
GRACEFUL QUALITY DEGRADATION FOR VIDEO DECODING SYS TEMS THROUGH
PRIORITY SCHEDULING AND PROCESSOR POWER ADAPTATION

Brian Foo and Mihaela van der Schaar

University of California Los Angeles (UCLA), Dept. of Electrical Engineering (EE), Los Angeles, CA, 90095

Tel: +1-310-825-5843, Fax: +1-310-206-4685, Email: {bkungfoo , mihaela}@ee.ucla.edu

ABSTRACT

Voltage/frequency configurable processors can provide
significant energy savings in video decoding systems due to
their ability to dynamically adapting the frequency and
voltage according to time-varying workloads. In this paper,
we propose a joint voltage scaling and priority scheduling
algorithm that decodes jobs in order of their importance
(quality impact), such that by setting the processor to
various power levels and decoding only the most important
jobs, different quality and energy tradeoffs can be achieved.
We demonstrate that our algorithm performs well in
practical decoding scenarios, where reducing the power to
25% of the original power can lead to quality degradations
of less than 1.0 dB PSNR.

Index Terms— Multimedia Systems, Modeling, Complexity
Theory, Queuing analysis

1. INTRODUCTION

Dynamic voltage scaling (DVS) allows a processor to
dynamically adjust its operating frequency and voltage to
time-varying workloads, which enables the system to
optimize energy-delay tradeoffs for tasks where jobs need to
be completed by certain deadlines [1]. As a result, DVS is a
popular solution for delay-sensitive multimedia applications
running on energy-constrained systems [2]. Currently, most
DVS algorithms are used in conjunction with earliest
deadline first (EDF) job scheduling [2] [3]; however, such
scheduling policies may not perform well when the
workload is high, or the system is severely energy
constrained. In this paper, we propose a quality-adaptive
DVS algorithm based on priority scheduling, where jobs are
decomposed based on their importance, such that more
important jobs are processed first. In this way, the video
stream can be decoded at various quality levels even if the
system energy is insufficient for decoding all scheduled jobs
before their deadlines. Based on the priority-scheduling
mechanism, we introduce several DVS algorithms to
achieve graceful quality degradation under low system
energy.

2. PRIORITY-SCHEDULING QUEUING MODEL

In this section, we consider a motion compensation
temporal filtering (MCTF) video coder which decomposes a
video sequence into a hierarchy of transform frames based
on their dependencies and contribution to the overall video
quality. By setting the decoding of a transform frame as a
job, the system can organize jobs into different priority
classes and use priority scheduling to process jobs.
However, in order to analyze the average quality of the
video under various processor powers, we first need to
introduce a queuing model to determine the probability that
jobs of different priority classes will miss their deadlines.

2.1. Modeling Entropy Decoding Complexity as
Memoryless “Arrivals”

Consider a buffer that streams jobs (or frames) to the
decoder according to a deterministic process which
corresponds to the frame rate of the video. Before
operations such as inverse transform (IT), motion
compensation (MC), and fractional pixel interpolation (FI)
can be performed, entropy decoding (ED) must first be used
to reconstruct the average and error frames. In this section,
we construct a queuing theoretic model for the decoding
process by treating ED complexity as an arrival process,
and the total complexity associated with each unit of ED
complexity as the service time.
 In order to determine the complexity of decoding a
particular frame, we collected job execution times (offline)
from a set of 11 training sequences with 16 GOPs each,
decoded at 7 different bit rates. Based on the data, we
investigated the complexities contributed by different steps of a
decoding process. The total complexity for decoding a class i
job, 1,...,i I= in sequence seq is given by seqiC , where:

 ,ED ,IT ,MC ,FIseq seq seq seq seqi i i i iC C C C C= + + + (1)

where each ,opseqiC , { }, , ,op ED IT MC FI∈ , indicates the
complexity associated with one type of decoding step for a job
of class i . Note that in some cases, ,op 0seqiC = . For example, the
complexity of a top level L -frame requires only entropy
decoding and inverse transform, while the top level H -frame
requires motion compensation to restore the next lower level
frames. The entropy decoding complexity, however, exists for

each job and interestingly, can be modeled by a shifted and
scaled Poisson distribution (shown in Figure 1):

 , ,ˆseq seq seq seqi ii ED i EDC a C b≅ + (2)

where the normalized complexity distribution of ,ˆseqi EDC is:

 (), () ! seqinseqseq ii ED ep n n νν −= (3)

where n is the Poisson bin number, , ()seqi EDp n is the probability
that the normalized complexity falls into bin n , and seqiν is the
shape parameter for the normalized complexity distribution.
Figure 1 shows the normalized ED complexities ,ˆseqi EDC for
various L-frames and H-frames averaged over all training
sequences.

