
 1

Emrah Akyol and Mihaela van der Schaar

ABSTRACT

The objective of dynamic voltage scaling (DVS) is to adapt the frequency and voltage for configurable platforms to

obtain energy savings. DVS is especially attractive for video decoding systems due to their time-varying and highly

complex workload and because the utility of decoding a frame is solely depending on the frame being decoded before

its display deadline. Several DVS algorithms have been proposed for multimedia applications. However, the prior

work did not take into account the video compression algorithm specifics, such as considering the temporal

dependencies among frames and the required display buffer. Moreover, the effect of the passive (leakage) power when

performing DVS for multimedia systems was not explicitly considered. In this paper, we determine the optimal

scheduling of the active and passive states to minimize the total energy for video decoding systems. We pose our

problem as a buffer-constrained optimization problem with a novel, compression-aware definition of processing jobs.

We propose low complexity algorithms to solve the optimization problem and show through simulations that

significant improvements can be achieved over state-of-the art DVS algorithms that aim to minimize only the active

power.

Index Terms—video compression, buffer control, power optimization for multimedia systems, dynamic voltage

scaling.

I. INTRODUCTION

Dynamic voltage scaling (DVS) algorithms were proposed for dynamically adapting the operating frequency and

voltage. The main goal of existing DVS algorithms is to utilize the energy-delay tradeoff for tasks whose jobs’

completion times are immaterial as long as they are completed before their deadline [1]. An example of such a task is

real-time video decoding, where early completion of frame decoding does not provide any benefit as long as the

display deadline is met. DVS algorithms assign the operating level (i.e., power and frequency) for each job given the

estimated cycle requirement (i.e., complexity) and the completion deadline of the job. Several DVS algorithms have

been proposed for multimedia decoding applications. In [2], a state-of-the-art DVS algorithm for video decoding was

Compression-Aware Energy Optimization

for Video Decoding Systems with Passive Power

 2

presented. Subsequently, this algorithm is referred to as “conventional DVS”. Conventional DVS algorithms aim to

match frequency/voltage to fixed time intervals, e.g., for the decoding of 30 Hz video, voltage/frequency is controlled

such that each frame is decoded in 1/30 seconds. Hence, these methods do not consider the deployed compression

structure, which requires a different number of frames to be decoded at different time instances depending on the

adopted temporal prediction structure. Also, none of the prior research on DVS for multimedia has explicitly

addressed the effect of the passive (leakage) power, which becomes increasingly important given the recent

developments in decreasing active power. As mentioned in e.g. [3] “the static power consumption is comparable to the

dynamic power dissipation and projected to surpass it if measures are not taken to minimize leakage current”.

Idle (sleep) states are especially important when idle state can consume nearly as much power as active state [3]-[6],

which necessitates the joint optimization of the idle state scheduling and DVS. Note that, while idle state scheduling

for sensor networks [4][6] and leakage-aware (i.e., passive power aware) DVS for real-time applications [3] were

separately considered in prior research, their joint optimization in the context of DVS for the video decoding

applications becomes important due to the dynamic behavior and relatively high complexity of these applications

In this paper, we explicitly consider the video compression specifics to redefine conventionally used job definitions

for video decoding and provide a solution for energy minimization (that takes into account the effect of leakage power)

by jointly considering DVS and idle state scheduling. We also utilize a post decoding buffer to mitigate the highly

varying complexity profile of video decoding, not only to be able to decode high complexity frames [7], but also to

perform efficient DVS by relaxing the hard job deadlines to soft buffer overflow/underflow constraints. A post

decoding buffer is crucial for video decoding applications since bursts of frames should be jointly decoded till a given

deadline. Hence, we investigate the optimal scheduling of active and passive states together with the optimal frequency

assignment using a buffer-controlled DVS framework for video decoding systems. The letter is organized as follows.

Section 2 describes the effects of passive power on DVS algorithms and presents the novel job definitions specific to

video decoding. The extension of buffered DVS for systems with passive power and low complexity suboptimal

solutions are presented in Section 3. Comparative results are presented in Section 4 and Section 5 concludes the paper.

