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ABSTRACT

Multimedia content distribution through a distributed system, a peer-to-peer (P2P) network for instance, is
attractive since it harnesses the resources available with the numerous peers in the network. Another advantage
of such a system is that the potentially available resources scale in proportion to the demand as more and more
peers join the system. Recent studies have concentrated mainly on such aspects of these distributed networks as
querying, indexing, etc. These studies however take for granted the voluntary contribution of resources by peers
in the system. Empirical evidence however points to the contrary, i.e. in existing P2P systems, a substantial
fraction of peers do not contribute resources to the system, while benefiting from the services it provides at the
expense of the contributing peers. In this paper we analyze a P2P system in a game-theoretic setting in which
games involving content exchange are played repeatedly. The model takes into account the manner in which
a peer adapts his contribution to the system depending on the benefit he has derived from the system so far
and expects to derive in the long run. The model enables us to formulate an optimization problem that yields
optimal content sharing strategies that a peer should adopt in order to maximize his net benefit by participating
in the system.

1. INTRODUCTION

The problem of multimedia content distribution over computer networks (wired and wireless) is accentuated
by the relatively large bandwidth requirements for this class of data. Multimedia content providers resort to
multiple servers at the edges of the network that provide content to clients in their vicinity. This approach
however does not address the issue of scale effectively. A possible solution to this problem is to harness the
resources that are available with other peers in a network, vis-a-vis a peer-to-peer (P2P) file sharing system.1, 2

Such an approach may be effectively employed for scalable video since different layers of the multimedia content
may be provided by different peers depending on their upload bandwidth, processing power, etc.

Existing P2P systems are however known to suffer from the free-rider problem, i.e., a large majority the
of peers do not contribute to the network while enjoying the benefits that it provides. In the Gnutella system
for example, as much as 25% of the peers do not share files at all.3, 4 The reason commonly cited for this
phenomenon is that users do not derive any immediate benefit by providing their services to the network, and
hence lack the incentive to participate.

In Ref. 5, file sharing between peers in a P2P network has been analysed using a game theoretic approach.
A peer is regarded as rational decision maker whose decision process is guided by the his desire of maximizing a
suitably defined utility function. Under the adopted set of assumptions, the analysis leads to the conclusion that
the unique equilibrium point for a P2P system is one in which no peer is willing to share. In order to resolve
this apparent paradox (since files are plentiful on P2P systems such as Napster), the authors conclude that some
peers in the system are driven by altruistic motives and it is their selfless contribution that keeps the system
going. Subsequently, certain payment mechanisms are proposed and it is proved that desirable equilibrium points
are attained under such mechanisms, in which widespread file sharing results. A payment mechanism however
requires an infrastructure in order to facilitate these transactions and safeguard the parties against fraud. Also,
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since the payment mechanism is required to oversee each and every transaction that is carried out, the cost
of deploying and maintaining the required infrastructure will be prohibitive considering the size of a typical
peer-to-peer network. Moreover, existence of a centralized authority runs contrary to the principle characteristic
of a P2P network, viz.: a distributed, self-organizing system.

An alternative approach for alleviating the free-rider problem has been adopted in Ref. 6. Here the authors
seek to provide incentives for file-sharing through the differential service model in which the benefit that a peer
can derive from the system, measured in terms of content downloaded from other peers, is proportional to his
contribution: shared disk space, upload bandwidth, etc. File-sharing is modeled as a non cooperative game
where the players seek to maximize their benefit while keeping their contribution to the minimum.

In this paper, we model file-sharing in a P2P network in a game theoretic setting as in the references cited
above. Our model however augments the ones used previously in two important ways: extention of the model
in the temporal domain; and strategies that are affected by a peer’s experience in the network which in turn
dynamically affect the strategies of other peers.

We contend that as a rational decision maker, the decision that a peer makes regarding contributing his
resources to the system is guided not only by his perception of immediate gain, but his expectation of long term
gain resulting from the present choice of actions. A peer is aware of the fact that his contribution may encourage
other peers in the network to also contribute, which in the long run will result in his own overall benefit. Thus it
is this foesight on the part of the peers that is responsible for the success of a P2P system like Napster, despite
the absence of a payment mechanism, and not altruistic behavior on the part of some peers alone. The concept
of long term gain immediately requires a notion of time, which we incorporate by modeling a P2P network as a
dynamic system with multi-act file sharing games.

