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I. PROOF OF THEOREM 1

We will first prove a lemma related to P (Dm).

Lemma 1: With probability

P (Dm) :=

(
1− (mT )

2α+1(nmax)
2K log aτcov

L2T 2α+1

)
×
(
1− 2(nmax)

K |Ak|
a2

)
,

the true set of transition probabilities in round m will lie in Dm.

Proof: Let X1 be the covering time of the Markov chain P t, t = (m − 1)T/mT + 1, . . . ,mT/mT , i.e.,

the time all states are visited starting from the beginning of round m − 1. Similarly let Xi be the ith covering

time, that is the time it takes to visit all states after visiting all states for the i − 1th time. Let Y be the time

when all the states of the Markov chain is observed at least D := (log(a)m2α
T (nmax)

2K)/(L2T 2α) times. For

simplicity, we assume that this number is an integer. If this is not an integer, then it can be rounded up to the

smallest integer that is greater than it. Then we have Y ≤ X1 + . . . + XD. Using Markov inequality, we get

P (Y > T/mT ) ≤ P (X1 + . . .+XD > T/mT ) ≤ (DτcovmT )/T . Therefore, the probability that all the states are

observed at least D times in a round is greater than or equal to 1−DτcovmT /T . Using a Chernoff bound, it can be

shown that given all states are observed at least D times, the probability that the true transition probability matrix

will lie in Dm is (1− 2(nmax)
K |Ak|/a2).

Even when the true transition probabilities lies in Dm, the solution of the robust dynamic program is suboptimal.

Next we bound the regret by bounding the suboptimality due to uncertainty and the suboptimality due to the correct

transition probabilities not being in the uncertainty region Dm.

The proof is similar to the proof of Theorem IV.1 in [1]. The difference is that we use mT to control the variation

in uncertainty in a round. When we have more rounds, this means that the variation in the transition probabilities

will be small. However, the shorter each round, less explorations will be performed, so the sample mean transition

probability estimates may not be accurate. We can balance this tradeoff by a careful choice of mT . Whenever

the true transition probabilities lies in the region of uncertainty Dm(τ, τcov), using a similar analysis to [1], we

can bound the regret by K(nmax − c)
(
(z + 1)L

(
2T
mT

)α)
. Whenever the true transition probabilities are not in
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Dm(τ, τcov), since in the worst case each machine can process c tasks at each time slot, the regret is bounded by

K(nmax − c). We get the result by combining these two.

REFERENCES

[1] J. Y. Yu and S. Mannor, “Online learning in markov decision processes with arbitrarily changing rewards and transitions,” in Game Theory

for Networks, 2009. GameNets’ 09. International Conference on. IEEE, 2009, pp. 314–322.


