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ABSTRACT 

The objective of dynamic voltage scaling (DVS) is to adapt the frequency and voltage for configurable platforms to 

obtain energy savings. DVS is especially attractive for video decoding systems due to their time-varying and highly 

complex workload and because the utility of decoding a frame is solely depending on the frame being decoded before 

its display deadline. Several DVS algorithms have been proposed for multimedia applications. However, the prior 

work did not take into account the video compression algorithm specifics, such as considering the temporal 

dependencies among frames and the required display buffer. Moreover, the effect of the passive (leakage) power when 

performing DVS for multimedia systems was not explicitly considered. In this paper, we determine the optimal 

scheduling of the active and passive states to minimize the total energy for video decoding systems. We pose our 

problem as a buffer-constrained optimization problem with a novel, compression-aware definition of processing jobs. 

We propose low complexity algorithms to solve the optimization problem and show through simulations that 

significant improvements can be achieved over state-of-the art DVS algorithms that aim to minimize only the active 

power.  

Index Terms—video compression, buffer control, power optimization for multimedia systems, dynamic voltage 

scaling. 

I. INTRODUCTION 

Dynamic voltage scaling (DVS) algorithms were proposed for dynamically adapting the operating frequency and 

voltage. The main goal of existing DVS algorithms is to utilize the energy-delay tradeoff for tasks whose jobs’ 

completion times are immaterial as long as they are completed before their deadline [1]. An example of such a task is 

real-time video decoding, where early completion of frame decoding does not provide any benefit as long as the 

display deadline is met. DVS algorithms assign the operating level (i.e., power and frequency) for each job given the 

estimated cycle requirement (i.e., complexity) and the completion deadline of the job. Several DVS algorithms have 

been proposed for multimedia decoding applications. In [2], a state-of-the-art DVS algorithm for video decoding was 
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presented. Subsequently, this algorithm is referred to as “conventional DVS”. Conventional DVS algorithms aim to 

match frequency/voltage to fixed time intervals, e.g., for the decoding of 30 Hz video, voltage/frequency is controlled 

such that each frame is decoded in 1/30 seconds. Hence, these methods do not consider the deployed compression 

structure, which requires a different number of frames to be decoded at different time instances depending on the 

adopted temporal prediction structure. Also, none of the prior research on DVS for multimedia has explicitly 

addressed the effect of the passive (leakage) power, which becomes increasingly important given the recent 

developments in decreasing active power. As mentioned in e.g. [3] “the static power consumption is comparable to the 

dynamic power dissipation and projected to surpass it if measures are not taken to minimize leakage current”. 

Idle (sleep) states are especially important when idle state can consume nearly as much power as active state [3]-[6], 

which necessitates the joint optimization of the idle state scheduling and DVS. Note that, while idle state scheduling 

for sensor networks [4][6] and leakage-aware (i.e., passive power aware) DVS for real-time applications [3] were 

separately considered in prior research,  their joint optimization in the context of DVS for the video decoding 

applications becomes important due to the dynamic behavior and relatively high complexity of these applications 

In this paper, we explicitly consider the video compression specifics to redefine conventionally used job definitions 

for video decoding and provide a solution for energy minimization (that takes into account the effect of leakage power) 

by jointly considering DVS and idle state scheduling. We also utilize a post decoding buffer to mitigate the highly 

varying complexity profile of video decoding, not only to be able to decode high complexity frames [7], but also to 

perform efficient DVS by relaxing the hard job deadlines to soft buffer overflow/underflow constraints. A post 

decoding buffer is crucial for video decoding applications since bursts of frames should be jointly decoded till a given 

deadline. Hence, we investigate the optimal scheduling of active and passive states together with the optimal frequency 

assignment using a buffer-controlled DVS framework for video decoding systems. The letter is organized as follows. 

Section 2 describes the effects of passive power on DVS algorithms and presents the novel job definitions specific to 

video decoding. The extension of buffered DVS for systems with passive power and low complexity suboptimal 

solutions are presented in Section 3. Comparative results are presented in Section 4 and Section 5 concludes the paper. 

 

II. DYNAMIC VOLTAGE SCALING WITH PASSIVE POWER 

A. Effect of Passive Power on DVS 

In the following, we illustrate the various DVS methods and the effect of passive power using a simple example, 
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shown in Figure 1. Let us assume, we have 3M =  jobs with complexities max max
max(1) , (2) , (3)

2 4

C C
c c c C= = = . 

