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Abstract. In this paper, we propose a class of incentive schemes based
on intervention. We develop a general game-theoretic framework for the
design of intervention schemes under imperfect monitoring. We examine
a model of slotted multiaccess communication to illustrate our frame-
work. In this model, an intervention device monitors the behavior of
agents for a period called the test phase and takes an intervention ac-
tion which affects agents for the remaining period called the intervention
phase. We analyze the problems of designing an optimal intervention rule
given a length of the test phase and choosing an optimal length of the
test phase. Intervention schemes can induce cooperative behavior by ap-
plying intervention following signals with a high likelihood of deviation.
Increasing the length of the test phase has two counteracting effects:
It improves the quality of signals, but at the same time it weakens the
impact of intervention due to increased delay.

Key words: intervention, incentive schemes, slotted multiaccess com-
munication, game theory

1 Introduction

In a system where selfish agents compete for available resources, it is common
that the resources are not utilized optimally from a system-wide point of view.
This calls for an incentive scheme to drive selfish agents towards the system
objective. In this paper, we propose a class of incentive schemes, called interven-
tion schemes. An intervention scheme can be implemented by augmenting the
system with an intervention device that can monitor the behavior of agents and
intervene in their resource usage. To analyze interaction under an intervention
scheme, we formulate a class of games called intervention games and propose
a solution concept called intervention equilibrium. In an intervention game, a
system manager specifies an intervention rule used by the intervention device
and the actions of agents. The intervention rule prescribes an action taken by
the intervention device following each possible signal it can observe regarding
the actions of agents. By increasing the intensity of intervention following signals
that suggest a deviation from the specified actions, an intervention scheme can
provide incentives for agents to follow the actions recommended by the manager.
At an intervention equilibrium, the manager chooses a pair of an intervention
rule and an action profile that optimizes the system objective while making the
action profile self-enforcing given the intervention rule.
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The idea of using intervention to provide incentives can be found in [1], [2].
Garg et al. [1] consider a congestion control problem and analyze performance
under different scheduling mechanisms, which can be considered as intervention
schemes. With a scheduling mechanism that assigns higher priority to flows with
a smaller rate, the input rates of users can be restrained voluntarily. In other
words, users do not send their traffic excessively in their self-interest because
doing so will increase the probability that their packets are dropped. In our pre-
vious work [2], we consider a slotted multiaccess communication network with
an intervention device that can jam the packets of users. We showed that inter-
vention schemes can successfully regulate the transmission probabilities of selfish
users in the case of perfect monitoring, where the intervention device observes
the transmission probabilities of users. In the current paper, we provide a gen-
eral framework for the design of intervention schemes, unlike the two previous
papers that focus on specific communication scenarios. Then we illustrate our
framework with a model of slotted multiaccess communication, as considered
in [2], while relaxing the monitoring requirement. That is, we consider the case
of imperfect monitoring, where the intervention device obtains only imperfect
information about the transmission probabilities of users.

In an intervention game, the manager chooses an intervention rule before
agents take their actions, and thus the manager can be considered as a leader
and agents as followers. Such a hierarchical structure in the interaction between
the leader and the followers has been analyzed using a Stackelberg game in the
literature (see, for example, [3]–[5]). In [3]–[5], the leader uses a Stackelberg
strategy, simply taking an action before the followers take theirs. In contrast,
in an intervention game, the manager chooses an intervention rule, which is a
complete contingent plan for intervention actions to be taken given each possi-
ble signal about the actions of agents. Thus, an intervention rule requires more
overhead in terms of monitoring capability for implementation than a Stackel-
berg strategy. However, when the manager does not value his resource usage,
intervention schemes have an advantage over Stackelberg strategies. In interven-
tion schemes, intervention actions can be adjusted to the observed behavior of
agents, and thus intervention can be applied only when it is necessary. On the
contrary, Stackelberg strategies lack such adaptivity.

Pricing offers an alternative means that the manager can use to provide
incentives. In pricing schemes, the manager collects payments from agents based
on their resource usage. Due to its foundations in market economies, pricing has
received a significant amount of attention in the literature (see, for example, [6],
[7]). The main difference between intervention and pricing is that intervention
affects the resource usage of agents inside of the system whereas pricing affects
the payoffs of agents through an outside instrument. Intervention schemes are
robust in the sense that agents cannot avoid intervention as long as they use
resources in the system, while pricing is not effective if agents can evade payments
while still using resources. Moreover, even in the case where payments can be
enforced technologically, there are situations where pricing is undesirable due to
policy considerations. For example, it has been argued in a public policy debate
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that access to the Internet should be provided as a public good by a public
authority rather than as a private good in a market [8]. In addition, intervention
schemes have informational advantages over pricing schemes. Intervention affects
the payoffs of agents through physical quantities (e.g., data rates and delay)
that agents care about, and the impacts of intervention actions on such physical
quantities are relatively easy to measure. On the contrary, finding out the impact
of pricing on agents requires the manager to know agents’ subjective valuation
of payments relative to physical quantities, which is difficult to measure. Below
we summarize related work discussed so far in Table 1.

