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Abstract

In this paper we consider the problem of learning online what is the information
to consider when making sequential decisions. We formalize this as a contextual
multi-armed bandit problem where a high dimensional (D-dimensional) context
vector arrives to a learner which needs to select an action to maximize its expected
reward at each time step. Each dimension of the context vector is called a type. We
assume that there exists an unknown relation between actions and types, called the
relevance relation, such that the reward of an action only depends on the contexts
of the relevant types. When the relation is a function, i.e., the reward of an action
only depends on the context of a single type, and the expected reward of an action
is Lipschitz continuous in the context of its relevant type, we propose an algo-
rithm that achieves Õ(T γ) regret with a high probability, where γ = 2/(1 +

√
2).

Our algorithm achieves this by learning the unknown relevance relation, whereas
prior contextual bandit algorithms that do not exploit the existence of a relevance
relation will have Õ(T (D+1)/(D+2)) regret. Our algorithm alternates between ex-
ploring and exploiting, it does not require reward observations in exploitations,
and it guarantees with a high probability that actions with suboptimality greater
than ε are never selected in exploitations. Our proposed method can be applied to
a variety of learning applications including medical diagnosis, recommender sys-
tems, popularity prediction from social networks, network security etc., where at
each instance of time vast amounts of different types of information are available
to the decision maker, but the effect of an action depends only on a single type.

1 Introduction

In numerous learning problems the decision maker is provided with vast amounts of different types
of information which it can utilize to learn how to select actions that lead to high rewards. The
value of each type of information can be regarded as the context on which the learner acts, hence
all the information can be encoded in a context vector. We focus on problems where this context
vector is high dimensional but the reward of an action only depends on a small subset of types. This
dependence is given in terms of a relation between actions and types, which is called the relevance
relation. For an action set A and a type set D, the relevance relation is given by R = {R(a)}a∈A,
where R(a) ⊂ D. Several examples of relevance relations and their effect on expected action
rewards are given in Figure 1. The problem of finding the relevance relation is important especially
when maxa∈A |R(a)| << |D|.1 In this paper we consider the case when the relevance relation is
a function, i.e., |R(a)| = 1, for all a ∈ A, which is an important special case. We discuss the
extension of our framework to the more general case in Section 3.3.

Relevance relations exists naturally in many practical applications. For example, when sequentially
treating patients with a particular disease, many types of information (contexts) are usually available
- the patients’ age, weight, blood tests, scans, medical history etc. If a drug’s effect on a patient is
caused by only one of the types, then learning the relevant type for the drug will result in significantly

1For a set A, |A| denotes its cardinality.
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Figure 1: Examples of relevance relations: (i) general relevance relation, (ii) linear relevance rela-
tion, (iii) relevance function.

faster learning for the effectiveness of the drug for the patients.2 Another example is recommender
systems, where recommendations are made based on the high dimensional information obtained
from the browsing and purchase histories of the users. A user’s response to a product recommen-
dation will depend on the user’s gender, occupation, history of past purchases etc., while his/her
response to other product recommendations may depend on completely different information about
the user such as the age and home address.

Traditional contextual bandit solutions disregard existence of such relations, hence have regret
bounds that scale exponentially with the dimension of the context vector [1, 2]. In order to solve the
curse of dimensionality problem, a new approach which learns the relevance relation in an online
way is required. The algorithm we propose simultaneously learns the relevance relation (when it is a
function) and the action rewards by comparing sample mean rewards of each action for context pairs
of different types that are calculated based on the context and reward observations so far. The only
assumption we make about actions and contexts is the Lipschitz continuity of expected reward of an
action in the context of its relevant type. Our main contributions can be summarized as follows:

• We propose the Online Relevance Learning with Controlled Feedback (ORL-CF) algorithm
that alternates between exploration and exploitation phases, which achieves a regret bound
of Õ(T γ),3 with γ = 2/(1 +

√
2),when the relevance relation is a function.

• We derive separate bounds on the regret incurred in exploration and exploitation phases.
ORL-CF only needs to observe the reward in exploration phases, hence the reward feedback
is controlled. ORL-CF achieves the same time order of regret even when observing the
reward has a non-zero cost.
• Given any δ > 0, which is an input to ORL-CF, suboptimal actions will never be selected

in exploitation steps with probability at least 1− δ. This is very important, perhaps vital in
numerous applications where the performance needs to be guaranteed, such as healthcare.

Due to the limited space, numerical results on the performance of our proposed algorithm is included
in the supplementary material.

2 Problem Formulation

A is the set of actions, D is the dimension of the context vector, D := {1, 2, . . . , D} is the set of
types, and R = {R(a)}a∈A : A → D is the relevance function, which maps every a ∈ A to a
unique d ∈ D. At each time step t = 1, 2, . . ., a context vector xt arrives to the learner. After
observing xt the learner selects an action a ∈ A, which results in a random reward rt(a,xt). The
learner may choose to observe this reward by paying cost cO ≥ 0. The goal of the learner is to
maximize the sum of the generated rewards minus costs of observations for any time horizon T .

2Even when there are multiple relevant types for each action, but there is one dominant type whose effect
on the reward of the action is significantly larger than the effects of other types, assuming that the relevance
relation is a function will be a good approximation.