II. DYNAMIC VOLTAGE SCALING WITH PASSIVE POWER

A. Effect of Passive Power on DVS

In the following, we illustrate the various DVS methods and the effect of passive power using a simple example,

 3

shown in Figure 1. Let us assume, we have 3M = jobs with complexities max max
max(1) , (2) , (3)

2 4

C C
c c c C= = = .

From now on, we use the term complexity to represent the number of execution cycles. With no-DVS, the processing

is performed at the maximum frequency available maxF and the corresponding maxP (maximum active power) for each

job. When the job finishes, the processor goes into an idle state. For conventional DVS, the frequencies are adjusted to

finish each job “just-in-time”, prior to its delay deadline, i.e., max max
max(1) , (2) , (3)

2 4

F F
f f f F= = = . In this case, the

remaining idle times are neglected. Let us assume an active power-frequency relationship of 3P f∝ [1][2]. Then, the

active power will be max max
max(1) , (2) , (3)

8 64

P P
p p p P= = = . The total “active” energy spent on the group of jobs can be

found as

3

1

() ()

()
active

i

p i c i
E

f i=

=∑ . (1)

Hence, the total active energy spent for the no-DVS case is
_

1.75
no DVS

activeE E= and for the conventional DVS

1.14
DVS

activeE E= , where max max

max

.P C
E

F
= . As can be seen from this simple example, if we neglect the effect of passive

power, the conventional DVS algorithm decreases the energy consumption significantly. However, in the cases of

non-negligible passive power, we should consider the total energy , i.e., total active passiveE E E= + . The passive energy

can be written as

3

1

()
. . . ()

()
passive

pass idle idle trans idle
i

c i
E P P t E sign t

f i=

= + +∑ , (2)

where passP is the passive power, idleP is the power in idle (sleep) mode, idlet is the idle (sleep) time and transE is the

transition energy. The transition energy is the energy spent by going into the active state from the idle state [3][6] .

When the idle time idlet is zero, there is no transition energy, captured with the sign function in Eq.2. We assume that

the passive power is independent of frequency/voltage changes throughout the paper and there is no transition cost and

no power dissipation in idle state for this simple example, i.e., 0trans idleE P= = . Then, if we assume

maxpassP P= (which is typical for several devices [3] [6]), the total energies corresponding to no-DVS and

conventional DVS are
_

3.5
no DVS

totalE E= and 4.14
DVS

totalE E= . DVS algorithms that merely minimize “active” energy

spent are suboptimal when passive power is significant. As can be seen from this example, while conventional DVS

decreases active energy, total energy spent in conventional DVS may be even higher than no-DVS scenario since

processing time, thus passive energy spent, also increases in conventional DVS.

 4

The bottom panel shows the proposed joint optimization of DVS and sleep states. If the frequency is kept constant at

max(1) (2) (3) 0.79f f f F= = = , then the total energy equals
_ .

3.31
DVS state sch

totalE E
+

= , which is significantly less than

conventional DVS approaches. The effect of the transitions is neglected for the simplicity of the example, but

significant savings can be obtained by optimizing idle states with respect to buffer sizes as it will be shown later in the

paper. Most processors have different idle states with different power consumption idleP and transition energy transE

levels. For example, there are three different idle states in most processors such as “shut down”, where 0idleP = but

the transition energy transE is high, the “idle” state where 0transE = but idleP is high, and the “stand-by” state that has

nonzero power consumption and transition energy [6]. In Section 3, we analyze the optimal choice of idle state in

addition to optimal DVS and idle state scheduling.

B. Video Compression Specific DVS

In the current highly adaptive video compression algorithms, the current frame is predicted from both past and

future frames. Some reference frames should be decoded before their display deadline to be used as reference. The

frames that are jointly encoded share the same decoding deadline. Hence, unlike previous work on multimedia DVS

[2] which assumes a job as decoding a single frame, we combine the frames with the same decoding deadline and

define decoding this collection of dependent frames as one job of the decoding task. The proposed new job definition

is especially important for new video coding methods, where multiple frames are jointly filtered temporally. In

general, we define every job with three parameters, : { , , }job deadline complexity size

deadline : Decoding deadline of the job j, ()d j .

