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Abstract—We study the problem of optimal resource allocation
for multi-user wireless video transmissions from an information-
theoretic point of view. We show that the previously known
optimal rate allocation solution in wireless multiaccess which
maximizes the weighted sum rate is suboptimal in wireless
video communications. We further derive the optimal video
resource allocation by jointly considering the Application-MAC-
PHY layers. This optimal scheme maximizes the weighted sum
video quality of all video users for any feasible power control
policy. We refer to this policy as Largest Quality Improvement
Highest Possible Rate (LQIHPR). We propose a simple greedy
algorithm for implementation. With the help of the inherent
prioritization mechanism of video coders, we show that LQIHPR
is universally optimal for all video coding schemes. Simulation
results demonstrate the significant improvement LQIHPR leads
to as opposed to the conventional one.

I. INTRODUCTION

It has been intensively argued that cross-layer resource

allocation can lead to significant performance gains in wireless

networks [1]. However, in most of the existing works, three

important problems have not been well addressed.

1) Most resource allocation focuses on the interaction only

among PHY, MAC and Network layers. Nevertheless,

since generally higher layer metrics such as the end-to-

end performance in the Application (APP) layer are the

ultimate goal of the overall system, solutions should also

be derived directly for higher-layer objectives.

2) The fundamental performance limits have not been very

well studied. The question of what is the performance

limit we can expect by resource allocation needs to be

answered.

3) Video transmission in wireless networks has emerged into

an important application. Due to the several unique char-

acteristics of video transmission such as high bandwidth,

high data rate and dynamic delay constraint, cross-layer

resource allocation is a promising means to improve the

end-to-end performance in wireless video transmissions

[2].

There have been some works addressing the aforementioned

problems. For example, there are some information-theoretic

studies in the fundamental limits of joint PHY, MAC and

Network layers. Stability and delay issues of a multiaccess

channel with random packet arrivals have been studied in [3],

[4]. The optimal resource allocation for multiaccess/broadcast

fading channels is addressed from a combination of infor-

mation theory and queueing theory in [5], [6]. This solution

is named Longest Queue Highest Possible Rate (LQHPR).

All these works, although studying the information-theoretic

limits, only dealt with several lower layers.

On the other hand, there are also many researches on cross-

layer designs for multimedia wireless communications. In [7],

[8], scalable coding is combined with adaptive modulation

and channel coding at the PHY layer to provide robust

multimedia transmission. Cross-layer resource allocation for

efficient video streaming over wireless networks can be found

in [2], [9]. Nevertheless, it should be pointed out that while

many contributions have been made to enhance the separate

performance of the various OSI layers, or jointly for the

MAC and PHY or APP and Transport layers, no integrated

and realistic cross-layer optimization framework exists to

support efficient wireless multimedia transmission. Also, the

optimization has been performed in isolation at each individual

station, and does not consider its impact on the overall wireless

system.

In this paper, we will focus on the problem of opti-

mal resource allocation for multiple video users from an

information-theoretic point of view. The novelty of this work

is the following. First, we explicitly consider APP layer video

characteristics, which requires a considerably different cross-

layer optimization [10] [2]. Second, we take an information-

theoretic approach in the resource allocation problem. We

use capacity regions as the lower layer constraints. Since

the capacity region is the fundamental characterization of the

achievable rates, the solutions developed in this paper provide

the fundamental operational limit of achievable video quality

in a multiaccess fading channel.

We will first show that the previous information-theoretic

approach which maximizes the weighted sum rate of all users

is suboptimal from a video perspective. We then proceed

to develop the optimal video rate allocation policy1. By

adopting a general operational Quality-Rate (Q-R) model for

video coders, we identify the resource allocation scheme

that maximizes the weighted aggregate video quality of all

video users for any given feasible power control policy. We

1This problem has been partially considered in [11], but the study was only
preliminary and incomplete.
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term the optimal policy Largest Quality Improvement Highest

Possible Rate (LQIHPR). This policy has a very simple greedy

algorithm: transmit an incrementally larger amount of video

bits/packets until the capacity region is reached. We will

explain the optimality of the proposed policy by utilizing

the concept of bit stream prioritization. Also with the help

of prioritization, we are able to argue that the optimality of

the proposed algorithm does not depend on any specific Q-

R model being adopted, but rather comes from the essential

video characteristics. Thus, this policy is optimal for all video

coders.