3O(·) is the Big O notation, Õ(·) is the same asO(·) except it hides terms that have polylogarithmic growth.
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Each xt consists ofD types of contexts, and can be written as xt = (x1,t, x2,t, . . . , xD,t) where xi,t
is called the type i context. Xi denotes the space of type i contexts and X := X1 × X2 × . . .× XD
denotes the space of context vectors. At any t, we have xi,t ∈ Xi for all i ∈ D. For the sake of
notational simplicity we take Xi = [0, 1] for all i ∈ D, but all our results can be generalized to
the case when Xi is a bounded subset of the real line. For x = (x1, x2, . . . , xD) ∈ X , rt(a,x)
is generated according to an i.i.d. process with distribution F (a, xR(a)) with support in [0, 1] and
expected value µ(a, xR(a)).

The following assumption gives a similarity structure between the expected reward of an action and
the contexts of the type that is relevant to that action.
Assumption 1. For all a ∈ A, x,x′ ∈ X , we have |µ(a, xR(a))−µ(a, x′R(a))| ≤ L|xR(a)−x′R(a)|,
where L > 0 is the Lipschitz constant.

We assume that the learner knows the L given in Assumption 1. This is a natural assumption in
contextual bandit problems [1, 2]. Given a context vector x = (x1, x2, . . . , xD), the optimal action
is a∗(x) := arg maxa∈A µ(a, xR(a)), but the learner does not know it since it does not know R,
F (a, xR(a)) and µ(a, xR(a)) for a ∈ A, x ∈ X a priori. In order to assess the learner’s loss due
to unknowns, we compare its performance with the performance of an an oracle benchmark which
knows a∗(x) for all x ∈ X . Let µt(a) := µ(a, xR(a),t). The action chosen by the learner at time t
is denoted by αt. The learner also decides whether to observe the reward or not, and this decision
of the learner at time t is denoted by βt ∈ {0, 1}, where βt = 1 implies that the learner chooses to
observe the reward and βt = 0 implies that the learner does not observe the reward. The learner’s
performance loss with respect to the oracle benchmark is defined as the regret, whose value at time
T is given by

R(T ) :=

T∑
t=1

µt(a
∗(xt))−

T∑
t=1

(µt(αt)− cOβt). (1)

A regret that grows sublinearly in T , i.e., O(T γ), γ < 1, guarantees convergence in terms of the
average reward, i.e., R(T )/T → 0. We are interested in achieving sublinear growth with a rate
independent of D.

3 Online Relevance Learning with Controlled Feedback

3.1 Description of the algorithm

In this section we propose the algorithm Online Relevance Learning with Controlled Feedback
(ORL-CF), which learns the best action for each context vector by simultaneously learning the rel-
evance relation, and then estimating the expected reward of each action. The feedback, i.e., reward
observations, is controlled based on the past context vector arrivals, in a way that reward obser-
vations are only made for actions for which the uncertainty in the reward estimates are high for
the current context vector. The controlled feedback feature allows ORL-CF to operate as an active
learning algorithm. Operation of ORL-CF can be summarized as follows:

• Adaptively discretize (partition) the context space of each type to learn action rewards of
similar contexts together.

• For an action, form reward estimates for pairs of intervals corresponding to pairs of types.
Based on the accuracy of these estimates, either choose to explore and observe the reward
or choose to exploit the best estimated action for the current context vector.

• In order to choose the best action, compare the reward estimates for pairs of intervals for
which one interval belongs to type i, for each type i and action a. Conclude that type i
is relevant to a if the variation of the reward estimates does not greatly exceed the natural
variation of the expected reward of action a over the interval of type i (calculated using
Assumption 1).

Since the number of contexts is infinite, learning the reward of an action for each context is not
feasible. In order to learn fast, ORL-CF exploits the similarities between the contexts of the relevant
type given in Assumption 1 to estimate the rewards of the actions. The key to success of our algo-
rithm is that this estimation is good enough. ORL-CF adaptively forms the partition of the space
for each type in D, where the partition for the context space of type i at time t is denoted by Pi,t.
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Online Relevance Learning with Controlled Feedback (ORL-CF):
1: Input: L, ρ, δ.
2: Initialization: Pi,1 = {[0, 1]}, i ∈ D. Run Initialize(i, Pi,1, 1), i ∈ D.
3: while t ≥ 1 do
4: Observe xt, find pt that xt belongs to.
5: Set Ut :=

⋃
i∈D Ui,t, where Ui,t (given in (3)), is the set of under explored actions for type i.

6: if Ut 6= ∅ then
7: (Explore) βt = 1, select αt randomly from Ut, observe rt(αt,xt).
8: Update pairwise sample means: for all q ∈ Qt, given in (2).

r̄ind(q)(q, αt) = (S ind(q)(q, αt)r̄
ind(q)(q, αt) + rt(αt,xt))/(S

ind(q)(q, αt) + 1).
9: Update counters: for all q ∈ Qt, S ind(q)(q, αt) + +.

10: else
11: (Exploit) βt = 0, for each a ∈ A calculate the set of candidate relevant contexts Relt(a) given

in (4).
12: for a ∈ A do
13: if Relt(a) = ∅ then
14: Randomly select ĉt(a) from D.
15: else
16: For each i ∈ Relt(a), calculate Vart(i, a) given in (5).
17: Set ĉt(a) = arg mini∈Relt(a) Vart(i, a).
18: end if
19: Calculate r̄ĉt(a)t (a) as given in (6).
20: end for
21: Select αt = arg maxa∈A r̄

ĉt(a)
t (pĉt(a),t, a).