From now on, we use the term complexity to represent the number of execution cycles. With no-DVS, the processing 

is performed at the maximum frequency available maxF and the corresponding maxP (maximum active power) for each 

job. When the job finishes, the processor goes into an idle state. For conventional DVS, the frequencies are adjusted to 

finish each job “just-in-time”, prior to its delay deadline, i.e., max max
max(1) , (2) , (3)

2 4

F F
f f f F= = = . In this case, the 

remaining idle times are neglected. Let us assume an active power-frequency relationship of 3P f∝  [1][2]. Then, the 

active power will be max max
max(1) , (2) , (3)

8 64

P P
p p p P= = = . The total “active” energy spent on the group of jobs can be 

found as  

                  
3

1

( ) ( )

( )
active

i

p i c i
E

f i=

=∑ .                        (1) 

Hence, the total active energy spent for the no-DVS case is 
_

1.75
no DVS

activeE E=    and for the conventional DVS  

1.14
DVS

activeE E= , where max max

max

.P C
E

F
= . As can be seen from this simple example, if we neglect the effect of passive 

power, the conventional DVS algorithm decreases the energy consumption significantly. However, in the cases of 

non-negligible passive power, we should consider the total energy , i.e., total active passiveE E E= + . The passive energy 

can be written as  

           
3

1

( )
. . . ( )

( )
passive

pass idle idle trans idle
i

c i
E P P t E sign t

f i=

= + +∑ ,                                    (2) 

where passP  is the passive power, idleP  is the power in idle (sleep) mode, idlet  is the idle (sleep) time and transE  is the 

transition energy. The transition energy is the energy spent by going into the active state from the idle state [3][6] . 

When the idle time idlet is zero, there is no transition energy, captured with the sign function in Eq.2. We assume that 

the passive power is independent of frequency/voltage changes throughout the paper and there is no transition cost and 

no power dissipation in idle state for this simple example, i.e., 0trans idleE P= = . Then, if we assume 

maxpassP P= (which is typical for several devices [3] [6]), the total energies corresponding to no-DVS and 

conventional DVS are   
_

3.5
no DVS

totalE E= and 4.14
DVS

totalE E= . DVS algorithms that merely minimize “active” energy 

spent are suboptimal when passive power is significant. As can be seen from this example, while conventional DVS 

decreases active energy, total energy spent in conventional DVS may be even higher than no-DVS scenario since 

processing time, thus passive energy spent, also increases in conventional DVS.     
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The bottom panel shows the proposed joint optimization of DVS and sleep states. If the frequency is kept constant at 

max(1) (2) (3) 0.79f f f F= = = , then the total energy equals  
_ .

3.31
DVS state sch

totalE E
+

= , which is significantly less than 

conventional DVS approaches. The effect of the transitions is neglected for the simplicity of the example, but 

significant savings can be obtained by optimizing idle states with respect to buffer sizes as it will be shown later in the 

paper. Most processors have different idle states with different power consumption idleP  and transition energy transE  

levels. For example, there are three different idle states in most processors such as “shut down”, where 0idleP =  but 

the transition energy transE is high, the “idle” state where 0transE =  but idleP  is high, and the “stand-by” state that has 

nonzero power consumption and transition energy [6]. In Section 3, we analyze the optimal choice of idle state in 

addition to optimal DVS and idle state scheduling. 

B. Video Compression Specific DVS  

In the current highly adaptive video compression algorithms, the current frame is predicted from both past and 

future frames. Some reference frames should be decoded before their display deadline to be used as reference. The 

frames that are jointly encoded share the same decoding deadline. Hence, unlike previous work on multimedia DVS 

[2] which assumes a job as decoding a single frame, we combine the frames with the same decoding deadline and 

define decoding this collection of dependent frames as one job of the decoding task. The proposed new job definition 

is especially important for new video coding methods, where multiple frames are jointly filtered temporally. In 

general, we define every job with three parameters, : { , , }job deadline complexity size                                                            

deadline : Decoding deadline of the job j, ( )d j . 
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Figure 1: DVS Strategies: 1) No DVS (top) 2) conventional DVS [2] (middle)  3) Proposed DVS with sleep states (bottom)  
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complexity : Estimated number of cycles that job j consumes on a specific platform, ( )c j  .These estimates can be 

achieved with several methods, see eg. [8].  

size : Number of decoded original frames when job j finishes, ( )s j . 