The rest of this paper is organized as follows. Section

II defines the system model for cross-layer design. Section

III formulates the problem and addresses the suboptimality

of the conventional policy. In Section IV we present the

optimal resource allocation policy together with a simple

implementation algorithm. In this section we also show that

the proposed policy is optimal to any video coders with

the inherent prioritization mechanism. Section IV-C gives

numerical results to illustrate the benefit of the proposed policy

over the conventional one. Finally, Section V concludes the

paper.

Due to space limitation, we omit proofs in this conference

paper. Interested readers can refer to the journal version [12].

II. SYSTEM MODEL FOR CROSS-LAYER DESIGN

In the PHY layer, we adopt the same model as in [5], [6],

[13]. Specifically, we consider an I-user Gaussian multiaccess
channel with bandwidth W . The discrete-time channel model

used in this paper is

Y (n) =

I∑
i=1

√
Hi(n)Xi(n) + W (n) (1)

where Xi(n) and Hi(n) are the transmitted symbol and the
flat-fading process of user i at time n, respectively. W (n)
is the receiver additive white Gaussian noise (AWGN) with

varianceN0/2 per dimension. Each user is subjected to a long-
term average power constraint: E[||Xi(n)||2] ≤ P̄i. The time-

varying fading processes {Hi(n), i = 1, · · · , I} are assumed
to be jointly stationary and ergodic as well as symmetric [5],

and the channel coherent time is sufficiently large such that

Hi can be considered constant over a very long block length.

We further assume that the fading processes of the users are

independent of each other.

We consider the case where both the receiver and the

transmitters know the channel state information (CSI) per-

fectly. Under this assumption, both ends can be designed

to exploit the benefit of CSI. For example, we can utilize

this information to perform power and rate allocation in the

MAC layer to optimize the system performance. Resource

allocation is done by a central controller which takes the joint

fading state h as an input, and outputs the power allocation

P(h) = (P1(h), · · · , PI(h)) and rate allocation R(h) =
(r1(h), · · · , rI(h)). Formally, a resource allocation policy is
a mapping f(·) from the fading state space H to R

I
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Fig. 1. System diagram.

f(h) = (P(h),R(h)). The system diagram is shown in Fig.

1.

In the Application layer, all the I users intend to send videos
to a common receiver. These videos could be independent

or correlated. For compressing the video, we adopt a state-

of-the-art H.264 based video coder [14]. However, note that

this coder is simply used for illustration purposes and the

proposed framework can be applied using any alternative video

coding scheme (e.g. a hybrid video coder such as MPEG-2,

MPEG-4 or a 3D wavelet video coder). The video coder output

will divide packets of each encoded video stream into several

priorities. We can determine the priority classes by jointly

considering the contribution of the packets to the reconstructed

video quality and their delay deadlines. For simplicity, we

assume that all the packets corresponding to a specific Group

Of Pictures (GOP) that are in a certain class have the same

quality contribution and delay deadline.

We use the Peak Signal-to-Noise Ratio (PSNR) as a measure

of video quality, as this is the only widely accepted metric

for quantizing the video quality. The operational Q-R model

adopted is a widely used one [15] where for user i we use

Ni line segments with slopes λ
(k)
i , k = 1, 2, · · · , Ni, each of

which corresponds to a rate interval of length ∆
(k)
i :

Qi(ri) =

{
0, ri ≤ rmin

i

q
(k)
i + λ

(k)
i

(
ri − r

(k)
i

)
, ri ∈ ∆

(k)
i

(2)

where q
(1)
i = qmin

i , q
(k)
i , k > 1 is the connection of two line

segments, and ∆
(1)
i starts with rmin

i . Notice that as shown in

[15], λk ≥ λk+1, i.e., the slope decreases as rate increases.