22: end if
23: for i ∈ D do
24: N i(pi,t) + +.
25: if N i(pi,t) ≥ 2ρl(pi,t) then
26: Create two new level l(pi,t) + 1 intervals p, p′ whose union gives pi,t.
27: Pi,t+1 = Pi,t ∪ {p, p′} − {pi,t}.
28: Run Initialize(i, {p, p′}, t).
29: else
30: Pi,t+1 = Pi,t.
31: end if
32: end for
33: t = t+ 1
34: end while
Initialize(i, B, t):
1: for p ∈ B do
2: Set N i(p) = 0, r̄i,j(p, pj , a) = r̄j,i(pj , p, a) = 0, Si,j(p, pj , a) = Sj,i(pj , p, a) = 0 for all a ∈ A,

j ∈ D−i and pj ∈ Pj,t.
3: end for

Figure 2: Pseudocode for ORL-CF.

All the elements of Pi,t are disjoint intervals of Xi = [0, 1] whose lengths are elements of the set
{1, 2−1, 2−2, . . .}.4 An interval with length 2−l, l ≥ 0 is called a level l interval, and for an interval
p, l(p) denotes its level, s(p) denotes its length. By convention, intervals are of the form (a, b], with
the only exception being the interval containing 0, which is of the form [0, b].5 Let pi,t ∈ Pi,t be the
interval that xi,t belongs to, pt := (p1,t, . . . , pD,t) and Pt := (P1,t, . . . ,PD,t).

The pseudocode of ORL-CF is given in Fig. 2. ORL-CF starts with Pi,1 = {Xi} = {[0, 1]} for
each i ∈ D. As time goes on and more contexts arrive for each type i, it divides Xi into smaller and
smaller intervals. The idea is to combine the past observations made in an interval to form sample
mean reward estimates for each interval, and use it to approximate the expected rewards of actions
for contexts lying in these intervals. The intervals are created in a way to balance the variation of
the sample mean rewards due to the number of past observations that are used to calculate them and
the variation of the expected rewards in each interval.

4Setting interval lengths to powers of 2 is for presentational simplicity. In general, interval lengths can be
set to powers of any real number greater than 1.

5Endpoints of intervals will not matter in our analysis, so our results will hold even when the intervals have
common endpoints.
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We also call Pi,t the set of active intervals for type i at time t. Since the partition of each type is
adaptive, as time goes on, new intervals become active while old intervals are deactivated, based on
how contexts arrive. For a type i interval p, let N i

t (p) be the number of times xi,t′ ∈ p ∈ Pi,t′ for
t′ ≤ t. The duration of time that an interval remains active, i.e., its lifetime, is determined by an input
parameter ρ > 0, which is called the duration parameter. Whenever the number of arrivals to an
interval p exceeds 2ρl(p), ORL-CF deactivates p and creates two level l(p)+1 intervals, whose union
gives p. For example, when pi,t = (k2−l, (k + 1)2−l] for some 0 < k ≤ 2l − 1 if N i

t (pi,t) ≥ 2ρl,
ORL-CF sets

Pi,t+1 = Pi,t ∪ {(k2−l, (k + 1/2)2−l], ((k + 1/2)2−l, (k + 1)2−l]} − {pi,t}.

Otherwise Pi,t+1 remains the same as Pi,t. It is easy to see that the lifetime of an interval increases
exponentially in its duration parameter.

We next describe the counters, control numbers and sample mean rewards the learner keeps for each
pair of intervals corresponding to a pair of types to determine whether to explore or exploit and how
to exploit. Let D−i := D − {i}. For type i, let Qi,t := {(pi,t, pj,t) : j ∈ D−i} be the pair of
intervals that are related to type i at time t, and let

Qt :=
⋃
i∈D

Qi,t. (2)

To denote an element of Qi,t or Qt we use index q. For any q ∈ Qt, the corresponding pair of types
is denoted by ind(q). For example, ind((pi,t, pj,t)) = i, j. The decision to explore or exploit at time
t is solely based on pt. For events A1, . . . , AK , let I(A1, . . . , Ak) denote the indicator function of
event

⋂
k=1:K Ak. For p ∈ Pi,t, p′ ∈ Pj,t, let

Si,jt (p, p′, a) :=

t∑
t′=1

I (αt′ = a, βt = 1, pi,t′ = p, pj,t′ = p′) ,

be the number of times a is selected and the reward is observed when the type i context is in p and
type j context is in p′, summed over times when both intervals are active. Also for the same p and
p′ let

r̄i,jt (p, p′, a) :=

(
t∑

t′=1

rt(a,xt)I (αt′ = a, βt = 1, pi,t′ = p, pj,t′ = p′)

)
/(Si,jt (p, p′, a)),

be the pairwise sample mean reward of action a for pair of intervals (p, p′).

At time t, ORL-CF assigns a control number to each i ∈ D denoted by

Di,t :=
2 log(tD|A|/δ)

(Ls(pi,t))2
,

which depends on the cardinality of A, the length of the active interval that type i context is in
at time t and a confidence parameter δ > 0, which controls the accuracy of sample mean reward
estimates. Then, it computes the set of under-explored actions for type i as

Ui,t := {a ∈ A : S
ind(q)
t (q, a) < Di,t for some q ∈ Qi(t)}, (3)

and then, the set of under-explored actions as Ut :=
⋃
i∈D Ui,t. The decision to explore or exploit is

based on whether or not Ut is empty.