We now come to the second important thesis of this paper that builds upon the dynamic model mentioned in
the previous paragraph. A peer participates in many sessions over a period of time as either a server or a client.
He responds to the network by incorporating in his future strategies his experience with the network so far.
This experience comprises of the resources he has contributed compared to the benefit he has derived. Since his
strategy affects the experience of other peers which in turn affects his own experience, a realistic model of P2P
system is a closed-loop system with feedback.7 Thus a faithful model must take into account this feedback effect
and assume such strategies as are affected by experience and learning, rather than assume that peers employ
open-loop strategies. These strategies are known as behavioral strategies8 in game theory literarure.

The following example illustrates the fallacious conclusions that are we are lead to if we only assume open-loop
strategies for the peers:

Example 1 Consider the following simple formulation of file-sharing in a 2 player P2P system:

• Benefit of downloading file from peer (b) = 2

• Cost of uploading file to peer (c) = −1

• Benefit( cost) of not downloading (uploading) = 0

• Net utility u = b + c

Table 1 represents this bimatrix game. Considering the payoff matrix for peer 1 (row player) Table 1(a), it
can be seen that row 2 is his security strategy. Similarly, the security strategy for player 2 (column player),
Table 1(b), is the second column. These security strategies correspond to the unique Nash equilibrium pair
(not-share, not-share). This equilibrium point is therefore also an admissible solution.8, 9 The desirable
strategy pair (share, share) is not an equilibrium point, since a player can increase his pay-off by unilaterally
deviating from it.

Even if we assume that this game is played out time and again, i.e. a multi-act game, but only assume open-
loop mixed-strategies, we reach the same equiilibrium point since mixed strategies include pure strategies
as a special case. However, if we also include behavioral strategies, the game may be played out as follows:
keeping in mind his long term gain, p1 might decide to take risk and accept p2’s request. Receiving a
positive response, p2 might also decide to honor p1’s request, and so on.
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Table 1. Bimatrix game of Example 1

(a) Payoff for p1

p2

share not share

p1

share 1 -1
not share 2 0

(b) Payoff for p2

p2

share not share

p1

share 1 2
not share -1 0

Keeping in mind the foregoing discussion, in this paper, a P2P system has been modelled as a non-cooperatrive
multi-act dynamic game with behavioral strategies. The organization of the rest of the paper is as follows: Section
2 models the system with the above characteristics and describes the evolution of the system with time. The
concpets of strategy, contribution and benefit are made precise. Section 3 formulates a peer’s long term expected
benefit as an optimization problem, the solution to which yields his optimal strategy.

2. SYSTEM MODEL

We consider a P2P system with K peers and M contents. In the following we use the words peers and players
interchangeably whichever, is more appropriate to the context. Let P = {1, . . . , K} denote the set of peers and
C = {1, . . . , M} denote the set of contents. P−i denotes the set of peers other than i. The system is initialized
with the peers having some of these M contents while not having others. The system evolves as successive games
involving content exchange are played by the peers. These games are labeled n = 1, 2, . . .. At the beginning of
each game, peers request each other for content that they don’t possess. Thus a particular peer makes requests
and is requested by other peers. Unless stated otherwise, we use j ∈ P to denote the requesting peer and i ∈ P
to denote the serving peer. A peer’s requests are either accepted or declined and vice-versa. These games are
played repeatedly until certain termination criteria are met. The termination criteria are specified later in the
paper.

The distribution of these contents among the peers at the beginning of the nth game is represented by the
vector yn = (y1

1n, . . . , y1
Kn, . . . , yM

1n, . . . , yM
Kn) where

ym
kn =

{
1 if peer k has content m before the nth game
0 otherwise.

The state of peer i at n is represented by yin = (y1
in, . . . , yM

in ). There are 2KM possible y’s. These represent the
system states.

It is assumed that at each time interval peers in the network have information regarding the contents possessed
by other peer. Let rm

jn ∈ {i : ym
in = 1, i ∈ P−j} denote the peer requested by peer j for content m at time n

among those peers who have this particular content. rm
jn = 0 is assumed to mean that j does not request content

during interval n despite not having it. Then the vector of requests of for peer j is

rjn(yn) = (rm
jn, m ∈ Cjn)

and that for the system is
rn(yn) = (r1n, . . . , rKn),

where Cjn = {m : ym
jn = 0} ⊆ C.