This is a direct result from the prioritization of video packets,

as each ∆
(k)
i can correspond to a video packet. Also we

want to point out that the specific operational Q-R model is

not fundamental in deriving the proposed optimal solution,

and that other operational Q-R models, such as the one in

[16], could also be used. Instead it is the video prioritization

mechanism that is fundamental. This will be illustrated in

Section IV-B.

III. PROBLEM FORMULATION AND PREVIOUS RESULTS

From the information theoretic point of view, generally it

is of interest to maximize the weighted sum rate from all

users [13], [17]. To be more specific, given a joint fading
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state h = (h1, · · · , hI), for any feasible power allocation
p(h) = (p1(h), · · · , pI(h)), the question is how to determine
the best operation point in this capacity region Cg (h,p(h))
that maximizes the weighted sum rate:

max
r

µr s.t. r ∈ Cg (h,p(h)) (3)

where µ is the weight vector, µi ≥ 0, and by defining

CMAX(S)
.
= 1

2 log
(
1 +

P
i∈S

hipi(h)

N0

)
, the MAC capacity

region is

Cg (h,p(h)) = {r : r(S) ≤ CMAX(S), ∀S ⊆ {1, · · · , I}} .
(4)

Due to the polymatroid property of Cg (h,p(h)), the so-
lution to this problem is given by one specific vertex of

Cg (h,p(h)) which corresponds to the same permutation

π : µπ1
≥ µπ2

≥ · · · ≥ µπI
[13]. We will refer to

this solution as the Sum-Rate-Maximizing (SRM) policy. An

important observation here is that SRM always operates at

one corner point of the capacity region, and thus successive

decoding is sufficient to achieve this vertex; there is no need

for time sharing.

The problem considered in this paper, however, aims at

optimizing the Application layer utility function (video qual-

ity). In other words, we focus on how to allocate the rate to

different users such that the weighted aggregate video quality

is maximized. This problem can be formally casted as

max
r

I∑
i=1

wiQi(ri) s.t. r ∈ Cg (h,p(h)) , (5)

where wi ≥ 0 is the weight coefficient for user i.
Note that the aforementioned solution which only con-

siders the lower layer parameters is suboptimal for video

applications. This is because that even if two users have the

same rate, their video quality might differ significantly. As

an example, we use the state-of-the-art AVC/H.264 encoder

[14] to compress both Mobile and Coastguard videos at CIF

resolution 30 Hz, and report the quality (PSNR) vs. rate in

Figure 2. Obviously, if two videos are given the same rate (say,

1500 kbits/s), their quality will not be the same (Mobile has

PSNR of approximately 33.1dB, while Coastguard has around

35.4dB). Thus, due to the nonlinearity of the Q-R model, SRM

is not optimal in terms of video quality. In next section we

will address problem (5) in details.

IV. OPTIMAL RESOURCE ALLOCATION FOR WIRELESS

VIDEO TRANSMISSIONS

A. Largest Quality Improvement Highest Possible Rate

To solve problem (5), first we need to determine in which

area of the MAC capacity region the optimal solution is in.

For this, we cite the definition of boundary surface from [13,

Definition 3.9].

Definition 1: The boundary surface of the MAC capacity

region Cg (h,p(h)) is the set of rates such that no component
can be increased with the other components remaining fixed

while in the capacity region.
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Fig. 2. PSNR vs. rate using AVC/H.264 encoder for Mobile and Coastguard
videos.

The following theorem gives the possible positions of the

optimal operation point within the MAC capacity region.

Theorem 1: The solution to the optimization problem (5)

must be at the boundary surface of the MAC capacity region:

Cbs
g (h,p) =

{
r :

I∑
i=1

ri = CMAX({1, · · · , I}),

r(S) ≤ CMAX(S), ∀S ⊂ {1, · · · , I}
}
(6)

The remaining problem is how to find the operation point at

the boundary surface. We propose a simple greedy algorithm

to solve this problem. First, we can incorporate the weight

wi into the slopes of of each user’s Q-R function. Thus,

without loss of generality we assume all wi to be equal to

1 for the remaining of this paper. Secondly, each user has
its own ”disagreement point”, which is a minimum quality

requirement:
{
rmin
i , qmin

i

}
, i = 1, · · · , I . This is based on

the observation that below this point, the transmission results

in unacceptable video quality and hence, Q is set to be zero.