(i) If Ut 6= ∅, ORL-CF randomly selects an action αt ∈ Ut to explore, and observes its reward
rt(αt,xt). Then, it updates the pairwise sample mean rewards and pairwise counters for all q ∈ Qt,

r̄
ind(q)
t+1 (q, αt) =

S
ind(q)
t (q,αt)r̄

ind(q)
t+1 (q,αt)+rt(αt,xt)

S
ind(q)
t (q,αt)+1

, Sind(q)
t+1 (q, αt) = S

ind(q)
t (q, αt) + 1.

(ii) If Ut = ∅, ORL-CF exploits by estimating the relevant type ĉt(a) for each a ∈ A and forming
sample mean reward estimates for action a based on ĉt(a). It first computes the set of candidate
relevant types for each a ∈ A,

Relt(a) := {i ∈ D : |r̄i,jt (pi,t, pj,t, a)− r̄i,kt (pi,t, pk,t, a)| ≤ 3Ls(pi,t),∀j, k ∈ D−i}. (4)
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The intuition is that if i is the type that is relevant to a, then independent of the values of the contexts
of the other types, the variation of the pairwise sample mean reward of a over pi,t must be very close
to the variation of the expected reward of a in that interval.

If Relt(a) is empty, this implies that ORL-CF failed to identify the relevant type, hence ĉt(a) is
randomly selected from D. If Relt(a) is nonempty, ORL-CF computes the maximum variation

Vart(i, a) := max
j,k∈D−i

|r̄i,jt (pi,t, pj,t, a)− r̄i,kt (pi,t, pk,t, a)|, (5)

for each i ∈ Relt(a). Then it sets ĉt(a) = mini∈Relt(a) Vart(i, a). This way, whenever the type
relevant to action a is in Relt(a), even if it is not selected as the estimated relevant type, the sample
mean reward of a calculated based on the estimated relevant type will be very close to the sample
mean of its reward calculated according to the true relevant type. After finding the estimated relevant
types, the sample mean reward of each action is computed based on its estimated relevant type as

r̄
ĉt(a)
t (a) :=

∑
j∈D−ĉt(a)

r̄
ĉt(a),j
t (pĉt(a),t, pj,t, a)S

ĉt(a),j
t (pĉt(a),t, pj,t, a)∑

j∈D−ĉt(a)
S
ĉt(a),j
t (pĉt(a),t, pj,t, a)

. (6)

Then, ORL-CF selects αt = arg maxa∈A r̄
ĉt(a)
t (pĉt(a),t, a). Since the reward is not observed in

exploitations, pairwise sample mean rewards and counters are not updated.

3.2 Regret analysis of ORL-CF

Let τ(T ) ⊂ {1, 2, . . . , T} be the set of time steps in which ORL-CF exploits by time T . τ(T ) is a
random set which depends on context arrivals and the randomness of the action selection of ORL-
CF. The regretR(T ) defined in (1) can be written as a sum of the regret incurred during explorations
(denoted byRO(T )) and the regret incurred during exploitations (denoted byRI(T )). The following
theorem gives a bound on the regret of ORL-CF in exploitation steps.
Theorem 1. Let ORL-CF run with duration parameter ρ > 0, confidence parameter δ > 0 and
control numbers Di,t := 2 log(t|A|D/δ)

(Ls(pi,t))2
, for i ∈ D. Let Rinst(t) be the instantaneous regret at time t,

which is the loss in expected reward at time t due to not selecting a∗(xt). Then, with probability at
least 1− δ, we have

Rinst(t) ≤ 8L(s(pR(αt),t) + s(pR(a∗(xt)),t)),

for all t ∈ τ(T ), and the total regret in exploitation steps is bounded above by

RI(T ) ≤ 8L
∑
t∈τ(T )

(s(pR(αt),t + s(pR(a∗(xt)),t)) ≤ 16L22ρT ρ/(1+ρ),

for arbitrary context vectors x1,x2, . . . ,xT .

Theorem 1 provides both context arrival process dependent and worst case bounds on the exploita-
tion regret of ORL-CF. By choosing ρ arbitrarily close to zero, RI(T ) can be made O(T γ) for any
γ > 0. While this is true, the reduction in regret for smaller ρ not only comes from increased accu-
racy, but it is also due to the reduction in the number of time steps in which ORL-CF exploits, i.e.,
|τ(T )|. By definition time t is an exploitation step if

Si,jt (pi,t, pj,t, a) ≥ 2 log(t|A|D/δ)
L2 min{s(pi,t)2, s(pj,t)2}

=
22 max{l(pi,t),l(pj,t)}+1 log(t|A|D/δ)

L2
,

for all q = (pi,t, pj,t) ∈ Qt, i, j ∈ D. This implies that for any q ∈ Qi,t which has the interval
with maximum level equal to l, Õ(22l) explorations are required before any exploitation can take
place. Since the time a level l interval can stay active is 2ρl, it is required that ρ ≥ 2 so that τ(T ) is
nonempty.

The next theorem gives a bound on the regret of ORL-CF in exploration steps.
Theorem 2. Let ORL-CF run with ρ, δ and Di,t, i ∈ D values as stated in Theorem 1. Then,

RO(T ) ≤ 960D2(cO + 1) log(T |A|D/δ)
7L2

T 4/ρ +
64D2(cO + 1)

3
T 2/ρ,

with probability 1, for arbitrary context vectors x1,x2, . . . ,xT .
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Based on the choice of the duration parameter ρ, which determines how long an interval will stay
active, it is possible to get different regret bounds for explorations and exploitations. Any ρ > 4 will
give a sublinear regret bound for both explorations and exploitations. The regret in exploitations
increases in ρ while the regret in explorations decreases in ρ.