From a state yn, peers generate requests rn(yn). Some of these requests are accepted, while others are
rejected. The decisions regarding accepting/rejecting requests are determined by the peers’ strategy to requests,
which we denote serving strategies. These are discussed in the following section. Thus depending on the requests
and serving strategies, the system moves to state yn+1
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2.1. Serving strategies

In this subsection and the next, we use boldface type to denote random quantities and ordinary typeface to
denote the values taken by the random quantities. In a state y, a peer is faced with a number of requests from
other peers for uploading files from among the ones that he possesses, depending on the state the system is in.
The peer might respond to each requests in either of two ways: accept it or reject it. These choices denote the
action that might be taken. More precisely, let ujm

i (s) be a random variable that denotes the action taken by i

in response to j’s request for content m at when the state is y. Let ujm
iy = 1 when the request is accepted, while

ujm
iy = 0 when the request is refused. Let

P{ujm
iy = 1} = pjm

iy , and (1)

P{ujm
iy = 0} = qjm

iy = (1 − pjm
iy ). (2)

That is, the probability of i accepting j’s request for content m when the system is in state y is pjm
iy . The

corresponding probability of rejecting this particular request is qjm
iy .

A strategy πjm
iy is a probability distribution on the alternative actions of i in state y to the pertinent request.

Thus πjm
iy prescribes values for pjm

iy , and therefore also qjm
iy ; subject to the system being in state y. Let πiy =

(πjm
iy ), the tuple of strategies of peer i to all requests in state y.

Definition 2.1. The history up to time at which the nth action is taken is

Hn � (y1, r1, u1, y2, r2, u2, . . . , yn−1, rn−1, un−1, yn)

Consider the sequence of strategies (πi1, πi2, . . . , πin)

Definition 2.2. The strategy10 for player i is the sequence Πi = (πi1, πi2, . . . , πin) such that πin(Hn) is a tuple
of response strategies to requests in state y if the last element of Hn specifies yn = y.

In view of the above definition, the probability of ujm
in taking values 1 and 0 at n, is given respectively by

Pπin{ujm
in = 1} and Pπin{ujm

in = 0}.
If the randomization between alternative actions for time period n+1 does not depend on the randomization

for periods 1 through n, then the definition of strategies given above corresponds to the behavioral strategies of
game theory.8, 9 Also note that Def. 2.2 admits strategies that are not Markov. In words, a strategy for player i
permits the nth decision to depend on more of the past history than only present state yn.

2.2. State Transition Probabilities

Given the state of the system at the nth game yn : ym
jn = 0, and rm

jn = i i.e. j does not possess m and requests
i for it; the serving strategy of i toward this particular request (along with the strategies to other requests)
determines the transition probability to the next state yn+1. Thus

P{ym
j n+1 = 1 | ym

jn = 0, rm
jn = i} = Pπin{ujm

in = 1} and similarly (3)

P{ym
j n+1 = 0 | ym

jn = 0, rm
jn = i} = Pπin{ujm

in = 0}. (4)

Using Bayes rule, from (3) and (4) we get

P{ym
j n+1 = 1 | ym

jn = 0} = Pπin{ujm
in = 1}P{rm

jn = i}, and (5)

P{ym
j n+1 = 0 | ym

jn = 0} = Pπin{ujm
in = 0}P{rm

jn = i} + P{rm
jn = 0}. (6)

Assuming that serving strategies for a particular request, specified by the requesting peer and requested
content, are take independently of other requests, and also that the serving strategies of the peers are independent
of one another, (5) and (6) determine the transition probability P{yn+1 = yn+1 | yn = yn, rn = rn}.
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event r2
1 r1

2 u31
1 u12

2 P{yn+1|yn}
1 0 1 p1

1
4p1

2 2 1 p1 q2
1
4p1q2

Table 2. Transition Probabilities

We now consider the requests that peers make to other peers for possible content download. Considering rm
jn

as a random variable, it takes values from the set {i : ym
in = 1, i ∈ P−j} with probability P{rm

jn = i}. These
request probabilities are in general different for different contents depending on how important content m is to
peer j. Also, it is plausible that there is some correlation in rm

j (n) from one game to the next. For instance if
i declines j’s request at for content m at n, j might request i again in the (n + 1)th game, or might choose to
request some other peer. However, to keep the analysis simple, we make the following assumptions:

• The random variables rm
jn are assumed to be independent from one time interval to the next.