Start Job 1 Start Job 2

 JOB 1

Finish Job 1

 JOB 2

 JOB 1 JOB 2 JOB 3

JOB 3

Start Job 3

Finish Job 1

IDLE

Finish Job 2 Finish Job 3

Finish Job 2 Finish Job 3

No DVS

Conventional DVS[2]

Start Job 2
Start Job 3

Tmax

Tmax

Tmax

T1 T2 T3

T1 T2 T3

max()f i F= : 1 3i i∀ ≤ ≤

max

()
()

c i
f i

T
≈ : 1 3i i∀ ≤ ≤

Deadline 1 Deadline 2 Deadline 3

 JOB 1

Finish Job 1

Start Job 2

 JOB 2

Finish Job 2

Start Job 3

Finish Job 3

T1 T2 T3

Proposed

: 1 3i i∀ ≤ ≤
*()f i f≈

IDLE

JOB 3

Figure 1: DVS Strategies: 1) No DVS (top) 2) conventional DVS [2] (middle) 3) Proposed DVS with sleep states (bottom)

 5

complexity : Estimated number of cycles that job j consumes on a specific platform, ()c j .These estimates can be

achieved with several methods, see eg. [8].

size : Number of decoded original frames when job j finishes, ()s j .

 a) b)

Figure 2: DAGs and job definitions for a) conventional I-B1-B2-P1-B3-B4-P2 frames b) Hierarchical B Pictures, I-B1-B2-B3-P

In predictive coding, frames are encoded with interdependencies that can be represented by a directed acyclic

dependence graph (DAG). Examples are shown in Figure 2 for two different GOP structures: the conventional

I-B-B-P-B-B-P GOP structure and hierarchical B pictures. DAGs can represent the distinction of a job and frame

decoding clearly, for this example; decoding frame I and decoding frames P1 and B1 represent different jobs as shown

in Figure 2. Hierarchical B pictures structure, which is based on flexible reference frame selection in the latest

compression standard H.264/AVC, is more interesting in terms of jobs with varying sizes, complexities and deadlines.

The first job is decoding frame I ((1) 1, (1)s d t= = ∆) where, the second job is decoding frames P, B1 and B2

((2) 3, (2) 2s d t= = ∆) and the last job is decoding frame B3 ((3) 1, (3) 4s d t= = ∆). Also, note that the first job,

decoding the I frame, is composed of only the texture related complexities (i.e., entropy coding and inverse transform),

whereas the second job includes several bi-directional motion compensation operations, thereby showing that not only

the complexity is varying per job, but also the type of the complexity (entropy coding, inverse transform, motion

compensation or interpolation) is changing. Thus, while decoding two B frames is the same from a high level

perspective, the job parameters are substantially different showing the superiority of the delay-aware job definitions

over conventional job definition. The proposed job definitions do not require any complexity overhead as they can be

readily deduced from the encoding structure (see above illustrative examples).

Another video compression specific feature of the proposed DVS framework is the usage of a post-decoding

(display) buffer between the display device and the decoding platform. This post decoding buffer helps to mitigate

complexity estimate mismatches and converts hard job deadlines to soft buffer underflow/overflow constrains. We

B1

B2

P

I B3

Job 1 Job 2 Job 3

I

P1

P2

B1

B2 B3 B4

Job 1 Job 2 Job 3 Job 4 Job 5

 6

neglect the overhead of buffer management energy cost throughout the paper.

Figure 3 shows the general setup for the buffer controlled DVS for video decoding. Frequency for job j is

determined by considering the parameters of totalM jobs and buffer occupancy, ()B j and passive power passP . For

each job, complexity estimates are updated, the buffer occupancy is checked and the frequency for the job is assigned.