Theorem 3. Let ORL-CF run with δ andDi,t, i ∈ D values as stated in Theorem 1 and ρ = 2+2
√

2.
Then, the time order of exploration and exploitation regrets are balanced up to logaritmic orders.
With probability at least 1− δ we have both RI(T ) = Õ(T 2/(1+

√
2)) and RO(T ) = Õ(T 2/(1+

√
2)) .

Remark 1. Prior work on contextual bandits focused on balancing the regret due to exploration
and exploitation. For example in [1, 2], for a D-dimensional context vector algorithms are shown
to achieve Õ(T (D+1)/(D+2)) regret.6 Also in [1] a O(T (D+1)/(D+2)) lower bound on the regret
is proved. An interesting question is to find the tightest lower bound for contextual bandits with
relevance function. One trivial lower bound is O(T 2/3), which corresponds to D = 1. However,
since finding the action with the highest expected reward for a context vector requires comparisons
of estimated rewards of actions with different relevant types, which requires accurate sample mean
reward estimates for 2 dimensions of the context space corresponding to those types, we conjecture
that a tighter lower bound is O(T 3/4). Proving this is left as future work.

Another interesting case is when actions with suboptimality greater than ε > 0 must never be chosen
in any exploitation step by time T . When such a condition is imposed, ORL-CF can start with
partitions Pi,1 that have sets with high levels such that it explores more at the beginning to have
more accurate reward estimates before any exploitation. The following theorem gives the regret
bound of ORL-CF for this case.
Theorem 4. Let ORL-CF run with duration parameter ρ > 0, confidence parameter δ > 0, control
numbers Di,t := 2 log(t|A|D/δ)

(Ls(pi,t))2
, and with initial partitions Pi,1, i ∈ D consisting of intervals of

length lmin = dlog2(3L/(2ε))e. Then, with probability 1 − δ, Rinst(t) ≤ ε for all t ∈ τ(T ),
RI(T ) ≤ 16L22ρT ρ/(1+ρ) and

RO(T ) ≤ 81L4

ε4

(
960D2(cO + 1) log(T |A|D/δ)

7L2
T 4/ρ +

64D2(cO + 1)

3
T 2/ρ

)
,

for arbitrary context vectors x1,x2, . . . ,xT . Bounds on RI(T ) and RO(T ) are balanced for ρ =

2 + 2
√

2.

3.3 Future Work

In this paper we only considered the relevance relations that are functions. Similar learning methods
can be developed for more general relevance relations such as the ones given in Figure 1 (i) and (ii).
For example, for the general case in Figure 1 (i), if |R(a)| ≤ Drel << D, for all a ∈ A, and Drel
is known by the learner, the following variant of ORL-CF can be used to achieve regret whose time
order depends only on Drel but not on D.

• Instead of keeping pairwise sample mean reward estimates, keep sample mean reward esti-
mates of actions for Drel + 1 tuples of intervals of Drel + 1 types.
• For a Drel tuple of types i, let Qi,t be the Drel + 1 tuples of intervals that are related to i

at time t, and Qt be the union of Qi,t over all Drel tuples of types. Similar to ORL-CF,
compute the set of under-explored actions Ui,t, and the set of candidate relevant Drel tuples
of types Relt(a), using the newly defined sample mean reward estimates.
• In exploitation, set ĉt(a) to be theDrel tuple of types with the minimax variation, where the

variation of action a for a tuple i is defined similar to (5), as the maximum of the distance
between the sample mean rewards of action a for Drel+1 tuples that are in Qi,t.

Another interesting case is when the relevance relation is linear as given in Figure 1 (ii). For exam-
ple, for action a if there is a type i that is much more relevant compared to other types j ∈ D−i, i.e.,
wa,i >> wa,j , where the weights wa,i are given in Figure 1, then ORL-CF is expected to have good
performance (but not sublinear regret with respect to the benchmark that knows R).

6The results are shown in terms of the covering dimension which reduces to Euclidian dimension for our
problem.
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4 Related Work

Contextual bandit problems are studied by many others in the past [3, 4, 1, 2, 5, 6]. The prob-
lem we consider in this paper is a special case of the Lipschitz contextual bandit problem [1, 2],
where the only assumption is the existence of a known similarity metric between the expected re-
wards of actions for different contexts. It is known that the lower bound on regret for this problem
is O(T (D+1)/(D+2)) [1], and there exists algorithms that achieve Õ(T (D+1)/(D+2)) regret [1, 2].
Compared to the prior work above, ORL-CF only needs to observe rewards in explorations and has
a regret whose time order is independent of D. Hence it can still learn the optimal actions fast
enough in settings where observations are costly and context vector is high dimensional.

Examples of related works that consider limited observations are KWIK learning [7, 8] and label
efficient learning [9, 10, 11]. For example, [8] considers a bandit model where the reward function
comes from a parameterized family of functions and gives bound on the average regret. An online
prediction problem is considered in [9, 10, 11], where the predictor (action) lies in a class of linear
predictors. The benchmark of the context is the best linear predictor. This restriction plays a crucial
role in deriving regret bounds whose time order does not depend on D. Similar to these works,
ORL-CF can guarantee with a high probability that actions with large suboptimalities will never
be selected in exploitation steps. However, we do not have any assumptions on the form of the
expected reward function other than the Lipschitz continuity and that it depends on a single type for
each action.