                         

                                    a)                        b) 

Figure 2: DAGs and job definitions for a) conventional I-B1-B2-P1-B3-B4-P2 frames b) Hierarchical B Pictures, I-B1-B2-B3-P 

In predictive coding, frames are encoded with interdependencies that can be represented by a directed acyclic 

dependence graph (DAG). Examples are shown in Figure 2 for two different GOP structures: the conventional 

I-B-B-P-B-B-P GOP structure and hierarchical B pictures. DAGs can represent the distinction of a job and frame 

decoding clearly, for this example; decoding frame I and decoding frames P1 and B1 represent different jobs as shown 

in Figure 2. Hierarchical B pictures structure, which is based on flexible reference frame selection in the latest 

compression standard H.264/AVC, is more interesting in terms of jobs with varying sizes, complexities and deadlines.  

The first job is decoding frame I ( (1) 1, (1)s d t= = ∆ ) where, the second job is decoding frames P, B1 and B2 

( (2) 3, (2) 2s d t= = ∆ ) and the last job is decoding frame B3 ( (3) 1, (3) 4s d t= = ∆ ).  Also, note that the first job, 

decoding the I frame, is composed of only the texture related complexities (i.e., entropy coding and inverse transform), 

whereas the second job includes several bi-directional motion compensation operations, thereby showing that not only 

the complexity is varying per job, but also the type of the complexity (entropy coding, inverse transform, motion 

compensation or interpolation) is changing. Thus, while decoding two B frames is the same from a high level 

perspective, the job parameters are substantially different showing the superiority of the delay-aware job definitions 

over conventional job definition. The proposed job definitions do not require any complexity overhead as they can be 

readily deduced from the encoding structure (see above illustrative examples).    

Another video compression specific feature of the proposed DVS framework is the usage of a post-decoding 

(display) buffer between the display device and the decoding platform. This post decoding buffer helps to mitigate 

complexity estimate mismatches and converts hard job deadlines to soft buffer underflow/overflow constrains. We 
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neglect the overhead of buffer management energy cost throughout the paper.  

Figure 3 shows the general setup for the buffer controlled DVS for video decoding. Frequency for job j  is 

determined by considering the parameters of totalM  jobs and buffer occupancy, ( )B j  and passive power passP . For 

each job, complexity estimates are updated, the buffer occupancy is checked and the frequency for the job is assigned. 

  

 

 

 

                                                                 

 

Figure 3:  Buffer controlled DVS for video decoding  

III. PROPOSED DVS ALGORITHM 

The DVS optimization problem described below is aimed at minimizing the total energy by adapting the 

frequency/voltage level over time, based on the complexity of the tasks, such that the buffer overflow/underflow 

constraints are fulfilled at all times. Note that in the proposed optimization, all jobs are completed before their 

decoding deadline and hence there is no video distortion incurred due to DVS. Let us assume that there is a discrete set 

of operating levels with corresponding frequency and power levels, which can be used for voltage/frequency 

adaptation 1{ : ( , ),1 | ,.., }j j j Nl p f j N l l= ≤ ≤L . Each level has a different power consumption and different 

frequency, 1 1 1 1( ) {( , ),...,( , ) | ... ; ... }N N N Np f p f p p f f= < < < <P,F , where the power is an increasing function of 

the frequency. Assume that there are a total of M jobs with complexity estimates { (1),..., ( )}c c M=C
 
, deadlines 

{ (1),..., ( ) | (1) ... ( )}d d M d d M= < <D  and sizes { (1),..., ( )}s s M=S . Then, the dynamic voltage scaling problem 

attempts to find the set of operating level (frequency and thus power) for each job { (1),..., ( ) | }l l M l= ∀ ∈optl L  . 

Throughout the paper, we assume the passive power is independent of the frequency [1] [2], passP . Thus, the 

investigated DVS optimization can be formulated as follows. 

Buffer Constrained DVS Optimization considering Passive Power: 

{ }
1

argmin ( ) ( ) ( )
M

pass
l L j

p j t j P t j
∈ =

= +∑optl       (energy consumption)                                                                        

      subject to: max0 ( )B j B≤ ≤ ; : 1j j M∀ ≤ ≤  (buffer overflow/underflow constraint)                                 (3)   

DECODING DISPLAY 

BUFFER JOBS 
DISPLAY 

Display rate, fr  

VOLTAGE/FREQ. 

