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Abstract—This paper focuses on analyzing the interactions 
emerging between users in online communities. Network utility 
maximization and other methods are not effective when the 
communities are composed of intelligent and self-interested 
users (multimedia social communities, social networks etc.), 
because the interests of the individual users may be in conflict. 
In our prior work, we propose to design protocols in a 
stationary community to provide users incentives to voluntarily 
operate according to pre-determined social norms and provide 
services. In this paper, we extend the study to analyze the 
interactions of self-interested users under a social norm in an 
online community of finite population, where the stationary 
property of the community does not hold. To optimize their 
long-term performance based on their knowledge, users adapt 
strategies to play their best response by solving individual 
stochastic control problems. Understanding the evolution of a 
community provides protocol designers guidelines for designing 
social norms in which no user will have the incentive to adapt 
and deviate from the prescribed protocol, which in turn 
encourages cooperative behavior among users and achieves the 
optimal social welfare of the community. 

I. INTRODUCTION 

he proliferation of social networking services has 
permeated our social and economic lives and created 

online social communities where individuals interact with 
each other. However, online communities in general rely on 
voluntary contribution of services by the individual users, and 
are therefore vulnerable to intrinsic incentive problems which 
lead to prevalent free-riding behaviors among users, at the 
expense of the collective social welfare of the community 
[1][2][4]. 

The incentive mechanisms that have been proposed to 
encourage cooperation in online communities mainly rely on 
the idea of reciprocity, which use differential services to 
provide incentives and can be further classified into direct 
reciprocity and indirect reciprocity [3][10][14]. In our prior 
work [9], we have developed an indirect reciprocity 
framework based on social norms. As pointed out in [5], in 
such highly interconnected online communities there is a 
natural tendency for users to adapt their strategies based on 
their interactions with the environment to maximize their 
long-term utility. For example, in P2P networks, a peer might 
provide upload services voluntarily if there are many peers 
who reciprocate by providing services in return; whereas, in a 
network where free-riders are the majority, the peer will 
choose to change its sharing behavior and adopt a more 
selfish strategy. Therefore, it is of critical importance to 

 
The authors are with Department of Electrical Engineering, University of 

California, Los Angeles. (e-mail: yuzhang@ucla.edu, mihaela@ee.ucla.edu).  

understand the users’ adaptation behavior and how it 
influences the long-term evolution of the community, which 
can provide essential insights to facilitate the design of 
incentive mechanisms that can improve the efficiency and 
survivability of online communities.  

The study of adaptation processes of rational users has 
attracted much attention in evolutionary game theory 
[6][7][10]. In these studies, players are bounded-rational and 
not necessarily able to guess the other players’ choices 
correctly. Moreover, they adjust their choices of strategies 
over time as they observe on the other players’ choices. 

In this paper, we extend the study above to analyze the 
interactions of self-interested users under a social norm in an 
online community. Given the social norm implemented by the 
protocol designer of the community, we study how 
self-interested users dynamically adapt their service 
strategies to play the best response depending on their 
observations. We formalize the adaptation process of a 
self-interested user as a Markov Decision Process (MDP), 
and first prove that users’ best response adaptation is always 
harmful to the community because it decreases the social 
welfare. In addition, this impact becomes more severe in 
communities with small populations. Then, we present 
guidelines for the design of social norms in which no user will 
have the incentive to adapt and deviate from the social 
strategy. Next, we study the stochastic stability of the 
community by analyzing its evolution when the operation 
error goes to zero. The long-run behavior of the community is 
characterized and we prove that the community will in most 
of cases converge to a unique stationary distribution. 
Understanding how a community evolves over time and 
understanding its long-run behavior can help protocol 
designers of online communities select appropriate social 
norms based on the community characteristics, in order to 
encourage cooperative behavior among users and maximize 
the social welfare of the community.  

The remainder of this paper is organized as follows. In 
Section II, we introduce our proposed social norm based 
framework for indirect reciprocity in online communities. In 
Section III, we study users’ adaptation behavior and the 
long-run evolution of the community. Section IV presents our 
experimental results and the conclusions are drawn in Section 
V where directions for future research are also outlined.  