In [12] graphical bandits are proposed where the learner takes an action vector a which includes
actions from several types that consitute a type set T . The expected reward of a for context vector x
can be decomposed into sum of reward functions each of which only depends on a subset ofD∪T . It
is assumed that the form of decomposition is known but the functions are not known. Our problem
cannot be directly reduced to a graphical bandit problem, but it can be reduced to a constrained
version of the graphical bandit problem. We can transform actions a ∈ A to |A| type of actions
TA := {1, 2, . . . , |A|}. For each type i action there are two choices vi ∈ {0, 1}, where vi = 0
implies that action inA corresponding to type i action in the graphical bandit problem is not chosen,
and vi = 1 implies that is is chosen. Thus, the action constraint for the graphical bandit problem
becomes

∑
i∈TA vi = 1. The methods introduced in [12] cannot be used for this problem due to the

additional constraint and the unknown relation. Moreover, [12] only consider finite context spaces.
Large dimensional action spaces, where the rewards depend on a subset of the types of actions are
considered in [13] and [14]. [13] considers the problem when the reward is Hölder continuous in
an unknown low-dimensional tuple of types, and uses a special discretization of the action space
to achieve dimension independent bounds on the regret. This discretization can be effectively used
since the learner can select the actions, as opposed to our case where the learner does not have any
control over contexts. [14] considers the problem of optimizing high dimensional functions that
have an unknown low dimensional structure from noisy observations.

5 Conclusion

In this paper we formalized the problem of learning the best action through learning the relevance
relation between types of contexts and actions. For the case when the relevance relation is a function,
we proposed an algorithm that (i) has sublinear regret with time order independent of D, (ii) only
requires reward observations in explorations, (iii) for any ε > 0, does not select any ε suboptimal
actions in exploitations with a high probability. In the future we will extend our results to the linear
and general relevance relations illustrated in Figure 1.
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SUPPLEMENTAL MATERIAL
of

Discovering, Learning and Exploiting Relevance

Cem Tekin Mihaela van der Schaar

This supplementary material is composed of two sections. The first section includes numerical
results on the proposed algorithm. The second section includes proofs of the theorems.

1 Experiments

We use the network intrusion data set from UCI archive [1]. Three of the features are taken as
contexts and are normalized to [0, 1]. Hence there are three types D = {1, 2, 3}. There are 8
classifiers that are trained with different instances from the data set. The action set of the learner is
equal to the set of classifiers. At each time step the learner observes a 3-dimensional context vector
and selects a classifier as an action, which outputs a prediction. Our performance measure is the
percentage of the number of correct predictions made till the final time.

We compare the performance of ORL-CF with state-of-the-art online ensemble learning techniques
given in Table 1. Different from ORL-CF, these algorithms have access to the true labels (reward
observations) at all times, and instead of choosing a single classifier to make a prediction, they com-
bine the predictions of all classifiers to produce their final prediction. We also simulate a benchmark
algorithm that we call Contextual Learning with a Single Type (CON-S). Different from ORL-CF,
CON-S forms its adaptive partition and sample mean reward estimates only on Xd for any arbitrarily
chosen d ∈ D, neglecting contexts of other types. Therefore, it is a contextual bandit algorithm for
a single dimensional context space with finite number of arms. The adaptive partition of CON-S
is formed using the same technique as ORL-CF, however, the partition can also be created by the
methods in [2] and [3] by using the doubling trick, since those algorithms require the knowledge of
the time horizon.

Results in Table 1 show that ORL-CF has a very small error percentage and even outperforms the
ensemble learning techniques. This is due to the fact that for this data set there exists at least one
classifier whose prediction is very accurate for each particular value of the context vector. Learning
this contextual specialization by ORL-CF outperforms ensemble prediction. ORL-CF also outper-
forms CON-S, since CON-S fails to capture the dependencies of action rewards on the neglected
types.

Abbrev. Name Ref. Parameters Error%
BC Single best classifier - - 3.12
Ada Adaboost [4] - 4.82
OnAda Fan’s Online Adaboost [5] Window size w = 100 2.69
AM Average Majority [6] - 46.9
Blum Blum’s variant of [7] Multiplicative parameters 53.1

weighted majority β = 0.5, γ = 1.5
ORL-CF Online Relevance Learning Our δ = 0.1, ρ = 4, L = 1 0.7

with Controlled Feedback D = 3 work
CON-S Contextual Learning with a Single Type ” Same as ORL-CF 3.75

Table 1: Error percentages of ORL-CF, CON-S and ensemble learning methods.
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2 Proofs

Let A := |A|. We first define a sequence of events which will be used in the analysis of the regret
of ORL-CF. For p ∈ PR(a),t, Let π(a, p) = µ(a, x∗R(a)(p)), where x∗R(a)(p) is the context at the
geometric center of p. For j ∈ D−R(a), let

INACCt(a, j) :=

{
|r̄R(a),j
t (pR(a),t, pj,t, a)− π(a, pR(a),t)| >

3

2
Ls(pR(a),t)

}
,

be the event that the pairwise sample mean corresponding to pair (R(a), j) of types is inaccurate
for action a. Let

ACCt(a) :=
⋂

j∈D−R(a)

INACCt(a, j)C ,

be the event that all pairwise sample means corresponding to pairs (R(a), j), j ∈ D−R(a) are
accurate. Consider t ∈ τ(T ). Let

WNGt(a) := {R(a) /∈ Relt(a)} ,

be the event that the type relevant to action a is not in the set of candidate relevant types, and

WNGt :=
⋃
a∈A

WNGt(a),

be the event that the type relevant to some action a is not in the set of candidate relevant types of
that action. Finally, let

CORRT :=
⋂

t∈τ(T )

WNGCt ,

be the event that the relevant types for all actions are in the set of candidate relevant types at all
exploitation steps.