We assume that each user has an individual rate limit which

is larger than the minimum rate required in its Q-R model (2):

CMAX({i}) > rmin
i . This is reasonable because otherwise we

can allocate zero rate to the user.

The general algorithm that solves problem (5) for I users
is fully described in Algorithm 1. We name this algo-

rithm Largest Quality Improvement Highest Possible Rate

(LQIHPR), as we always increase the rate of the user who has

the largest quality improvement with the same rate increase.

The optimality of Algorithm 1 is proven in [12].

LQIHPR algorithm is better understood if we

look at a two-user example. From Theorem 1 the

solution to maxr1,r2
Q1(r1) + Q2(r2) s.t. r ∈

Cg (h,p(h)) must lie in the line segment

{(r1, r2) : r1 + r2 = CMAX({1, 2}), ri ≤ CMAX({i}), i = 1, 2}.
By noticing that the slopes of each user’s Q-R model

are monotonically decreasing as its rate increases, a
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Algorithm 1 I-User Greedy Rate Allocation Algorithm for

Line-segment Q-R Models

Input: Cg (h,P) (4); User i’s Q-R model (2) with

slope set
{
λ

(1)
i , λ

(2)
i , · · · , λ

(Ni)
i

}
and rate interval set{

∆
(1)
i , ∆

(2)
i , · · · , ∆

(Ni)
i

}
, i = 1, · · · , I .

Initialization: Sort the slopes from all users{
λ

(1)
i , λ

(2)
i , · · · , λ

(Ni)
i

}I

i=1
in descent order and form the

ordered slope set Λorder =
{
· · · ≥ λ

(kj1
)

j1
≥ λ

(kj2
)

j2
≥ · · ·

}
with the corresponding rate interval set ∆order ={
· · · , ∆

(kj1
)

j1
, ∆

(kj2
)

j2
, · · ·

}
; Allocate user i with an initial

rate ri = rmin
i , i = 1, · · · , I .

Repeat:

1) Select the first available slope λ
(k)
j from the ordered

slope set Λorder, and determine the corresponding user

j;
2) Increase the rate rj of user j until the rate interval∆

(k)
j

is fulfilled, or any rate limit is reached;

3) Delete λ
(k)
j / ∆

(k)
j from sets Λorder / ∆order. In case

that any rate limit is reached, delete all remaining

slopes/rate intervals associated with the corresponding

user(s) from sets Λorder / ∆order.

Until: Λorder / ∆order is empty, or the overall I-user sum
rate limit is reached.

Return: r∗ = (r1, · · · , rI).

typical ordered slope set Λorder could be Λorder ={
λ

(1)
1 ≥ λ

(1)
2 ≥ λ

(2)
2 ≥ λ

(2)
1 ≥ · · ·

}
, and the associated rate

interval set is ∆order =
{
∆

(1)
1 , ∆

(1)
2 , ∆

(2)
2 , ∆

(2)
1 , · · ·

}
.

Figure 3 gives two examples showing how the greedy rate

allocation is performed based on the situation described in

the previous paragraph. Rate is allocated to users according to

their slopes’ ordering. In example Figure 3 (a), user 1 and

2 increase their rate in the order of 1, 2, 2, 1, 2 until user

1 first stops at its individual maximum rate CMAX({1}),
and then user 2 continues being allocated more rate until

the maximum sum rate limit CMAX({1, 2}) is reached. The
example in Figure 3 (b) shows another possibility that neither

user’s individual rate limit is reached, but the sum rate limit

CMAX({1, 2}) is met. In this situation the optimal operation
point is not at any vertex. Again this demonstrates that the

conventional SRM policy which operates at one vertex is

suboptimal in video transmissions.

Since LQIHPR and SRM generally operate at different

points in the capacity region boundary surface, the methods

to achieve them are also different. As we have mentioned

before, to maximize the sum rate one has to operate at a

specific corner point of the capacity region, and successive

decoding can achieve the corresponding rate pair. In LQIHPR

we generally operate within the boundary surface, which

means time sharing is necessary.