CONTROL 
Deadline, ( )d j  

Complexity, ( )c j  

Size, ( )s j  

j=1,...,M 

Buffer occupancy, ( )B j  

Frequency, ( )f j  
Power, ( )p j  

Passive Power, passP  
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In the optimization above, we define the buffer occupancy for job j as B(j) based on the following recursion                                     

                          ( ) max( ( 1) ( ) ( ). , 0)B j B j s j t j fr= − + −  and (0) initialB B=                         (4)                     

where fr  denotes the frame rate, initialB  is the initial state of the buffer that depends on the initial playback delay (which 

may be zero if any delay is not tolerable). ( )B j  is defined in terms of number of frames. The processing time can be 

defined as:   

                
( )

( )
( )

c j
t j

f j
= .                                                 (5) 

The optimal frequency *( )f j is defined as:       *( ) argmin ( )
f F

f j E j
∈

= ,                                          (6) 

where                     ( ) ( ) ( ) ( )passE j p j t j P t j= + .                                      (7) 

*( )f j  can be determined by solving the differential equation: 
*( )

( )
0

( ) f j

E j

f j

∂
=

∂
.                                 (8)   

By replacing Eq. 5, and Eq. 7 in Eq. 8, we obtain the optimal frequency as the frequency that satisfies the differential 

equation: 

                                                            
( ( ))

( ) ( ( ))
( ) pass

p f j
f j p f j P

f j

∂
− =

∂
.                                 (9) 

  The optimization strategy depends on the value of the set of operating frequencies with respect to *( )f j . As can be 

seen from Equation (9),   the optimal frequency *( )f j does not depend on the job index, i.e., irrespective of the 

complexity of the job, the optimal frequency is identical and only depends on the power-frequency relationship. 

Hence, we drop j  in the following derivations.  Let minf be the minimum frequency that the processor can operate at, 

while satisfying buffer underflow constraints. Note that minf depends on both processor’s frequency-power 

relationships and the novel job definitions. Depending on the temporal encoding structure, minf can take different 

values.  Let us define two distinct cases: a) *
minf f≤ (case-1) and b) *

minf f>  (case-2). In our subsequent derivations, 

we assume a power-frequency function as in [1][2]: ( ) . kp f fα=  with 2k > . Based on this, we can determine the 

optimal solutions for different frequency regions. 

Proposition: If *
minf f> (i.e., case-2), then the total energy is a convex function of frequency for all  f greater or 

equal to minf .  

Proof: To prove that the energy is convex increasing in the frequency, it suffices to show that the first and second 

derivatives are both positive: 

                                                               
2
( ( 1) )k

pass
E c

k f P
f f

α
∂
= − −

∂
                                       (10) 

                                      
2

2 3
( ( 1)( 2) 2 )k

pass
E c

k k f P
f f

α
∂

= − − +
∂

                                (11) 
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   From Eq.9, we obtain that the optimal frequency is *

( 1)
pass

k
P

f
kα

=
−

                                    (12) 

From Eq.12, *
minf f>  indicates ( 1) k

passk f Pα − >  for min f f∀ ≥ which makes  0
E

f

∂
>

∂
 for min f f∀ ≥ . 

2

min2
0, for 

E
f f

f

∂
> ∀ >

∂
 when 2k >  since both terms( ( 1)( 2) kk k fα − −  and 2 passP )  are positive in Eq. 11. Hence,  

0
E

f

∂
>

∂
 and 

2

2
0

E

f

∂
>

∂
, showing that ( )E f  is convex for *

minf f f∀ ≥ > . ■ 

Case-1 ( *
minf f≤ ): The optimum frequency is in the range of operating frequencies of the processor; hence, this 

frequency (which does not depend on the complexity) can be applied to all jobs. However, this assignment may not 

guarantee to satisfy the buffer overflow constraint. Since ( )E f  is not convex in that region, slope-based (i.e., 

Lagrangian optimization type) techniques cannot be applied [9]. Also, the processor can go into different type of idle 

(sleep) states, such as the sleep-1 that consumes negligible power at idle state ( 1
idleP ) but results in a significant energy 

consumption in state transitions( 1
transE ), and sleep-2 that costs significant power at idle states but has less transition 

cost. Let us assume sleep-1 has energy transition cost 1
transE , but no steady state cost. Sleep-2 has transition cost 2

transE  

( 2 1
trans transE E< ) and idle state cost 2

idleP , where 1 2
sleep sleepP P< . Let ( )idlet j  be the time that processor sleeps after job j. 