II. SYSTEM MODEL 

A. Repeated Game Formulation 

We consider a social community consisting of N users. 
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The community is modeled as a discrete-time system with 
time divided into periods. At the beginning of a period, each 
user selects another user to request a service [4] and receives 
a service request from one user 1. The matching is uniformly 
random such that all users in the community have an equal 
probability to be chosen by a particular user. 

Similar to [9], we model the interaction between a pair of 
matched users as a one-period asymmetric gift-giving game 
[5]. The user who requests services is called a client and the 
user whose services are requested is called a server. Upon 
receiving the request, the server selects its action, i.e. the level 
of contribution to the client. We assume that the server’s 
choice of actions is binary 2 , as {0,1}z Î = , where 

1z =  indicates that the server provides the requested service 
to the client and 0z =  indicates that the server refuses to 
provide the service. Users’ utilities in a one-period game are 
determined by the server’s action. When the server provides a 
service by choosing 1z = , it consumes a cost of c , and the 
client gains a benefit of b  by receiving the requested service; 
whereas both users receive a utility of 0 when the server 
chooses 0z = . 

In the repeated game, each user is tagged with a reputation 
,Lq =Î {0,1,2, }  representing its social status. The 

service strategy that a user adopts in the repeated game is 
reputation-based and represented as a mapping :s   , 

where each term ( )s q Î   is the contribution level of this 

user when it is matched with a client of reputation q Î  . 
We consider a finite set of threshold-based strategies in this 
paper. That is, a behavioral strategy s Î G  can be 

characterized by a service threshold {0,1, , 1}h Ls Î + . A 

user adopting f  only provides service to the users whose 

reputations are larger than or equal to hs .  

We consider a social norm k  that consists of a social 
strategy and a reputation scheme. A social strategy 

:f ´     represents the approved behavior of the 

server within the community, while a reputation scheme 
updates the reputations of users depending on their past 
actions as servers. As an example, we consider social rules 
which satisfy the following property in the design of 
protocols: 

 ( )
1      

, 1    

0   

if h and h

if h

otherwise

q q
f q q q

ìï ³ ³ïïï= <íïïïïî


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As a result, we have the service threshold for servers of a 

reputation q  to be 0hq =  when hq <  and h hq =  when 

hq ³ . Here, we restrict our attention on {1, , }h LÎ   

 
1The analysis can be extended to a general case when the service request 

rate per period is a positive real number. It is assumed to be 1 in this 
manuscript only for illustration purposes. 

2The framework in this manuscript is also applicable to the case when the 
action space of servers is not binary. 

without loss of generality. Hence, differential services are 
provided to users of different reputations according to the 
value of h , which is called the social threshold for 
convenience. Particularly, users of reputation less than h  are 
called as bad users and users of reputation no less than h  are 
called as good users. 

After a server takes an action, its client reports the action to 
some trustworthy third-party managing device in the 
community (e.g. the tracker in P2P networks). In practice, a 
system is continually being subjected to small perturbations 
that arise due to various types of operation errors in the 
community. To formalize the effect of such perturbations, we 
assume that the client’s report is subject to a small error 
probability e  of being reverted. That is, 0z =  is reported to 
the managing device with probability e  while the server 
actually plays 1z = , and vice versa. Formally, a reputation 
scheme is a mapping :t ´ ´    , in which 

( , , )ozt q q  is the reputation of the server in the next period 

given its current reputation q , the client's reputation q , and 

the server's reported action oz Î  . As an example, we 

consider the following simple reputation scheme in this 
paper: 
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B. Utility Function 

Due to their limited processing capabilities, users can only 
form simple beliefs about the strategies deployed by other 
users in the community [12]. We assume that each user 
maintains a belief that all users of reputation higher than 0 
will follow the social strategy f  and all users of reputation 0 

will provide no service. Let 0{ ( )}Ln qm q ==  denote the 

community configuration, in which ( )n q  represents the 

number of users of reputation q  in the community. Note that 
since a user can never be matched with itself, it is sometimes 
more convenient to compute the expected utility of a 

particular user of reputation q̂  by employing the 
configuration of all users other than itself, which is called the 

opponent configuration and is denoted as 0{ ( )}Lm qh q ==  

with ( ) ( )m nq q=  for all ˆq q¹  and ( ) ( ) 1m nq q= -  if 

ˆq q= . We can thus compute the expected one-period utility 

( , , )vk s q m  of a user of reputation q  and following the 

strategy f  as: 
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Here ( , , ( , ))b q q f q q   is the one-period benefit which this user 



  

can receive when its matched server has a reputation q and 

follows f ; ( , , ( ))c q q s q   is the one-period cost of this user 

when its matched client has a reputation q . The expected 
utility if a user following f  is compactly denoted as 

( , )vk q m .  