Due to the form for ED complexity distribution, we can
model ED complexity as a pure Poisson distribution scaled by a
constant number of cycles, which we call a “groups of cycles”
(GOCs). It is a well-known fact that when ED GOCs “arrive”
according to a memoryless process, a Poisson distributed
number of ED GOCs will occur in any fixed time period [5].
Since frames arrive periodically according to a fixed frame rate,
the ED GOCs form a memoryless arrival process.

0 5 10 15 20
0

10

20

30

40
ED complexity for L4 frames

Normalized Complexity

F
re

qu
en

cy
 o

f
oc

cu
re

nc
e

0 50 100 150
0

10

20

30
ED complexity for H3 frames

Normalized Complexity

F
re

qu
en

cy
 o

f
oc

cu
re

nc
e

0 50 100
0

20

40

60
ED complexity for H2 frames

Normalized Complexity

F
re

qu
en

cy
 o

f
oc

cu
re

nc
e

0 20 40 60 80
0

20

40

60

80
ED complexity for H1 frames

Normalized Complexity

F
re

qu
en

cy
 o

f
oc

cu
re

nc
e

data

poisson fit

data

poisson fit

data

poisson fit

data

poisson fit

Figure 1: Normalized entropy decoding complexity for various L
and H frames in a 4 temporal level MCTF GOP averaged over
various training sequences.

2.2. GOC Service Time Modeling

1 2 3 4
0

50

100

150
Average L4 complexity per bin

of tics

F
re

qu
en

cy
 o

f
oc

cu
re

nc
e

0 5 10 15 20
0

10

20

30
Average H1 Complexity per bin

of tics

F
re

qu
en

cy
 o

f
oc

cu
re

nc
e

0 5 10 15
0

10

20

30

40
Average H2 complexity per bin

of tics

F
re

qu
en

cy
 o

f
oc

cu
re

nc
e

0 5 10 15 20
0

20

40

60

80
Average H3 complexity per bin

of tics

F
re

qu
en

cy
 o

f
oc

cu
re

nc
e

Figure 2: Example of total complexity per arriving ED GOC for
various frames in a 4 temporal level MCTF GOP. The statistics
are averaged over several sequences.

Since the decoding of each frame consists of more than just
entropy decoding, for each arriving GOC, we need to
approximate the distribution of the complexity of other
steps (e.g. inverse transform or motion compensation)
associated with the GOC. We modeled the service rate per
GOC, by dividing the total complexity (in tics) associated
with the decoding of each frame by the complexity of
entropy decoding. Figure 2 shows examples of resulting
service complexity distributions.

2.3. Non-Preemptive / /1M G Priority Queuing and
Delay Analysis

Based on the decomposition of jobs into arriving ED GOCs,
we propose a DVS system that uses priority scheduling to
process the incoming GOCs as packets. We model the
system as a non-preemptive / /1M G priority queuing
system. Priority scheduling ensures that even if not all jobs
can be processed before the display deadline, the higher
priority jobs will be processed first, so that they are more
likely to satisfy their deadline constraints. Effectively, this
enables the system to gracefully adapt the quality to
different amounts of available energy.

Let ,i kD be the delay of processing a GOC of class i ,
and define ,Pr{ }i k iD T> to be the probability that a GOC
arriving at time t can not be processed before deadline it T+ . Note that in reality, all GOCs of the same job have
the same hard deadline regardless of their arrival timest ,
so the delay bound iT would not be fixed for every GOC of
a job. However, considering that GOCs of the same class
need to be processed in FIFO order to complete the job, the
deadlines for the first GOCs in the job may be set earlier to
accommodate the processing time delay induced on later
GOCs. For the purpose of analysis, we approximate the
delays iT tolerated by all GOCs within the same class to be
approximately equal. In order to determine the probability
of violating the delay deadline for a non-preemptive priority
queuing system, we first define the load on the system
induced by priority class i with service time ,i kS as:
 , ,[]i k i i kE Sρ λ= (4)

Let , ,1ii k j kjσ ρ==∑ be the total load of traffic coming from
priority classes 1 to i , and let ,i kµ be the average service
rate for a class i job in processor operating mode k . The
average waiting time in the queue for priority class i
GOCs can then be expressed as [8]:

 [] ()() ,, ,1, , 11E 2 1 1 I j ki k j ki k i k jW ρµσ σ− == ⋅− − ∑ (5)

From the average waiting time, we can obtain an
approximation for the probability that the waiting time
exceeds some timet . We use the waiting time tail
approximation to estimate the tail of the delay:

{ } { }[], , , , ,Pr Prexp E []i k i i k i k ik ik i k i kD T W S TTW E Sρρ> = + > ≈ −    +  (6)

Note finally that the fraction of busy time in an / /1M G
queuing system is ,I kσ .