Then, we need to minimize the energy, by determining the joint optimal scheduling of the sleep states and sleep times 

in addition to the optimal frequency selection, as formulated in the following optimization problem.  

Buffer Constrained DVS Optimization with Passive Power and Sleep States: 

{ }
1

, , argmin ( ) ( ) ( ) ( ) sign( ( ))
M

state state
idle pass idle idle trans idle

l L j

p j t j P t j P t j E t j
∈ =

= + + +∑optl t state   

 subject to: max0 ( )B j B≤ ≤ ; : 1j j M∀ ≤ ≤ , where ( ) max( ( 1) ( ) ( ( ) ( )). , 0)sleepB j B j s j t j t j fr= − + − +          (13)               

 

    In the above formulation, , ,idle
optl t state  are 1M ×  vectors that represent the optimal operating level 

(frequency/power), optimal idle time and idle state type (sleep-1 or sleep-2) for M  jobs. 

The optimal solution to these types of constrained problems can be found by deploying dynamic programming based 

algorithms which are impractical due to their high complexity. Hence, we propose a suboptimal low-complexity 

algorithm to solve this problem. The solution is based on aggregating the jobs (i.e., decoded frames) until the buffer is 

close to overflow ( 1( )B j β> ) and going into the sleep state to avoid overflow and stay in sleep state till buffer is close to 
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underflow ( 2( )B j β< ). The thresholds 1β  and 2β  can be determined using complexity estimates or can be set 

heuristically, depending on the buffer size [9]. Idle (sleep) state type (sleep-1 or sleep-2) is determined according to the 

buffer occupancy and complexities of the jobs.    

To determine the sleep state type, we need to compare the expected energy consumption at the sleep state for one 

buffer depletion time. The total energy spent in the idle state-1 and idle state-2 (transition energy+ passive energy in idle 

state) for one buffer depletion time are 
( )2 11 1

1 trans idleE E P
fr

β β−
= +  and  

( )2 12 2
2 trans idleE E P

fr

β β−
= + , respectively. The 

optimal sleep state type depends on the buffer size ( 1β and 2β ) and transition and idle energy spent. Sleep-1 should be 

preferred when 1 2E E<  i.e., 
( )
( )

1 2
2 1

2 1

trans trans
idle idle

E E
fr P P

β β

−
< −

−
. Sleep-2 should be chosen when 

( )
( )

1 2
2 1

2 1

trans trans
idle idle

E E
fr P P

β β

−
> −

−
. 

  To find the operating frequency, we modify the optimal frequency found in Eq.10, considering the power in sleep 

mode and transition energy. We note that sum of idle and active time i.e., total time is constant for M jobs corresponding 

to a total of N frames:.              { }
1

( ) ( ) /
M

idle
j

t j t j N fr
=

+ =∑                                           (14) 

Since we keep the frequency constant for all jobs, we can write 
1

1

( )

( )

M

M
j

j

c j

t j
f

=

=

=

∑
∑ ,                                       

(15) 

and                
1

1

( )

( ) /

M

M
j

idle
j

c j

t j N fr
f

=

=

= −

∑
∑ .                                                                (16) 

The number of transitions is identical to the number of buffer depletions, which is 
( )

1

2 1

( )
M

idle
j

t j

fr
β β

=

−

∑
. Hence, the total 

energy can be written as:  

1

1 1 1

2 1

( )
( ) ( ) ( ) ( / )

( ) ( / ) . .

           Active energy   Passive energy          Idle energy         Transition energy 

M

M M M

j

j j j
total pass idle trans

c j
c j c j c j N fr

f
E p f P P N fr fr E

f f f β β

=

= = =

 
  − 
 = + + − +  − 
 
  

∑
∑ ∑ ∑

  

     .                                                  (17) 

 Similar to Eq.9, the operating optf  frequency can be found as the frequency that satisfies the differential equation  

                              
2 1

( )
( ) trans

pass idle
p f E

f p f P P fr
f β β

∂  − = − −   ∂ −
.                                       (18) 

As can be seen from the operating frequency depends on active power-frequency function, which characterizes the 
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video decoding device, ( )p f , passive power, passP , power in sleep (idle) mode, idleP , and the transition energy, transE , 

from idle state to active state. It also depends on the buffer size ( 2 1β β− ), since as the buffer size increases, the number 

of transitions decreases. Note that the operating frequency does not depend on the buffer occupancy or the complexity of 

the job, such that evaluating this frequency takes place only once for the process, hence the proposed algorithm has very 

low complexity overhead. The algorithm is given in Table I.  