Table 1. Summary of related work

Intervention Stackelberg strategy Pricing

[1]: congestion control [3]: congestion control [6]: congestion control
[2]: medium access control [4]: medium access control [7]: cognitive radio

[5]: power control

In game theory, repeated games have been studied as a method to provide
incentives in a long-run relationship [9]. In a repeated game, agents monitor the
actions of other agents and choose their actions depending on their past obser-
vations. Hence, the burden of monitoring and executing reward and punishment
is distributed to agents in a repeated game, while it is imposed solely on the in-
tervention device in an intervention game. In other words, compared to repeated
game strategies, intervention schemes require a central infrastructure in the sys-
tem while reducing a burden on agents. We need repeated interaction among
agents to apply a repeated game strategy, while intervention schemes are ap-
plicable to systems with a dynamically changing agent population (e.g., mobile
networks). In the repeated game literature, reputation schemes are used to over-
come limited observation due to infrequent interaction (see, for example, [10]). A
reputation scheme usually has a central infrastructure, but its role is limited to
collecting observations from agents, processing the collected observations, and
disseminating the processed information.

An active area of research that focuses on designing incentive schemes is
mechanism design. In a standard mechanism design problem [11, Chap. 23], the
manager can decide an outcome that agents care about but has incomplete infor-
mation about the types of agents. Relying on the revelation principle, standard
mechanism design is concerned about incentives for agents to reveal their types
truthfully. In contrast, our focus in designing intervention schemes is on provid-
ing incentives for agents to choose desirable actions. In this paper, we assume
that the manager has complete information, knowing the action spaces and the
payoff functions of agents. We can extend our framework to study the design of
intervention schemes when the manager has incomplete information. We leave
this extension for future research.

The remainder of the paper is organized as follows. In Sect. 2, we develop
a game-theoretic framework for the design of intervention schemes. In Sect. 3,
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we apply the framework to a model of slotted multiaccess communication and
analyze optimal intervention schemes. In Sect. 4, we conclude.

2 Framework for the Design of Intervention Schemes

We consider a system (e.g., a communication network) where N agents and an
intervention device interact. The set of the agents is denoted by N = {1, . . . , N}.
The action space of agent i is denoted by Ai, and an action for agent i is denoted
by ai ∈ Ai, for all i ∈ N . An action profile is represented by a vector a =
(a1, . . . , aN ) ∈ A :=

∏
i∈N Ai. An action profile of the agents other than agent i

is written as a−i := (a1, . . . , ai−1, ai+1, . . . , aN ) so that a can be expressed as a =
(ai, a−i). Once an action profile of the agents is chosen, a signal is realized from
a finite set of signals, denoted by Y , and is observed by the intervention device.
The probability that a signal y ∈ Y is realized given an action profile a ∈ A is
denoted by ρ(y|a). After observing the realized signal, the intervention device
takes an action, called an intervention action. We use a0 and A0 to denote an
intervention action and the action space of the intervention device, respectively.

Since the intervention device chooses its action after observing a signal, a
strategy for it can be represented by a mapping f : Y → A0, which is called
an intervention rule. The set of all possible intervention rules is denoted by F .
There is a system manager who determines the intervention rule used by the
intervention device. We assume that the manager can commit to an intervention
rule, for example, by using a protocol embedded in the intervention device. The
payoffs of the agents and the manager are determined by the intervention action,
the action profile of the agents, and the realized signal. Thus, we denote the
payoff function of agent i ∈ N0 := N ∪{0} by ui : A0 ×A× Y → IR. The payoff
of the manager, u0, can be interpreted as a measure of system performance. The
game played by the manager and the agents is formulated as an intervention
game, which is summarized by the data

Γ = 〈N0, (Ai)i∈N0 , (ui)i∈N0 , (Y, ρ)〉 . (1)

Given an intervention rule and an action profile, expected payoffs can be
computed by taking expectations of payoffs over signals. The expected payoff
function of agent i ∈ N0 is denoted by a function vi : F ×A → IR, which can be
computed as

vi(f, a) =
∑

y∈Y

ρ(y|a)ui(f(y), a, y) . (2)