Figure 3: Buffer controlled DVS for video decoding

III. PROPOSED DVS ALGORITHM

The DVS optimization problem described below is aimed at minimizing the total energy by adapting the

frequency/voltage level over time, based on the complexity of the tasks, such that the buffer overflow/underflow

constraints are fulfilled at all times. Note that in the proposed optimization, all jobs are completed before their

decoding deadline and hence there is no video distortion incurred due to DVS. Let us assume that there is a discrete set

of operating levels with corresponding frequency and power levels, which can be used for voltage/frequency

adaptation 1{ : (,),1 | ,.., }j j j Nl p f j N l l= ≤ ≤L . Each level has a different power consumption and different

frequency, 1 1 1 1() {(,),...,(,) | ... ; ... }N N N Np f p f p p f f= < < < <P,F , where the power is an increasing function of

the frequency. Assume that there are a total of M jobs with complexity estimates { (1),..., ()}c c M=C

, deadlines

{ (1),..., () | (1) ... ()}d d M d d M= < <D and sizes { (1),..., ()}s s M=S . Then, the dynamic voltage scaling problem

attempts to find the set of operating level (frequency and thus power) for each job { (1),..., () | }l l M l= ∀ ∈optl L .

Throughout the paper, we assume the passive power is independent of the frequency [1] [2], passP . Thus, the

investigated DVS optimization can be formulated as follows.

Buffer Constrained DVS Optimization considering Passive Power:

{ }
1

argmin () () ()
M

pass
l L j

p j t j P t j
∈ =

= +∑optl (energy consumption)

 subject to: max0 ()B j B≤ ≤ ; : 1j j M∀ ≤ ≤ (buffer overflow/underflow constraint) (3)

DECODING DISPLAY

BUFFER JOBS
DISPLAY

Display rate, fr

VOLTAGE/FREQ.

CONTROL
Deadline, ()d j

Complexity, ()c j

Size, ()s j

j=1,...,M

Buffer occupancy, ()B j

Frequency, ()f j
Power, ()p j

Passive Power, passP

 7

In the optimization above, we define the buffer occupancy for job j as B(j) based on the following recursion

 () max((1) () (). , 0)B j B j s j t j fr= − + − and (0) initialB B= (4)

where fr denotes the frame rate, initialB is the initial state of the buffer that depends on the initial playback delay (which

may be zero if any delay is not tolerable). ()B j is defined in terms of number of frames. The processing time can be

defined as:

()

()
()

c j
t j

f j
= . (5)

The optimal frequency *()f j is defined as: *() argmin ()
f F

f j E j
∈

= , (6)

where () () () ()passE j p j t j P t j= + . (7)

*()f j can be determined by solving the differential equation:
*()

()
0

() f j

E j

f j

∂
=

∂
. (8)

By replacing Eq. 5, and Eq. 7 in Eq. 8, we obtain the optimal frequency as the frequency that satisfies the differential

equation:

(())

() (())
() pass

p f j
f j p f j P

f j

∂
− =

∂
. (9)

 The optimization strategy depends on the value of the set of operating frequencies with respect to *()f j . As can be

seen from Equation (9), the optimal frequency *()f j does not depend on the job index, i.e., irrespective of the

complexity of the job, the optimal frequency is identical and only depends on the power-frequency relationship.

Hence, we drop j in the following derivations. Let minf be the minimum frequency that the processor can operate at,

while satisfying buffer underflow constraints. Note that minf depends on both processor’s frequency-power

relationships and the novel job definitions. Depending on the temporal encoding structure, minf can take different

values. Let us define two distinct cases: a) *
minf f≤ (case-1) and b) *

minf f> (case-2). In our subsequent derivations,

we assume a power-frequency function as in [1][2]: () . kp f fα= with 2k > . Based on this, we can determine the

optimal solutions for different frequency regions.

Proposition: If *
minf f> (i.e., case-2), then the total energy is a convex function of frequency for all f greater or

equal to minf .

Proof: To prove that the energy is convex increasing in the frequency, it suffices to show that the first and second

derivatives are both positive:

2
((1))k

pass
E c

k f P
f f

α
∂
= − −

∂
 (10)

2

2 3
((1)(2) 2)k

pass
E c

k k f P
f f

α
∂

= − − +
∂

 (11)

 8

 From Eq.9, we obtain that the optimal frequency is *

(1)
pass

k
P

f
kα

=
−

 (12)

From Eq.12, *
minf f> indicates (1) k

passk f Pα − > for min f f∀ ≥ which makes 0
E

f

∂
>

∂
 for min f f∀ ≥ .

