moreover, for the worst-case (WC)
analysis, we assume that all users are initially located in
one of sub-networks.
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Fig. 3. Number of switches for Nash equilibrium.

Scenario Ns Distribution

I AVG 1.47 (3.34, 3.32, 3.34)
WC 7 (4, 3, 3)

II AVG 2.49 (5, 3, 2)
WC 8 (5, 3, 2)

TABLE I

REQUIRED NUMBER OF SWITCHES FOR A NASH EQUILIBRIUM AND

DISTRIBUTION OF USERS.

The simulation results for the number of switches are
shown in Fig 3 and they are summarized in Table I.
As shown in Table I, the average required number of
switches to reach a Nash equilibrium is approximately 1.4



and 2.5 for AVG in each scenario respectively. These are
which are 15.6% and 27.8% compared to the bound (i.e.,
n−1 = 9). Moreover, the required number of switches for
WC in each scenario are also bounded. Therefore, users’
interactions eventually converge to a stable distribution
(i.e., Nash equilibrium) over sub-networks with finite
number of switches in any scenarios. Moreover, the user’s
distribution is the same as the resource distribution over
sub-networks in these simple simulation scenarios.

B. Resource Broker Switching Criteria and Delay

In this section, we analyze the relationship between
the required number of sub-network switches and the
switching criteria. Multimedia applications having strin-
gent delay-constraints will change their strategies (i.e.,
switch RBs) only if there is a significant quality benefit.
This is because switching sub-networks increases the
waiting time to transmit data, and it is critical for stringent
delay-constraint applications. Hence, each user can have
its own quality threshold to determine whether it is worth-
while to switch sub-networks. For example, if users try
to maximize the achievable quality without considering
delay-constraints, they set their quality threshold as 0,
i.e., users will switch sub-networks as long as the sub-
networks provide higher quality benefit. However, if users
are transmitting stringent delay-constraint multimedia ap-
plications, users need to set their thresholds higher to
minimize the waiting time to reach a Nash equilibrium.
We assume that users in a sub-network have the same
quality threshold in this simulation. Simulation results are
shown in Table II. Note that the percentage values are
obtained based on the average numbers of sub-network
switches at δ = 0.

Threshold δ = 0 δ = 0.5 [dB] δ = 1 [dB]
Average Number (%) 1.42 (100%) 1.23 (86.6%) 1.02 (71.8%)

Threshold δ = 1.5 [dB] δ = 2 [dB] δ = 2.5 [dB]
Average Number (%) 0.71 (50.0%) 0.43 (30.3%) 0.30 (21.1%)

TABLE II

QUALITY THRESHOLDS (δ) AND AVERAGE REQUIRED NUMBER OF

SWITCHES FOR A NASH EQUILIBRIUM

We observe that the average number of sub-network
switches required to reach a Nash equilibrium decreases
as the thresholds increase. It implies that if users have
higher quality thresholds, then they can reduce their
waiting time for transmitting multimedia data. This is a
tradeoff between achievable quality and delay.

C. Comparison of Different Resource Management Poli-
cies

In this section, we investigate the multimedia quality
which can be derived by one user as more users join the
sub-networks.

In this experiment, users have compressed and encoded
video sequences, and transmit the encoded bitstream using
the state-of-the-art wavelet video coder in [20]. A single

video file has 1000 seconds duration, which was obtained
by concatenating 100 times of the same typical MPEG test
sequences. Users receive the announced quality benefit
and decide one of the sub-networks that they join. Once
users join the sub-network, users declare the required
information for the resource management to their RBs.
Then, the RBs decide TXOPs that can be allocated to
each user based on their resource management policies
and notify the determined TXOPs to users. The alternative
resource management policy is equal resource allocation
(ERA), which allocates the equal amount of resources to
users associated in each RB. Users having multiple sets
of Traffic Specification (TSPEC) select one of TSPEC
parameters that can be fit to the allocated transmission
rates, and start to transmit their bitstream. If additional
users join a sub-network, the above process is repeated
and new TXOP allocation is allocated to users. Then,
users adaptively select another set of TSPEC parameters
and transmit their bitstream. The results are shown in
Fig. 4.
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Fig. 4. Derived quality of Mobile user over time. Both results present
that the derived quality of Mobile user over time as users join sub-
networks. Vertical lines represent the time stamps when users switch or
join sub-networks.

Fig. 4 shows that the derived quality of one user
transmitting Mobile sequences as users join sub-networks.
Fig. 4 shows the derived quality of the user when new
users join the sub-network based on the different resource
management policies. As more users join the sub-network,
the derived quality decreases in both policies. Since the
ERA simply divides the resources by the number of users
in the sub-network and does not consider the multimedia
characteristics, the quality can be derived below the mini-
mum required quality (25dB in this simulation). However,
the KSBS can explicitly consider the multimedia charac-
teristics including the minimum required quality, it can
ensure the minimum required quality.

VI. CONCLUSION

In this paper, we discuss a brokerage based decentral-
ized resource management scheme for multi-user multi-
media transmission over networks. The resource brokers



enable efficient and fair management of the available
network resources for large networks while reducing the
complexity of the central authority. In order to address
the autonomous behavior of multimedia users streaming
video over the networks, resource brokers deploy the
axiomatic bargaining solution, KSBS, which explicitly
consider the utility impact for different resource allocation
schemes. Moreover, based on the interpretations of the
bargaining solutions in terms of multimedia quality, we
can model the proposed resource management scheme as
a utility-driven congestion game, which guarantees con-
vergence to a Nash equilibrium. Simulation results show
that users’ interaction converges to a stable distribution
with finite number of switches.
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