• P{rm
jn = il | ym

jn = 0, ym
i1n = 1, . . . , ym

iLn = 1} = 1
L , l = 1, . . . , L. i.e., among the L peers known to have

the content that peer j is interested in, a request is sent to any one of these L peers with equal probability.

• P{rm
jn = 0} = P{rm

jn �= 0} = 1
2 . That is, despite not having content m, it is requested/not-requested with

probability 1
2 .

Having specified the serving strategies and the manner in which peers make requests, the transition probability
P{yn+1 = yn+1 | yn = yn} between the states is completely specified.

Example 2 Consider a 2 content, 2 user P2P system. The current state of the system is yn = (10 01) that
is, each peer has one of the contents, but not the other. The transition probabilities of moving from this
states to y(n+1) = (11 01) listed in Table 2. In these state transitions, peer 2 requests content 1 and his
request is granted. Peer 1 either does not request content 2 (transition 1), or he requests, but is refused
(transition 2). The rest of the possible states and their associated transitions are illustrated in Figure 1.
As mentioned before, and discussed in detail the next section, the two events denoted by events 1 and 2
affect the serving strategies of the peers in the state yn+1, and therefore the transition probabilities out of
that state. Thus the system is not a Markov chain. Also note that although the the possible transition
probabilities have been summed in Figure 1, this has only been done for the purpose of readability. Indeed
the two transitions lead to different states which share a common content distribution yn+1.

1001
1/4(1 + q2 + q1 + q1q2)

1101
1/2(1 + q2)

1/4(p1 + p1q2)

1011
1/2(1 + q1)

1/4(p2 + p2q1)

1111
1(1)

1/2(p1)

1/2(p2)

1/4(p1p2)

Figure 1. Evolution of the system. The expression at the end of an arrow is the transition probability between states
connected by it. The topmost entry in bold is the system state y
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3. OPTIMAL STRATEGIES

Starting from an initial state, the terminal state of interest yf
j for an individual peer j would be when he possesses

all the contents; yf
j : yjn = (1, . . . , 1). From a system-wide perspective, the terminal state is yf : yn = (1, . . . , 1),

i.e. all peers possess all the contents. The second case includes the first. However among the histories leading
to yf , the ones that reach yf

j earlier than yf
i , i ∈ P−j are of interest to peer j. Thus j wants to minimize

N : yjN = yf
j . Following the discussion in Sec. 1 regarding how a peer’s strategies might affect the strategies

of other peers; qualitatively, he can achieve his goal by adopting a strategy where he accepts a relatively higher
number of requests, since this will encourage other peers also to accept a higher number of requests. However
accepting a higher number of requests will incur a higher cost in terms of upload bandwidth, processing power,
etc. Thus there is a trade off between reaching the desired goal in a short time and expending resources. A
strategy is thus optimal in the sense that it strikes a desired balance between these conflicting requirements.

As noted in Definition 2.2, the strategy depends not only on the present state, but on the entire history
leading up to it. For mathematical tractability, we assume that peer i adopts the same serving strategy πjm

in

for requests from all peers j ∈ P−i and contents in C′
jn, where C′

jn = {m : ym
jn = 1} ⊆ C. πjm

in however
changes with n according to i’s experience with the network. Let ain denote the number of contents uploaded
to requesting peers in interval n and bin denote the number of contents downloaded (successful requests). Thus
βin = bn−an

bn+an
, βin ∈ [−1, 1] is a measure of peer i’s experience with the network during n. We assume that i

updates his strategy according to the following equation:

pi n+1 =




pin + (1 − pin)αiβin if βin > 0,

pin + pinαiβin if βin < 0,

pin if ain = bin = 0
(7)

where αi ∈ [0 1]. A favorable response from the network prompts i to accept more requests, while a poor response
elicits a strategy with reduced contribution. Note that (2) is in fact the first derivative of pin and governs the
dynamics of the serving strategy. Also, holding αi fixed, and βin > 0, the incremental change pin in lower when
pin is close to 1 than when it is close to 0. This is desirable, since if a peer is already contributing a lot, a positive
response will have little effect on his strategy compared to when his strategy is conservative. Alternatively,
a negative experience will have little effect if pin is small . The parameter αi controls the magnitude of the
incremental change in the peer’s strategy in response to his immediate experience. Thus an optimal value of αi

needs to be determined in order to meet the desired objective.