2

min2
0, for

E
f f

f

∂
> ∀ >

∂
 when 2k > since both terms((1)(2) kk k fα − − and 2 passP) are positive in Eq. 11. Hence,

0
E

f

∂
>

∂
 and

2

2
0

E

f

∂
>

∂
, showing that ()E f is convex for *

minf f f∀ ≥ > . ■

Case-1 (*
minf f≤): The optimum frequency is in the range of operating frequencies of the processor; hence, this

frequency (which does not depend on the complexity) can be applied to all jobs. However, this assignment may not

guarantee to satisfy the buffer overflow constraint. Since ()E f is not convex in that region, slope-based (i.e.,

Lagrangian optimization type) techniques cannot be applied [9]. Also, the processor can go into different type of idle

(sleep) states, such as the sleep-1 that consumes negligible power at idle state (1
idleP) but results in a significant energy

consumption in state transitions(1
transE), and sleep-2 that costs significant power at idle states but has less transition

cost. Let us assume sleep-1 has energy transition cost 1
transE , but no steady state cost. Sleep-2 has transition cost 2

transE

(2 1
trans transE E<) and idle state cost 2

idleP , where 1 2
sleep sleepP P< . Let ()idlet j be the time that processor sleeps after job j.

Then, we need to minimize the energy, by determining the joint optimal scheduling of the sleep states and sleep times

in addition to the optimal frequency selection, as formulated in the following optimization problem.

Buffer Constrained DVS Optimization with Passive Power and Sleep States:

{ }
1

, , argmin () () () () sign(())
M

state state
idle pass idle idle trans idle

l L j

p j t j P t j P t j E t j
∈ =

= + + +∑optl t state

 subject to: max0 ()B j B≤ ≤ ; : 1j j M∀ ≤ ≤ , where () max((1) () (() ()). , 0)sleepB j B j s j t j t j fr= − + − + (13)

 In the above formulation, , ,idle
optl t state are 1M × vectors that represent the optimal operating level

(frequency/power), optimal idle time and idle state type (sleep-1 or sleep-2) for M jobs.

The optimal solution to these types of constrained problems can be found by deploying dynamic programming based

algorithms which are impractical due to their high complexity. Hence, we propose a suboptimal low-complexity

algorithm to solve this problem. The solution is based on aggregating the jobs (i.e., decoded frames) until the buffer is

close to overflow (1()B j β>) and going into the sleep state to avoid overflow and stay in sleep state till buffer is close to

 9

underflow (2()B j β<). The thresholds 1β and 2β can be determined using complexity estimates or can be set

heuristically, depending on the buffer size [9]. Idle (sleep) state type (sleep-1 or sleep-2) is determined according to the

buffer occupancy and complexities of the jobs.

To determine the sleep state type, we need to compare the expected energy consumption at the sleep state for one

buffer depletion time. The total energy spent in the idle state-1 and idle state-2 (transition energy+ passive energy in idle

state) for one buffer depletion time are
()2 11 1

1 trans idleE E P
fr

β β−
= + and

()2 12 2
2 trans idleE E P

fr

β β−
= + , respectively. The

optimal sleep state type depends on the buffer size (1β and 2β) and transition and idle energy spent. Sleep-1 should be

preferred when 1 2E E< i.e.,
()
()

1 2
2 1

2 1

trans trans
idle idle

E E
fr P P

β β

−
< −

−
. Sleep-2 should be chosen when

()
()

1 2
2 1

2 1

trans trans
idle idle

E E
fr P P

β β

−
> −

−
.