 

Table I: Low Complexity Algorithm  

1. Find the operating frequency optf  according to Equation-18.  

2.    For each job j ;1 j M≤ ≤ ,  

3.     Execute the job with the assigned frequency ( optf ) and check the buffer occupancy ( )B j .   

4.     If 2( )B j β≥ , go into the sleep state and wait until  1( )B j β≤              

5. 

    Else, continue with same frequency (i.e., go to Step 4), and proceed to next job, i.e.,                 

set 1j j= + .                                                              

Case-2 ( *
minf f> ): Since all the frequencies are in the convex region, there should be no sleep states and the 

processor should operate at the minimum frequency that satisfies buffer (delay) constraints. The new job definitions 

are especially important for this case where the optimization should take the complexities of each job into account. 

This problem is analogous to the conventional rate control problem with buffer constraints in video coding (see e.g. 

[9]). Hence, the interested reader is referred to existing literature [9] for details on finding the solution of this problem. 

 

IV. RESULTS 

In this section, we compare the proposed DVS method to the conventional DVS method. In our experiments we used 

four different test sequences, foreman, mobile, coastguard and silence, at CIF resolution and at a frame rate of 30fps. 

We used a wavelet video coder that utilizes motion-compensated temporal filtering with 4 level temporal and 5 level 

spatial decompositions. We generated two sets of decoded video with high and low complexity at two rates, 512 kbps 

and 1024kbps. High complexity compression includes adaptive update and quarter pixel motion compensation 

whereas the update step is skipped and only half pixel MC is used for the low complexity case. To obtain statistically 

meaningful results, we concatenated the resulting 16 videos in 12 different orders, resulting in a set of 12 long videos 

with 3072 frames each. We present the average results of 12 videos with different decoding traces. Power and 
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frequency values that we used are shown in Table II, which are reported for the Intel StrongARM processor [10] in 

[11].  

Table II: Frequency power values of Strong-Arm processor analyzed in [11] 

Frequency (MHz) 59  74 89 103 118 133  148 177 192 206 

Power(mW) 33.2 42.0 54.0 71.2 91.8 115.5 149.5 221.0 280.0 360.0 

 

We assume a passive power maxpassP P= , and transition energy max /transE P fr=  in the experiments. Two buffer 

sizes are tested, we set the buffer size to 20 decoded frames, max 20B = , for Proposed DVS-1 and max 50B = for 

Proposed DVS-2. We set 1 max0.2Bβ = , 2 max0.8Bβ =  and max /10idleP P=  for the experiments.
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Figure 4: Buffer level variation for one realization of test sequences 
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Figure 4 illustrates the buffer level variation for one realization. The buffer level increases as the jobs are processed 

faster than the required display speed until the buffer is close to overflow (i.e., 2 16β = ). Subsequently, the processor 

goes in the sleep mode until the buffer level decreases to 1 4β = . The comparative results are given in Table III. 

Table III: Comparative (scaled) results on active, passive and total energy consumption 

 Active Energy Passive Energy Idle Energy Trans. Energy  Total Energy 

No DVS E  E  0.11E  1.08E  3.19E  

Conventional DVS 0.44E  1.99E  - - 2.43E  

Proposed DVS-1 0.68E  1.07E  0.03E  0.01E  1.88E  

Proposed DVS-2 0.68E  1.07E  0.03E  0.003E  1.87E  
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Our results show the superiority of the proposed DVS method over other methods when passive power is 

significant. As the buffer size increases the transition energy decreases significantly. Hence, increasing the buffer size 

may help decreasing the total energy when the transition energy is significant. There is no transition and idle energy 

cost assumed for Conventional DVS, since this technique assumes to finish jobs just in time, i.e., exact complexities 

are assumed to be known beforehand only for Conventional DVS.    

 

V. CONCLUSION 

We proposed a novel state/frequency scheduling method for video decoding systems. The proposed method utilizes 

video encoding specific job definitions and a post-decoding buffer. We experimentally show the benefit of the 

proposed method in systems where passive power is significant compared to active power.    
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