3. DVS ALGORITHMS FOR GRACEFUL QUALITY
DEGRADATION

In this section, rather than servicing jobs according to their
deadlines, we service jobs based on priority levels, such that
a lower quality level can be achieved even if not all frames
can be decoded. (See Figure 3 for an example concerning 3
temporal level MCTF.) Based on this decomposition, we
formulate and analyze a number of DVS optimization
problems based on probabilistic delay constraints. We begin
with a simple optimization problem, where a processor
determines different fractions of time kα to operate at
different power levels kP , 1,...,k K= .

Optimization Problem 1: Minimize the Average Active
Power given an Average Video Quality

1(,...,) 1 avg11min. . 1K K k kkK k kkK kk Ps t Q Qα α α ααα= === ≥= ∑∑∑ (7)

where:

 ,1 Pr{ }I ik i i k iiQ D tλλ== ∆ ≤∑ (8)

is the average quality of the decoded sequence at power
level kP . Here, α is a vector with components that are the
fraction of time the processor is set to operate at power level kP , and i∆ is the quality slope parameter for priority i
GOCs (i.e. the average quality contributed to video by a
priority i GOC.) as introduced in [4]. Note that /iλ λ is
the fraction of GOCs of priority i received from the
bitstream. Thus, the first constraint requires that the
average quality of the video is at least avgQ . This problem
turns out to be a linear programming problem, since kP
and kQ are constants. We can thus solve this via the
simplex method. However, an even simpler closed-form
solution exists if we explicitly consider the properties of
power with respect to quality.

Proposition 1: If quality is a concave increasing function
of ED complexity, and there are a finite number of
power/frequency levels, the optimal solution to
Optimization Problem 1 is to run the processor always at a
single power level, or to perform time sharing between two
adjacent power levels.

Proof: Let Q⌢ be a discrete random variable which takes on
quality levels kQ with probability kα . Since power is a
convex function of frequency [7] and complexity (and thus
the processor frequency) is a convex function of quality [6],
power is a convex function of the required average quality.

For a convex quality to power function ()P q , the
distribution of Q⌢ with avgE Q Q  = ⌢

 that minimizes the
expected value of the function ()E P Q  ⌢

 is avgQ Q=⌢
 with

probability 1 if () { }avg 1,..., KP Q P P∈ , or else:

** 1kkQQ Q += ⌢ with prob.with prob. avg ** *1* avg1* *1 kk kkk kQ QQ QQ QQ Q+++−−−− , (9)

where * *avg 1k kQ Q Q +< < . Q⌢ then minimizes ()E P Q  ⌢
, which

gives us the solutions kα to Optimization Problem 1. ■

Figure 3: (a) Deadline-based job decomposition and (b) Priority-
based job decomposition for 3 temporal level MCTF. The
temporal level is indicated by the number beside the frame type.

If we now consider the case where the processor may shut
down during idle times and expend essentially zero energy,
we have a different optimization problem.

Optimization Problem 2: Minimize the Average Power
given an Average Video Quality

1(,...,) 1 avg11min. . 1K K k k kkK k kkK kk Ps t Q Qα α α α ραα= === ≥= ∑∑∑ (10)

This problem is no longer convex. However, given that the
optimal mode of operation should keep the system
nonempty with high probability, the processor power
should hover between at most a few power levels. If the
solution is to run the processor at a nearly constant power
level, we can determine a near optimal fixed power under
complexity ()O K I⋅ given an average desired video
quality.

Optimization Problem 3: Choose a minimum fixed power

L-frame 3

H-frame 3

H-frame 2

H-frame 1

(a)

L-frame 2

L-frame 1

A-frames

Job 1 Job 2 Job 3 Job 4

(b)

Deadline-based Job Decomposition

Priority-based Job Decomposition

H-frame 1

A-frames

H-frame 2

H-frame 1

L-frame 2

L-frame 1

A-frames

H-frame 1

A-frames

H-frames 1 A-frames

Job 1

Job 2

Job 3

Job 4

L-frame 3

H-frame 3 L-frames 2

H-frames 2 L-frames 1

 avgmin. . kkPs tQ Q≥ (11)

We now propose several simple priority scheduling and power
scheduling algorithms for DVS. The first algorithm chooses a
constant power based on the arrival rate and service time
statistics by solving Optimization Problem 3 with various levels
of avgQ . The second algorithm is the same as the first, but
periodically purges the queue of expired jobs, thereby reducing
the average waiting time for different classes. Finally, we
present a combined DVS and job scheduling algorithm using
priority scheduling with queue purging along with a last second
power increase. Whenever a job in a class i is within δ
seconds of being expired, the system will increase the processor
power according to the job’s priority by some ()iϒ , thereby
increasing the chance of that job being decoded on time.