 To find the operating frequency, we modify the optimal frequency found in Eq.10, considering the power in sleep

mode and transition energy. We note that sum of idle and active time i.e., total time is constant for M jobs corresponding

to a total of N frames:. { }
1

() () /
M

idle
j

t j t j N fr
=

+ =∑ (14)

Since we keep the frequency constant for all jobs, we can write
1

1

()

()

M

M
j

j

c j

t j
f

=

=

=

∑
∑ ,

(15)

and
1

1

()

() /

M

M
j

idle
j

c j

t j N fr
f

=

=

= −

∑
∑ . (16)

The number of transitions is identical to the number of buffer depletions, which is
()

1

2 1

()
M

idle
j

t j

fr
β β

=

−

∑
. Hence, the total

energy can be written as:

1

1 1 1

2 1

()
() () () (/)

() (/) . .

 Active energy Passive energy Idle energy Transition energy

M

M M M

j

j j j
total pass idle trans

c j
c j c j c j N fr

f
E p f P P N fr fr E

f f f β β

=

= = =

 −
 = + + − + −

∑
∑ ∑ ∑

 . (17)

 Similar to Eq.9, the operating optf frequency can be found as the frequency that satisfies the differential equation

2 1

()
() trans

pass idle
p f E

f p f P P fr
f β β

∂ − = − − ∂ −
. (18)

As can be seen from the operating frequency depends on active power-frequency function, which characterizes the

 10

video decoding device, ()p f , passive power, passP , power in sleep (idle) mode, idleP , and the transition energy, transE ,

from idle state to active state. It also depends on the buffer size (2 1β β−), since as the buffer size increases, the number

of transitions decreases. Note that the operating frequency does not depend on the buffer occupancy or the complexity of

the job, such that evaluating this frequency takes place only once for the process, hence the proposed algorithm has very

low complexity overhead. The algorithm is given in Table I.

Table I: Low Complexity Algorithm

1. Find the operating frequency optf according to Equation-18.

2. For each job j ;1 j M≤ ≤ ,

3. Execute the job with the assigned frequency (optf) and check the buffer occupancy ()B j .

4. If 2()B j β≥ , go into the sleep state and wait until 1()B j β≤

5.

 Else, continue with same frequency (i.e., go to Step 4), and proceed to next job, i.e.,

set 1j j= + .

Case-2 (*
minf f>): Since all the frequencies are in the convex region, there should be no sleep states and the

processor should operate at the minimum frequency that satisfies buffer (delay) constraints. The new job definitions

are especially important for this case where the optimization should take the complexities of each job into account.

This problem is analogous to the conventional rate control problem with buffer constraints in video coding (see e.g.

[9]). Hence, the interested reader is referred to existing literature [9] for details on finding the solution of this problem.

IV. RESULTS

In this section, we compare the proposed DVS method to the conventional DVS method. In our experiments we used

four different test sequences, foreman, mobile, coastguard and silence, at CIF resolution and at a frame rate of 30fps.

We used a wavelet video coder that utilizes motion-compensated temporal filtering with 4 level temporal and 5 level

spatial decompositions. We generated two sets of decoded video with high and low complexity at two rates, 512 kbps

and 1024kbps. High complexity compression includes adaptive update and quarter pixel motion compensation

whereas the update step is skipped and only half pixel MC is used for the low complexity case. To obtain statistically

meaningful results, we concatenated the resulting 16 videos in 12 different orders, resulting in a set of 12 long videos

with 3072 frames each. We present the average results of 12 videos with different decoding traces. Power and

 11

frequency values that we used are shown in Table II, which are reported for the Intel StrongARM processor [10] in

[11].

Table II: Frequency power values of Strong-Arm processor analyzed in [11]

Frequency (MHz) 59 74 89 103 118 133 148 177 192 206

Power(mW) 33.2 42.0 54.0 71.2 91.8 115.5 149.5 221.0 280.0 360.0

We assume a passive power maxpassP P= , and transition energy max /transE P fr= in the experiments. Two buffer

sizes are tested, we set the buffer size to 20 decoded frames, max 20B = , for Proposed DVS-1 and max 50B = for

Proposed DVS-2. We set 1 max0.2Bβ = , 2 max0.8Bβ = and max /10idleP P= for the experiments.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