A user’s long-term utility in the repeated game is evaluated 
with the infinite-horizon discounted sum criterion as  

 0 0 0 0

0

( , , ) { ( , , )}t t t t t t t t

t t

v E vk ks q m d s q m
¥

-¥

=

= å , (4) 

where [0,1)d Î  is a user-defined discount factor 

representing the user’s preference to its future utility.  
Under a social norm k , the best response for a 

self-interested user in any period 0t  is 

 0 0* argmax ( , , )t tvks
s s q m¥= . (5) 

Given the best response dynamics, we are interested in 
whether this community configuration may converge in the 
long-run, i.e. at equilibrium, each self-interested user holds a 
fixed reputation and plays a fixed strategy after a sufficiently 
long time. This provides the protocol designer with 
guidelines for selecting the correct social norm based on the 
community characteristics, e.g. the utility structure ( , )b c  and 

the discount factor d , in order to optimize the sharing 
efficiency in the community. Particularly, we focus on the 
stochastic stability of the community as defined in [8] with 

0e  , which approximates the situation where the 
operation error happens infrequently in the community. 
Generally speaking, a community configuration m  is a 

stochastically stable equilibrium if, in the long-run, it is 
nearly certain that the community lies within every small 
neighbourhood of m  as the operation error e  approaches 

slowly to 0 [8].  

III. USER ADAPTATION AND THE COMMUNITY’S  
LONG-RUN EVOLUTION 

In this section, we analyze the evolution of the community. 
Each user has a probability (0,1)g Î , which is called as its 

adaptation rate, to adapt its strategy at the beginning of each 
period. The optimization can be formalized as a Markov 
Decision Process (MDP) [15].  

A.  The MDP Formulation and The Optimal Policy 

The MDP to be solved by a user is formalized below. 
State: The state of a user is its reputation and opponent 

configuration, which is defined as ( ),s = q h Î  . 

Action: The action of a user is the service threshold of its 
serving strategy s Î G , as {0,1, , 1}a LÎ = + . 

Reward function: The one-period reward function ( )r s,a
 

is defined as the expected one-period utility as in (3). 
Similarly, the long-term reward function ( )R s  of a user is 

defined as the discounted sum 
0

( ) ( )t t t

t

R s r s ,ad
¥

=

= å . 

Policy and Value function: The solution of the MDP is a 
policy : {0,1, , 1}Lp  + , which maps each state to a 

service threshold. The value function is thus defined as the 
expected long-term reward under a policyp ,  

 ( ) { ( ) } ( | ) ( )
s

V s E r s,a p s s, V sp pp d p
¢

¢ ¢= + å . (6) 

The above MDP can be solved using common computation 
methods such as value iteration [15], with the resulting 

optimal policy and value function being *{ ( )}sp  and 

*{ ( )}V s . 

First, it can be shown that the best response of a user in any 
period is always above the service threshold that is specified 

in the social strategy, i.e. { }hq , regardless of the user’s 

reputation q  and the opponent configuration h . This is 

proved in the lemma below by contradiction with the basic 

idea as follows. If *( , ) hqp q h <  for some q , it implies that 

when the reputation is q , the user chooses to provide more 
services to the community than what is required by the social 
strategy and thus consumes more service cost in the current 
period. On the contrary, the user also gets a higher probability 
to be punished by the social norm for deviating from f 3, and 

hence a lower expected future utility compared to what it can 
receive by following f . It follows that the user will receive a 

lower long-term utility in this case than by following f , 

which contradicts the fact that *( , )p q h  is the best response to 

maximize a user’s expected long-term utility.  