B. Universal optimality of LQIHPR from video prioritization

At this moment it seems that the optimality of the LQIHPR

policy depends on the line-segment Q-R model (2). However,

we argue that the optimality is not depending on any specific

Q-R model being used, but rather originates from the essen-

tial video characteristics where certain bits/packets are more

important than others, and that prioritization mechanism is

deployed. One direct example will be to change the Q-R model

to another very popular one [16]:

D(r) =
θ

r − r0
+ d0, Q(r) = 10 log

(
2552

D(r)

)
(7)

where D(r) is the Mean-Square-Error (MSE) as a function of
rate r, and θ, r0, d0 are known parameters. It it easy to see

that this is a continuous Q-R function with a continuously de-

creasing slope. We can show that a slightly modified LQIHPR

policy [12] is optimal for this model by a similar argument.

Due to the space limitation we will not discuss the detail on

LQIHPR for general Q-R models. Interested readers can refer

to [12].

The key reason that makes the LQIHPR policy universally

optimal is the monotonically decreasing slope property of the

Q-R model. It is important to notice that all the video coders

designed so far, without considering any resource allocation

issues, generate a Q-R function with decreasing slopes by

bits/packets prioritization. For more information on various

prioritization schemes for hybrid video coders and wavelet

coders, the reader is referred to [18] and [19], respectively.

As the granularity of the video packets becomes finer

and finer, the overall Q-R function becomes more ”smooth”.

Ideally, we will have a continuous Q-R function: the rate

of video coder can be made increasing continuously and its

quality will also increase continuously, and due to prioritizing

bits/packets according to their descent impact on the overall

video quality, the increase of quality will become smaller as

the rate increases. This directly translates to an ever decreasing

slope in the Q-R function. Mathematically, the LQIHPR policy

is optimal as long as the function Q(r) is continuous (or has
a finite set of discontinuous points) with nonincreasing slopes.

Fortunately, all video coders being used nowadays satisfy these

requirements, and thus the optimality of LQIHPR is universal

to all video coding schemes.

C. Numerical Examples

In order to access the performance difference between

the SRM policy and the optimal LQIHPR, we provide the

following four sets of simulations. The results are summarized

in Table I and II. We first simulate a two-user Rayleigh fading

symmetric multiaccess channel with average channel power 1.

Each user is assumed to have an average receive SNR of 10 dB

and bandwidth 1 MHz. This bandwidth is used throughout this

section. User 1 wants to transmit the Mobile video, while user

2 has the Coastguard video for transmission (the same setting

as in Figure 2)2. AVC/H.264 encoder is used throughout all

2The videos used throughout all simulations are standard ones in video
coding community. All videos have CIF resolution 30 Hz.
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Fig. 3. Two examples illustrating the Greedy Rate Allocation Algorithm. (a) individual rate limit is reached; (b) sum rate limit is reached. In the table below
each plot, the first row shows the slop ordering, and the second row indicates the deletion ordering as in Step 3 of Algorithm 1. Here CMAX (S) means the
sum rate constraint for the entire set S is tight.

TABLE I

SIMULATION RESULTS FOR TWO-USER FADING MULTIACCESS. PSNR IN DB AND RATE IN MBPS.

Policy sum PSNR PSNR 1 PSNR 2 sum rate rate 1 rate 2

Symmetric MAC
LQIHPR 71.8 34.5 37.3 4.06 1.92 2.14
SRM 69.3 31.5 37.8 4.06 1.14 2.92

Asymmetric MAC LQIHPR 73.9 36.1 37.8 5.00 2.50 2.50
SRM 66.5 28.7 37.8 5.00 0.66 4.34

TABLE II

SIMULATION RESULTS FOR THREE-USER FADING MAC. PSNR IN DB AND RATE IN MBPS.