An element of feedback is introduced by adopting (2), since peer i’s strategy affects the experience of other
peers’ experience in subsequent intervals and consequently their own strategies, which in turn affects i’s experi-
ence, ad-infinitum.

Starting from a given state y1, there are a number of histories HNk
, k = 1, 2, . . . (2.1) that lead to the final

state yNk
: yjNk

= yf
j . With each such state, there is associated the probability of reaching that state, Pk which

is the product of transition probabilities between states (y1k
, . . . , yNk

). Given a strategy πin, these transition
probabilities are given by (5) and (6). Let wlm

j be the number of contents uploaded by j in going from state yl

to state ym. Then Wjk =
∑

(l,m)∈HNk
wlm

j is the total number of contents uploaded in history HNk
, which is

indicative of the cost incurred. Starting from an initial content distribution y1 and a particular choice of αj , the
expected cost in reaching the terminal state is

E Wj =
∑

k

PkWjk. (8)

The expected number of steps to reach the terminal state E Nj is

E Nj =
∑

k

PkNjk. (9)

From (2) we see that Pk is a polynomial in αj of degree Njk − 1. A peer may then choose a value of α to
reach a desired balance between the two quantities E N and E W .
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4. RESULTS

In this section, we present simulation results for the ideas developed in the preceding sections. A 3 peer (K = 3),
2 content (M = 2) system has been considered. The initial state is y = [01 00 01]; peer1, the peer of interest
starts with no content. The system is symmetrical in the other two peers, in the sense that each has one of the
contents but not the other. For peer 1, a state y = [1 ∗ ∗1 ∗ ∗] is a terminal state, where ∗ denotes either 0 or 1.
Two cases for the initial probabilities of acceptance pi = 0.5, i = 1, 2, 3 have been considered.

Figure 2 shows the expected number of steps to termination and expected downloads (incurred cost) for peer
1 as a function of α1. The system is initialized with, pi = 0.5, i = 1, 2, 3 i.e. the peers are neutral to risk
initially, and α2 = α3 = 0.3. The plot verifies the intuitive expectation that the number of steps to termination
and incurred cost should be inversely related. Figure 3 shows similar results for α2 = α3 = 0.8. Thus given the
α values for the other peers, peer 1 may choose a suitable value for α1 in order to achieve the desired trade-off
between the cost and steps to termination. Figures 4 and 5 illustrate quantities of interest to peer 1 as a function
of α1 and α2. α3 is held fixed at 0.5. This technique can be extended to any number of peers and contents.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1.35

1.36

1.37

1.38

1.39

1.4

1.41

1.42

α
1

E
xp

ec
te

d 
nu

m
be

r 
of

 s
te

ps

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

E
xp

ec
te

d 
nu

m
be

r 
of

 u
pl

oa
ds

Figure 2. Expected number of steps to termination and expected cost with α1. α2 = α3 = 0.3

5. CONCLUSIONS AND FUTURE WORK

In this paper we have modeled content sharing over a P2P network as a non-cooperative multi-act dynamic game
with behavioral strategies. The system is represented by states that depict the distribution of contents among
the peers. The decisions regarding a peer’s contribution to the system are governed by his strategy. The state
representation enables us to formulate this dynamic system in a Markov chain like structure with the transition
probabilities among states given by the peers’ strategies. A peer adapts his strategy according to his experience
with in the network, and his expected net benefit from participating in the system. By enumerating all possible
state transitions we find the expected number of steps to the desired terminal state and the expected cost as a
function of the peers’ strategies. This enables us to determine the strategy that a peer may adopt in order to
achieve the desired trade-off between these two quantities.

The method of enumerating all possible histories is however computationally inefficient. Techniques from
Markov Decision Process (MDP) with due modifications maybe employed in order to ease the computational
burden. This paper has concentrated on determining optimal strategies for one peer. The task of determining
system-wide optimal strategies α1, . . . , αK for all the peers is yet to be considered.
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Figure 3. Expected number of steps to termination and expected cost with α1. α2 = α3 = 0.8
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Figure 4. Expected number of steps to termination with α1 and α2. α3 = 0.5
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Figure 5. Expected uploads with α1 and α2. α3 = 0.5
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