Lemma 1. *( , ) hqp q h ³ , for any q Î  and h . 

Proof: See [13]. ■ 
Moreover, it can be shown that under a constant opponent 

configuration, the service threshold of a bad (good) user’s 
best response monotonically decreases against the reputation. 
Formally, this monotonicity can be represented as 

* *
1 2( , ) ( , )p q h p q h³ , if 1 2 hq q< <  or 1 2h q q£ < . The 

average service that has to be provided by a bad (good) user 
in one period is constant regardless of its reputation, and only 
depends on the current opponent configuration and its 
selection of the sharing strategy. On the contrary, the average 
service that a bad (good) user expects to receive 
monotonically increases with its reputation. Therefore, given 
a fixed opponent configuration and a fixed strategy, a bad 
(good) user will always obtain a higher long-term utility with 
a higher reputation and thus will have less incentive to deviate 
from this strategy. 

 
3The social norm does not only punish users who do not provide services 

as required. If a user provides service to another user who is supposed to be 
punished by the social norm, this user itself will also be punished. 



  

Lemma 2. * *
1 2( , ) ( , )p q h p q h³  if 1 2 hq q< <  or 

1 2h q q£ < . 

Proof: See [13]. ■ 
Thus, it can be concluded from Lemma 1 and 2 that users 

who play the best response are always harmful to the 
community.  

B. The Community’s Long-run Evolution and Stochastic 
Stability 

In this section, we examine the evolution of the community 
under the best response dynamics. We define the strategy 

configuration of the community as *
0{ ( )}L

m qp q = . We first 

show the community configuration m  cannot be stabilized in 

the long-run with a positive operation error e . A Markov 
chain analysis is employed to illustrate this result. It has been 
proved in [13] that the community configuration evolves as a 
Markov chain on the finite space 
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whose size is 
N L

L

æ ö+ ÷ç ÷ç= ÷ç ÷ç ÷çè ø
 . The transition probabilities are 

given by ( )|p pmm m m¢ ¢=  between any two configurations 

m , m¢ Î   and P pmm¢
é ù= ê úë û  is the transition matrix. Note 

that with 0e > , all entries in P  are positive. It is 
well-known then that this Markov chain is irreducible and 
aperiodic, which introduces a unique stationary distribution. 
Let  
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be the  -dimensional simplex. Any Î Dq


 represents a 

probability distribution on the set of configurations. Indexing 

all configurations in   from 0 to  , iq  then represents 

the frequency that the community stays at the i -th 
configuration in the long-run. A stationary distribution is a 

row vector 0 1( , , , )e w w w( ) = Î D
 

w  satisfying 

Pe e( ) = ( )w w . When P  is strictly positive, not only e( )w  

exists and is unique, it also preserves stability and ergodicity.  

Moreover, as all entries in P  are positive, we have 0iq >  

for all 0 i£ £  , whose value only depends on e  and k . 

Therefore, when time goes to infinity, the community will 
spend a positive fraction of time in all possible configurations 
in  . We can thus conclude that the community will 
oscillate between different configurations and will never 

converge to a unique one in the long-run when 0e > . 
Proposition 1. When the operation error 0e > , the 

community never converges to a unique community 
configuration, regardless of the initial configuration it starts 
with.  

Proof: See [13]. ■ 
Next, we analyse the stochastic stability of the community 

when 0e  . To facilitate the analysis, we first define the 
concept of the limiting distribution. 

Definition 1. The limiting configuration distribution of the 

community is defined by 
0

lim
e

e


= ( )w w .  

The existence and the uniqueness w  can be proved as in 
[6], which is omitted here. Hence, a community configuration 
indexed as i  in   is a stochastically stable equilibrium if 

and only if 0iw > .The following proposition proves that a 

stochastically stable equilibrium should be composed only by 
the population of reputations 0 and L .  