Policy sum PSNR PSNR 1 PSNR 2 PSNR 3 sum rate rate 1 rate 2 rate 3

Symmetric MAC LQIHPR 105.8 34.5 34.6 36.7 4.72 1.92 1.26 1.54
SRM 104.1 37.1 31.8 35.2 4.72 2.90 0.66 1.16

Asymmetric MAC
LQIHPR 111.5 34.5 37.7 39.3 6.57 1.92 2.31 2.34
SRM 107.1 33.4 34.4 39.3 6.57 1.60 1.23 3.74

simulations. LQIHPR is implemented with all weights equal to
1 and compared with SRM. As we have proved, each extreme
point of the MAC capacity region is an optimal solution of
SRM for certain weights. We simply choose one out of all
the I! extreme points which gives the largest sum of video
qualities. Notice that this is the highest sum video quality
SRM can provide. Simulation shows that the LQIHPR policy,
which aims at maximizing the sum quality, has an average
sum PSNR of 71.8 dB, while the SRM policy only provides
69.3 dB: there is an approximately 2.5 dB average quality gain
in this simulation setting. It is interesting to explore how the
SRM policy results in such a suboptimal video performance.
SRM always operates at one extreme point, where only one
user gets its maximum rate, and thus its best possible video

quality. However, this ”selfish” allocation leaves very small
room for the other user to increase its quality. Heuristically,
if the first user can give some rate to the second one without
decreasing the sum rate, the first user might experience very
limited quality drop, but at the same time the video quality
of the second user might increase significantly due to the
nonlinear relationship between rate and quality, and thus the
sum of video qualities can be increased.

The second simulation has the same environment as the first
one, except that the channels are asymmetric. We assume that
user 1 has an average receive SNR of 10 dB, while user 2 has
15 dB. This models the situation where one user has a better
channel than the other, possibly due to the near-far effect. In
this simulation, SRM gives an average PSNR of 66.5 dB, and
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LQIHPR provides 73.9 dB. There is a 7.4 dB performance

difference. It can be noted that in this asymmetric situation

the benefit of LQIHPR is even larger, which can be explained

as following. The fact that user 2 has higher receive SNR

means user 2 will typically have a better channel than user 1.

Translating into the MAC capacity region, the rate of user 2

is much larger than that of user 1 at the boundary surface. In

this region, typically the video quality of user 2 has already

saturated, while user 1 may operates around its minimum rate-

quality point such that its video quality can be significantly

improved by a very small rate increase. In other words, the

same rate is much more important to user 1 than to user 2 in

terms of video quality. Also notice that if user 1 cannot get

enough rate to pass its minimum rate-quality point, the quality

is zero. SRM operates at the extreme point where the rate of

user 2 is maximized, while LQIHPR, by noticing the fact that

rate is more important to user 1 than to user 2, decreases the

rate of user 2 and allocates it to user 1, and maximizes the

sum of video qualities.

The third and fourth simulations include three users. User

1 and 2, same as in the first simulation, want to transmit

the Mobile and Coastguard videos, respectively. User 3 has a

different video Stefan for transmission. In the third simulation

we simulate a Rayleigh fading symmetric multiaccess channel,

with the same parameters as in the first simulation. LQIHPR

results in an average sum PSNR of 105.8 dB, while SRM gives

104.1 dB. The last simulation includes a three user asymmetric

Rayleigh fading multiaccess channel. User 1 has an average

receive SNR 15 dB, while user 2 and 3 has 18 and 13 dB,

respectively. The other parameters are the same as before. In

this setting LQIHPR gives an average sum PSNR 111.5 dB,

compared with 107.1 dB from SRM.

V. CONCLUSION

In this paper, we address the problem of multi-user video

transmission over a wireless multiaccess fading channel. We

show how the MAC layer resource allocation should be per-

formed by jointly considering the APP-MAC-PHY layers. We

demonstrate that the previously known optimal solution that

does not consider the priorities of packets becomes suboptimal

when APP layer video characteristics are considered. We

develop the optimal rate control policy and give a greedy

algorithm to implement it. We further show that the proposed

solution does not depend on any specific quality-rate model,

and it is optimal to any video coders due to the inherent

prioritization mechanism.

The solutions developed in this paper, although derived

using video quality as the APP layer target, can be extended

to other APP layer utility models as long as they have similar

properties as the video Q-R model. At the same time, the

solution can be easily extend to also including short-term peak

power constraints.
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