Once the manager chooses an intervention rule f , the agents play a simultaneous
game, whose normal form representation is given by

Γf = 〈N , (Ai)i∈N , (vi(f, ·))i∈N 〉 . (3)

We predict actions chosen by the agents given an intervention rule f by applying
the solution concept of Nash equilibrium [12] to the induced game Γf .
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Definition 1. An intervention rule f ∈ F sustains an action profile a∗ ∈ A if
a∗ is a Nash equilibrium of the game Γf , i.e.,

vi(f, a
∗
i , a

∗
−i) ≥ vi(f, ai, a

∗
−i) ∀ai ∈ Ai , ∀i ∈ N . (4)

Let E(f) ⊆ A be the set of action profiles sustained by f . The manager
aims to maximize his expected payoff by specifying an intervention rule for
the intervention device and an action profile for the agents sustained by the
intervention rule. The manager’s problem leads to the following solution concept
for intervention games.

Definition 2. (f∗, a∗) ∈ F×A is an intervention equilibrium if a∗ ∈ E(f∗) and

v0(f
∗, a∗) ≥ v0(f, a) for all (f, a) such that a ∈ E(f) . (5)

f∗ ∈ F is an optimal intervention rule if there exists an action profile a∗ ∈ A
such that (f∗, a∗) is an intervention equilibrium.

An intervention equilibrium solves the following optimization problem:

max
f∈F

max
a∈E(f)

v0(f, a) . (6)

An intervention equilibrium can be considered as a subgame perfect equilibrium
(or Stackelberg equilibrium) of an intervention game, with an implicit assump-
tion that the manager can induce the agents to choose the best Nash equilibrium
for him in case of multiple Nash equilibria. In our interpretation, the manager
specifies an intervention equilibrium (f∗, a∗) to the agents so that a∗ becomes a
self-enforcing operating point for them given the intervention rule f∗. In other
words, the manager can make a∗ a focal point [12] of the game Γf∗ by recom-
mending it to the agents.

3 Intervention Schemes in a Slotted Multiaccess
Communication Network

3.1 Model

There is a communication channel shared by N users. Time is divided into slots
of equal length, and packets have a length that can be transmitted within a time
slot. In each time slot, a user can attempt to transmit its packet or wait. If there
is only one transmission attempt in a slot, the packet is successfully transmitted.
If there is more than one transmission attempt in a slot, packets collide and no
transmission is successful. For simplicity, we assume that each user can choose
one of two transmission probabilities pl and ph, where pl = 1/N < ph < 1.
Note that each user choosing pl maximizes the total throughput, defined as the
average number of successfully transmitted packets per time slot, assuming that
all the users choose the same transmission probability [13].
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We consider a period consisting of T consecutive time slots, and analyze
interaction in the period without any consideration of past or future periods. We
assume that the number of users and their transmission probabilities are fixed
throughout a period. Then the action space of user i is given by Ai = {pl, ph},
for all i ∈ N . The payoff of user i is given by the number of its successfully
transmitted packets per time slot. Then the expected payoff of user i is given by
the probability of its successful transmission, ai

∏
j∈N\{i}(1 − aj). It is easy to

see that the action ph is a dominant strategy for every user. Hence, (ph, . . . , ph)
is the unique Nash equilibrium, which yields a lower total throughput than the
symmetric social optimum (pl, . . . , pl).

In order to improve the inefficiency of Nash equilibrium, we introduce an
intervention device in the system. The intervention device is capable of moni-
toring the actions of the users and interfering in the transmission of the users.
In each slot, the intervention device can sense the channel to learn whether the
channel is idle (i.e., no user attempts to transmit its packet) or busy (i.e., at least
one user attempts to transmit its packet). After observing channel states for the
first t slots, where 1 ≤ t ≤ T , the intervention device chooses its transmission
probability, which remains fixed until the end of the period. We assume that,
unlike the users, the intervention device can choose any transmission probability
in [0, 1]. Thus, we have A0 = [0, 1]. The first t slots and the remaining (T − t)
slots are called the test phase and the intervention phase, respectively.

Let S = {idle,busy} be the set of channel states that can be observed in a
slot. Then the set of all possible signals that the intervention device can obtain
in the test phase is St. Since the transmission probabilities of the users do not
change in a period, there is no gain for the manager to treat channel states from
different slots differently. Hence, we focus on the class of intervention rules that
use only the number of idle slots, which allows us to work with a smaller signal
space Y = {0, 1, . . . , t} instead of St. Channel states are independent across slots,
and the probability of an idle state in a slot given an action profile a is given
by q(a) :=

∏
i∈N (1− ai). Thus, the probability that k idle slots arise in the test

phase is ρ(k|a) = (
t
k

)
q(a)k(1− q(a))t−k, for k = 0, 1, . . . , t. Note that monitoring

is imperfect in that the intervention device cannot observe the action profile of
the users but obtains only imperfect information about the action profile.