Proposition 2. When the community converges to a 
stochastically stable equilibrium in the long-run, it does not 
have positive populations of reputations other than 0 and L . 
That is, if { (0), , ( )}n n Lm =   is a stochastically stable 

equilibrium, it should preserve the following property 
 ( ) 0n q = , for all {1, 1}Lq Î - . (9) 

Proof: See [13]. ■ 
Proposition 2 characterizes the property that a 

stochastically stable equilibrium preserves. However, since 
there are usually multiple configurations that satisfy (9) as 
well as the incentive constraints, which configuration the 
system converges to is still left undetermined. In the 
following proposition, we further refine the set of 
stochastically stable equilibrium using the idea of “basin of 
attraction” [6], and provide the condition with which there is 
a unique stochastically stable equilibrium. To prove this, we 
need to characterize the structure of the strategy 

configuration *{ ( )}mp q  first. 

Lemma 3. * *
1 2( ) ( )m mp q p q³  if 1 2 hq q< <  or 

1 2h q q£ < . 

Proof: See [13]. ■ 
Using the result of Lemma 3, we are now able to prove the 

following proposition, which characterizes the community 
configuration in the long-run. 

Proposition 3. We have ( )n L N=  in the long-run if and 

only if 
c

b
d >  and h H< , where H  is the solution of the 

following equation 
1 (1 )H H Hb c cHd d d-- = -  (10) 

Proof: See [13]. ■ 
We briefly explain the above three conditions. Condition 

(1) is intuitive. By deviating from the social norm, the 
maximum gain on a user’s one-period utility is the saving of 



  

its immediate service cost, which is proportional to c , at the 
loss of its future utility which is proportional to b . Hence, 
when /c b  decreases, the current gain of a user also 

decreases with its future loss increasing at the same time, 
which provides stronger incentives for a user to comply with 
the social rule. A similar analysis can be applied to Condition 
(2). The discount factor d  adjusts the weights that a user 
places on its current and future utilities. With a larger d , a 
user puts a higher weight on its future utility, and thus 
becomes more interested in increasing its reputation and 
obtaining a higher future utility rather than deviating to save 
its immediate service cost. As a result, the incentive for a user 
to comply with the social rule increases. Condition (3) 
contradicts the traditional opinion that a user’s incentive will 
increase when the punishment in the protocol becomes more 
severe. In our framework, this statement is correct only for 
good users. As outlined by the proof, when the punishment is 
too severe, which is represented here by a high social 
threshold in the social rule, a bad user has to wait a long 
period of time to recover its reputation (i.e. becoming a good 
user), which harms its incentive to comply with the social rule. 
This prohibits the protocol designer from increasing h  
arbitrarily. 

IV. EXPERIMENTS 

In our experiments, we simulate the adaptation behavior of 
1000N =  users. The setting are as follows: 3L = , 1c = , 

0.5d = , 2h = . We run the experiment for 810 periods and 
measure the average reputation distribution over every 

72.5 10´  periods. This can be used as an approximation on 
the community configuration in the long-run and the results 
are illustrated in Table 1, which shows the community 
configurations when 0.2e =  and 0.05 , respectively. The 
community configuration oscillates when 0.2e =  and 
cannot converge to a unique stationary point. Hence, the 
average reputation distribution changes after every periods, 
with each reputation taking a positive fraction in the 
population in the long-run. When 0.05e = , the community 
configuration converges to the stochastically stable 
equilibrium. As a result, almost all users are of reputations 0 
and L  in the long-run, with users of reputation 0 providing 
no service and users of reputation L  acting in a mutually 
cooperative manner with each other. 

Table 1 also shows how the service benefit b  impacts the 
stochastically stable equilibrium. As expected, there are only 
users of reputations 0 and L in the community after 
sufficiently long time. When 1.5b = , the instant saving of 
the service cost outweighs the future benefit of obtaining a 
high reputation and hence, a majority of users will maintain 
the lowest reputation 0. When 5b = , it is more attractive to 
obtain a high reputation so as to receive higher future service 
benefit, and thus all users converge to reputation L  with 

( )n L N»  in the community. Hence, our result verifies the 

conclusion in Proposition 3 that ( )n L N=  in the long-run. 

Since the fraction of users of reputation L  in the 

stochastically stable equilibrium depends on the ratio of 
hb

c

d
, 

similar results as those in Table 1 can be expected when we 
change d andc . 