Algorithm 1: Priority scheduling with last second power increase

1. Solve Optimization Problem 3 for avgQ , initP .

2. While jobs are available,

3. For the highest priority class i ,

 such that the deadline of a job in class i
will expire in less than δ time

4. Set ()initP P i= + ϒ .

5. end

6.
Process highest priority job in FIFO

order. Record service time s .
7. Subtract deadline of all other jobs bys .
8.

 If deadline of a job j is less than 0,
then purge job j .

9. end

4. SIMULATIONS AND RESULTS

Table 1: Comparisons of performances of various priority
scheduling algorithms in terms of the percentage of deadlines
missed for various priority classes for 4 temporal level
decomposition (0f indicates the minimum processor power.).

Jobs
decoded

(%)

Frequency
Levels→

0f 02f 03f 04f 05f 06f

class 1 99.7
2

100 100 100 100 100
class 2 67.3

3
99.9
1

100 100 100 100
class 3 0 98.4

8
99.9
1

100 100 100
class 4 0 0 0 99.0

5
99.9
5

100

Priority

class 5 0 0 0 0 0 0.01
class 1 99.6

2
100 100 100 100 100

class 2 68.1
8

99.9
1

100 100 100 100
class 3 13.5

4
99.7
2

100 100 100 100
class 4 0 14.3

2
57.5
0

99.6
7

99.9
5

100

Priority
with

Queue
Purging

class 5 0 0 6.46 26.9
5

41.2
8

66.8
4 class 1 99.9

1
100 100 100 100 100

class 2 91.2
9

99.9
1

100 100 100 100
class 3 31.9

1
99.4
3

100 100 100 100
class 4 0 14.0

2
58.4
3

99.6
7

99.9
5

100

Algorithm
1

class 5 0 0 6.63 26.9
5

41.2
8

66.8
4 Based on various average power levels for the processor, we

compared the probability of dropping jobs of different

classes based on the strict priority scheduling policy, a
priority scheduling policy with queue-purging of expired
jobs, and Algorithm 1. Table 1 includes averaged results
from many sequences encoded by 4 temporal level MCTF
based on different processor operating frequencies. For
Algorithm 1, we used 0(1) 1.5 (2) 3 (3) 3fϒ = ϒ = ϒ = for the
first 3 priority classes. Table 2 compared the frame rates,
energies, and quality levels achieved under different energy
constraints, where E denotes a normalized unit of energy
consumed. The results show that there is only a loss in
quality of about 1.0 dB when the power is scaled down by
75%, which demonstrates that our algorithm gracefully
adapts the quality to varying energy consumption.

Table 2: Comparisons of quality-energy adaptation points
achieved by algorithm 3 for the Coastguard and Stefan sequences.

Alg Frame rate
(fps):

Energy
consumed:

PSNR (dB):

Seq Cstgrd Stefan Cstgrd Stefan Cstgrd Stefan

EDF 30.00 30.00 2.63E 2.41E 33.24 27.35

1 26.48 23.67 2.15E 2.15E 32.98 27.01

1 20.04 18.05 1.26E 1.25E 32.51 26.70

1 16.17 15.23 0.65E 0.65E 32.23 26.48

1 14.53 10.08 0.28E 0.29E 32.05 25.94

5. CONCLUSIONS

In this paper, we proposed an adaptive architecture
combining both power and job scheduling to obtain scalable
energy-quality tradeoffs. Our results indicated that priority-
scheduling based DVS algorithms can save a significant
amount of energy with only a small reduction to the quality
level. This work may be extended to multiple tasks or
multiple processor environments for future research.

6. REFERENCES

[1] L. Benini, G. De Micheli. Dynamic Power Management: Design
Techniques and CAD Tools. Kluwer Academic Publishers,
Norwell, MA, 1997.

[2] W, Yuan, K. Nahrstedt, S. Adve, D. Jones, R. Kravets. “GRACE:
Cross-layer Adaptation for Multimedia Quality and Battery
Energy,” IEEE Transactions on Mobile Computing, 2006.

[3] A. Reddy, J. Wyllie, K. Wijayaratne. “Disk scheduling in a
multimedia I/O system,” ACM Transactions on Multimedia
Computing, Communications, and Applications, 2005.

[4] A. Ortega, K. Ramchandran. “Rate-distortion Methods for Image
and Video Compression,” IEEE Signal Processing Mag., vol. 15,
issue 6, Nov, 1998.

[5] R.G. Gallager, Discrete Stochastic Processes, Kluwer, Dordrecht,
1996.

[6] B. Foo, Y. Andreopoulos, M. van der Schaar. “Analytical
Complexity Modeling of Wavelet-based Video Coders.” ICASSP
’07, to appear.

[7] T. Ishihara, H. Yasuura. “Voltage Scheduling Problem for
Dynamically VariableVoltage Processors,” in Proc. ACM
ISLPED, 1998, pp. 197-202.

[8] D. Gross and C. Harris, Fundamentals of Queueing Theory, New
York: Wiley-Interscience, 1997.