2.1 Proof of Theorem 1

We first prove several lemmas related to Theorem 1. The next lemma gives a lower bound on the
probability of CORRT .
Lemma 1. For ORL-CF, for all a ∈ A, t ∈ τ(T ), we have

P(INACCt(a, j)) ≤
2δ

ADt4
.

for all j ∈ D−R(a), and P(CORRT ) ≥ 1− δ for any T .

Proof. For t ∈ τ(T ), we have Ut = ∅, hence

S
ind(q)
t (q, a) ≥ 2 log(tAD/δ)

(Ls(pR(a),t))2
,

for all a ∈ A, q ∈ Qi(t) and i ∈ D. Due to Assumption 1, since rewards in r̄R(a),j
t (pR(a),t, pj,t, a)

are sampled from distributions with mean between [π(a, pR(a),t) − L
2 s(pR(a),t), π(a, pR(a),t) +

L
2 s(pR(a),t)], using a Chernoff bound we get

P(INACCt(a, j)) ≤ 2 exp

(
−2(Ls(pR(a),t))

2 2 log(tAD/δ)

(Ls(pR(a),t))2

)
≤ 2δ

ADt4
.

We have WNGt(a) ⊂
⋃
j∈D−R(a)

INACCt(a, j). Thus

P(WNGt(a)) ≤ 2δ

At4
, and P(WNGt) ≤

2δ

t4
.
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This implies that

P(CORRCT ) ≤
∑
t∈τ(T )

P(WNGt) (1)

≤
∑
t∈τ(T )

2δ

t4
≤
∞∑
t=3

2δ

t4
≤ δ.

Lemma 2. When CORRT happens we have for all t ∈ τ(T )

|r̄ĉt(a)t (pĉt(a),t, a)− µ(a, xR(a),t)| ≤ 8Ls(pR(a),t).

Proof. From Lemma 1, CORRT happens when

|r̄R(a),j
t (pR(a),t, pj,t, a)− π(a, pR(a),t)| ≤

3L

2
s(pR(a),t),

for all a ∈ A, j ∈ D−R(a), t ∈ τ(T ). Since |µ(a, xR(a),t) − π(a, pR(a),t)| ≤ Ls(pR(a),t)/2, we
have

|r̄R(a),j
t (pR(a),t, pj,t, a)− µ(a, xR(a),t)| ≤ 2Ls(pR(a),t), (2)

for all a ∈ A, j ∈ D−R(a), t ∈ τ(T ). Consider ĉt(a). Since it is chosen from Relt(a) as the type
with the minimum variation, we have on the event CORRT

|r̄ĉt(a),kt (pĉt(a),t, pk,t, a)− r̄ĉt(a),jt (pĉt(a),t, pj,t, a)| ≤ 3Ls(pR(a),t),

for all j, k ∈ D−ĉt(a). Hence we have

|r̄R(a)
t (pR(a),t, a)− r̄ĉt(a)t (pĉt(a),t, a)|

≤ max
k,j
|r̄R(a),k
t (pR(a),t, pk,t, a)− r̄ĉt(a),jt (pĉt(a),t, pj,t, a)|

≤ max
k,j

(
|r̄R(a),k
t (pR(a),t, pk,t, a)− r̄R(a),ĉt(a)

t (pR(a),t, pĉt(a),t, a)|

+|r̄ĉt(a),R(a)
t (pĉt(a),t, pR(a),t, a)− r̄ĉt(a),jt (pĉt(a),t, pj,t, a)|

)
≤ 6Ls(pR(a),t). (3)

Combining 2 and 3, we get

|r̄ĉt(a)t (pĉt(a),t, a)− µ(a, xR(a),t)| ≤ 8Ls(pR(a),t).

Since for t ∈ τ(T ), αt = arg maxa∈A r̄
ĉt(a)
t (pĉt(a),t, a), using the result of Lemma 2, we conclude

that

µt(αt) ≥ µt(a∗(xt))− 8L(s(pR(αt),t) + s(pR(a∗(xt)),t)), (4)

Thus, the regret in exploitation steps is

8L
∑
t∈τ(T )

(
s(pR(αt),t) + s(pR(a∗(xt)),t)

)
≤ 16L

∑
t∈τ(T )

max
a∈A

s(pR(a),t)

≤ 16L
∑
t∈τ(T )

max
i∈D

s(pi,t)

≤ 16L
∑
t∈τ(T )

∑
i∈D

s(pi,t)

≤ 16
∑
i∈D

max
i∈D

 ∑
t∈τ(T )

s(pi,t)


3



= 16LDmax
i∈D

 ∑
t∈τ(T )

s(pi,t)

 .