In the final part of the experiment, we assume that the 
community characteristics, e.g. the utility structure ( , )b c  and 

the discount factor d  are not fixed but vary over time and 
consider how such variation will impact the long-run 
evolution of the community. As an example, we use b  as the 
representative variable to plot the result and assume it varying 
over time following a Gaussian distribution with the mean 

3b =  and the variance 2 0.01s = . Fig. 1 depicts the social 
welfare of the community over time. We consider two 
selections on the social strategy as 1h =  and 2h = . In both 
cases, the social welfare when b  is variable (solid lines) is 
smaller than the social welfare when b is constant (dotted 
lines). This is due to the fact that our designed protocol only 
guarantees users sufficient incentive to comply with the 
social norm when b  is at its mean value 3. When b  deviates 
from its mean value, users might have incentive to adapt to 
the best response and deviate from the social norm. In 
addition, since most users maintain reputation L  in the 

stochastically stable equilibrium when 3b =  and 0.5d = , 
the social norm with 2h =  can provide larger incentives for 
users of reputation L  to follow the social strategy. Therefore, 
it is more robust against the variation on b , which maintains 

( )n L  at a higher level than the social norm with 1h = . As a 

TABLE I. THE EVOLUTION OF THE COMMUNITY IN
810  PERIODS  

Periods 72.5 10´  75 10´  77.5 10´  81 10´  

0.05e =  and 3b =  
0q =  34% 25% 23.3% 23% 

1q =  7% 2.5% 1.2% 1% 

2q =  13% 2.5% 1.2% 1% 

3q =  46% 70% 74.3% 75% 
 

0.2e =  and 3b =  

0q =  18% 26% 41% 18% 

1q =  47% 19% 28% 23% 

2q =  25% 14% 7% 32% 

3q =  10% 55% 24% 27% 

 

Periods 72.5 10´  75 10´  77.5 10´  81 10´  

0.05e =  and 1.5b =  
0q =  52% 49% 54.7% 56% 

1q =  7% 3% 2% 0.5% 

2q =  9% 3% 2% 0.5% 

3q =  32% 45% 41.3% 43% 
 

0.2e =  and 1.5b =  

0q =  11% 7% 2% 2% 

1q =  2% 1.5% 0.5% 0.5% 

2q =  2% 1.5% 0.5% 0.5% 

3q =  85% 90% 97% 27% 



  

result, the social norm with 2h =  delivers higher social 
welfare for both 500N =  and 1000N =  when b  is 
variable. 

V. CONCLUSION 

We have studied the problem of designing social norm 
based protocols for online communities and analyzed the 
adaptation behavior of users under such protocols. 
Knowledge on the evolution of the community in the 
long-run can facilitate the protocol designers to design 
protocols which achieve efficient social welfare. Our 
framework can be extended in several directions, among 
which we mention four. First, users in the community do not 
necessarily need to be homogeneous as discussed in Section 
III. Different users can have different benefits and costs for 
the service received/provided. Also, they can choose different 
discount factors d  when evaluating the long-term utility. The 
discount factor that a user chooses can be dynamically 
adjusted over time depending on its own expected lifetime in 
the community. It is an interesting problem of analyzing how 
the user heterogeneity impacts the design of efficient 
protocols. Second, clients can use more complicated decision 
rules while reporting the servers’ actions to the community 
manager in order to maximize their own long-term utility, 
instead of always reporting truthfully. Third, online 
communities may be subject to practical constraints such as 
topological constraints, in which users can only observe the 
local information and different users at different locations do 
not necessarily share the same community information. 
Hence, the analysis in this paper needs to be extended to 
scenarios where users adapt based on partial and 

heterogeneous information. Finally, users adopt a simple 
belief model. However, a more sophisticated belief model can 
be introduced into our framework such that users can update 
their beliefs on others based on their observation. For 
example, the formation of user beliefs and opinions in social 
networks are extensively studied in [16] and [17]. 
Understanding how the evolutions of user belief and user 
strategy will impact each other will be an appealing direction. 
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Fig. 1.  The evolution of the social welfare in the long-run when the stage 
game benefit varies over time ( 3, 0.5, 0.05L d e= = = , 1c = ) 