12

14

16

18

20

Number of Jobs

B
u
ff
e
r
L
e
v
e
l
in
 N
u
m
b
e
r
o
f
F
ra
m
e
s

Buffer Level Variation in the Proposed Method, Bmax=20

Figure 4: Buffer level variation for one realization of test sequences

0 100 200 300 400 500 600

2

4

6

8

10

12

14

16

Number of Jobs

B
u
ff
e
r
L
e
v
e
l
in
 N
u
m
b
e
r
o
f
F
ra
m
e
s

Buffer Level Variation in the Proposed Method, Bmax=20, Zoomed

Figure 4 illustrates the buffer level variation for one realization. The buffer level increases as the jobs are processed

faster than the required display speed until the buffer is close to overflow (i.e., 2 16β =). Subsequently, the processor

goes in the sleep mode until the buffer level decreases to 1 4β = . The comparative results are given in Table III.

Table III: Comparative (scaled) results on active, passive and total energy consumption

 Active Energy Passive Energy Idle Energy Trans. Energy Total Energy

No DVS E E 0.11E 1.08E 3.19E

Conventional DVS 0.44E 1.99E - - 2.43E

Proposed DVS-1 0.68E 1.07E 0.03E 0.01E 1.88E

Proposed DVS-2 0.68E 1.07E 0.03E 0.003E 1.87E

 12

Our results show the superiority of the proposed DVS method over other methods when passive power is

significant. As the buffer size increases the transition energy decreases significantly. Hence, increasing the buffer size

may help decreasing the total energy when the transition energy is significant. There is no transition and idle energy

cost assumed for Conventional DVS, since this technique assumes to finish jobs just in time, i.e., exact complexities

are assumed to be known beforehand only for Conventional DVS.

V. CONCLUSION

We proposed a novel state/frequency scheduling method for video decoding systems. The proposed method utilizes

video encoding specific job definitions and a post-decoding buffer. We experimentally show the benefit of the

proposed method in systems where passive power is significant compared to active power.

REFERENCES

[1] L. Benini and G. De Micheli, Dynamic Power Management: Design Techniques and CAD Tools. Kluwer

Academic Publishers, Norwell, MA, 1997.

[2] W. Yuan, K. Nahrstedt, S. Adve, D. Jones, and R. Kravets, “GRACE: Cross-layer adaptation for multimedia

quality and battery energy,” to appear in IEEE Transactions on Mobile Computing

[3] R. Jejurikar, C. Pereira, and R. Gupta. Leakage Aware Dynamic Voltage Scaling for Real-Time Embedded

Systems. in Proc. Conf. on Design Automation, pages 275–280, 2004.

[4] R. Min, M. Bhardwaj, S. Cho, N. Ickes, E. Shih, A. Sinha, A. Wang, and A. P. Chandrakasan, “Energy-centric

enabling technologies for wireless sensor networks," IEEE Communications Magazine , pp. 28-39, August 2002

[5] A. Naveh et al,“Power and Thermal Management in Intel Core-Duo Processor”, Intel Technology Journal,

Volume 10, Issue 2, 2006

[6] T. Simunic, “Energy efficient system design and utilization”, Ph.D. Thesis, Stanford University, 2001

[7] S. Regunathan, P. A. Chou, and J. Ribas-Corbera, “A generalized video complexity verifier for flexible decoding,”

Proc. IEEE International Conference on Image Processing, vol. 3, pp. 289-292, Sept. 2003.

[8] M. van der Schaar and Y. Andreopoulos, “Rate-distortion-complexity modeling for network and receiver aware

adaptation,” IEEE Trans. on Multimedia, vol. 7, no. 3, pp. 471-479, June 2005

[9] A. Ortega, K. Ramchandran, and M. Vetterli, “Optimal trellis-based buffered compression and fast

approximations,” IEEE Trans. on Image Processing, Vol. 3, No. 1, Jan. 1994.

[10] Intel Inc, “Intel StrongARM processors,” Available: http://developer.intel.com/ design/strong/

[11] A. Sinha and A. P. Chandrakasan, “Jouletrack: A web based tool for software energy profiling,” in Proc.

IEEE/ACM DAC, 2001.