We know that as time goes on ORL-CF uses partitions with smaller and smaller intervals, which
reduces the regret in exploitations. In order to bound the regret in exploitations for any sequence
of context arrivals, we assume a worst case scenario, where context vectors arrive such that at each
t, the active interval that contains the context of each type has the maximum possible length. This
happens when for each type i contexts arrive in a way that all level l intervals are split to level l + 1
intervals, before any arrivals to these level l + 1 intervals happen, for all l = 0, 1, 2, . . .. This way it
is guaranteed that the length of the interval that contains the context for each t ∈ τ(T ) is maximized.
Let lmax be the level of the maximum level interval in Pi(T ). For the worst case context arrivals we
must have

lmax−1∑
l=0

2l2ρl < T

⇒ lmax < 1 + log2 T/(1 + ρ),

since otherwise maximum level hypercube will have level larger than lmax. Hence we have

16LDmax
i∈D

 ∑
t∈τ(T )

s(pi,t)

 ≤ 16L

1+log2 T/(1+ρ)∑
l=0

2l2ρl2−l

= 16L

1+log2 T/(1+ρ)∑
l=0

2ρl

≤ 16L22ρT ρ/(1+ρ). (5)

2.2 Proof of Theorem 2

Recall that time t is an exploitation step only if Ut = ∅. In order for this to happen we need
Si,jt (pi,t, pj,t, a) ≥ Di,t for all q ∈ Qi(t). Since for any pi ∈ Pi,t, pj ∈ Pj,t we have
Si,jt (pi, pj , a) = Sj,it (pj , pi, a), the number of explorations of pair (pi, pj) at time t will be at
most

2 log(tAD/δ)

L2 min(s(pi), s(pj))2
+ 1 (6)

There are D(D− 1) type pairs. Whenever action a is explored, all the counters for these D(D− 1)
type pairs are updated for the pairs of intervals that contain types of contexts present at time t, i.e.
q ∈ Qt. Now consider a hypothetical scenario in which instead of updating the counters of all
q ∈ Qt, the counter of only one of the randomly selected interval pair is updated. Clearly, the
exploration regret of this hypothetical scenario upper bounds the exploration regret of the original
scenario. We can go one step further and consider a second hypothetical scenario where there is
only two types i and j, for which the actual regret at every exploration step is magnified (multiplied)
by D(D − 1). The maximum possible exploration regret of the second scenario (for the worst case
of type i and j context arrivals) upper bounds the exploration regret of the first scenario. Hence,
we bound the regret of the second scenario. Let lmax be the maximum possible level for an active
interval for type i by time T . We must have

lmax−1∑
l=0

2ρl < T,

which implies that lmax < 1 + log2 T/ρ. Next, we consider all pairs of intervals for which the
minimum interval has level l. For each type j interval pj that has level l, there exists no more than∑lmax

k=l 2k type i intervals that have lengths greater than or equal to l. Consider a level k type i
interval pi such that l ≤ k < 1 + log2 T/ρ. Then for the pair of intervals (pi, pj) the exploration
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regret is bounded by (cO + 1)
(
2 log(tAD/δ)/(2−2kL2) + 1

)
. Hence, the worst case exploration

regret is bounded by

RO(T ) ≤ (cO + 1)D2

2

1+log2 T/ρ∑
l=0

2l
1+log2 T/ρ∑

k=l

2k
(

2 log(tAD/δ)

2−2kL2
+ 1

)
= (cO + 1)D2

4 log(tAD/δ)

L2

1+log2 T/ρ∑
l=0

2l
1+log2 T/ρ∑

k=l

23k + 2

1+log2 T/ρ∑
l=0

2l
1+log2 T/ρ∑

k=l

2k


≤ 4D2(cO + 1) log(tAD/δ)

L2
× 240

7
T 4/ρ +

64D2(cO + 1)

3
T 2/ρ.

2.3 Proof of Theorem 4

To achieve ε-optimality in every exploitation step it is sufficient to have

INACCt(a, j)C =

{
|r̄R(a),j
t (pR(a),t, pj,t, a)− π(a, pR(a),t)| <

3

2
Ls(pR(a),t)

}
,

⊂
{
|r̄R(a),j
t (pR(a),t, pj,t, a)− π(a, pR(a),t)| < ε

}
,

for t ∈ τ(T ). This is satisfied when lmin ≥ log2(3L/(2ε)). Starting with level lmin intervals instead
of level 0 intervals decreases the exploitation regret of ORL-CF. Hence the regret bound in Theorem
1 is an upper bound on the exploitation regret.

For any sequence of context arrivals, we have the following bound on the level of the interval with
the maximum level,

lmax < 1 + lmin + log2 T/ρ.

Continuing similarly with the proof of Theorem 2, we have

RO(T ) ≤ (cO + 1)D2

2

1+log2 T/ρ∑
l=0

2lmin2l
1+log2 T/ρ∑

k=l

2lmin2k
(

24lmin
2 log(tAD/δ)

2−2lmin2−2kL2
+ 1

)
= (cO + 1)D2

4 log(tAD/δ)

L2

1+log2 T/ρ∑
l=0

2l
1+log2 T/ρ∑

k=l

23k + 22lmin2

1+log2 T/ρ∑
l=0

2l
1+log2 T/ρ∑

k=l

2k


≤ 24lmin

(
4D2(cO + 1) log(tAD/δ)

L2
× 240

7
T 4/ρ +

64D2(cO + 1)

3
T 2/ρ

)
.
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