The sequence of events in a period can be listed as follows.

1. At the beginning of the period, the users choose their transmission proba-
bilities a ∈ A, which are used from slot 1 to slot T , knowing the intervention
rule f adopted by the intervention device.

2. The intervention device collects observations of channel states from slot 1 to
slot t (test phase).

3. The intervention device intervenes using the transmission probability pre-
scribed by the intervention rule f from slot t + 1 to slot T (intervention
phase).

The payoff of user i given intervention action a0 and action profile a condi-
tional on signal k (i.e., k idle slots in the test phase) is given by
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ui(a0, a, k) (7)

=
t− k

T

ai
∏

j∈N\{i}(1− aj)

1− q(a)
+

T − t

T
ai(1− a0)

∏

j∈N\{i}
(1− aj) (8)

=

[
t− k

T

1

1− q(a)
+

T − t

T
(1− a0)

]
ai

∏

j∈N\{i}
(1− aj) . (9)

The expected payoff of user i given intervention rule f and action profile a can
be computed using (2):

vi(f, a) =

[
1− T − t

T

t∑

k=0

(
t

k

)
q(a)k(1− q(a))t−kf(k)

]
ai

∏

j∈N\{i}
(1− aj) . (10)

Note that
∑t

k=0

(
t
k

)
q(a)k(1 − q(a))t−kf(k) is the expected transmission proba-

bility of the intervention device while (T − t)/T is the weight on the intervention
phase.1

3.2 Formulation of the Design Problem

For notation, let us define

λ(k; t) =

(
t

k

)[
(1− pl)

N
]k [

1− (1− pl)
N
]t−k

, (11)

µ(k; t) =

(
t

k

)[
(1− pl)

N−1(1− ph)
]k [

1− (1− pl)
N−1(1− ph)

]t−k
, (12)

for k = 0, 1, . . . , t, and let τc = pl(1 − pl)
N−1 and τd = ph(1 − pl)

N−1. λ(k; t)
is the probability of k idle slots arising in the t slots of the test phase when
every user cooperates (i.e., chooses pl), while µ(k; t) is that when exactly one
user defects (i.e., chooses ph). τc is the cooperation throughput that each user
obtains when all the users choose pl, while τd is the defection throughput that
a user obtains when it deviates to ph unilaterally. Note that an idle slot is more
likely to occur when every user cooperates than when some user defects. Also,
note that τd > τc, which reflects the positive gain from defection when there is
no intervention.

Suppose that the objective of the manager is to maximize the sum of the
payoffs (i.e., total throughput) while sustaining cooperation among the users.
Formally, the payoff function of the manager can be written as

u0(a0, a, k) =

{∑
i∈N ui(a0, a, k) , if ai = pl ∀i ∈ N ,

−∞ , otherwise .
(13)

1 For simplicity, we assume that the users value a successful transmission equally
across slots. Introducing time discounting in the model will make the weight on the
intervention phase smaller, since a successful transmission in later slots yields less
value than that in earlier slots.
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Provided that other users cooperate, the payoff to a cooperating user is given by
[
1− T − t

T

t∑

k=0

λ(k; t)f(k)

]
τc , (14)

while that to a defecting user is
[
1− T − t

T

t∑

k=0

µ(k; t)f(k)

]
τd . (15)

Hence, the incentive constraint to sustain cooperation can be written as
[
1− T − t

T

t∑

k=0

λ(k; t)f(k)

]
τc ≥

[
1− T − t

T

t∑

k=0

µ(k; t)f(k)

]
τd , (16)

and the problem of designing an optimal intervention rule can be expressed as

max
f

N

[
1− T − t

T

t∑

k=0

λ(k; t)f(k)

]
τc (17)

subject to[
1− T − t

T

t∑

k=0

λ(k; t)f(k)

]
τc ≥

[
1− T − t

T

t∑

k=0

µ(k; t)f(k)

]
τd , (18)

0 ≤ f(k) ≤ 1 ∀k = 0, . . . , t . (19)

3.3 Analysis of the Design Problem

The design problem (17)–(19) can be rewritten as a linear programming (LP)
problem as follows:

min
f

t∑

k=0

λ(k; t)f(k) (20)

subject to
T − t

T

t∑

k=0

[τdµ(k; t)− τcλ(k; t)] f(k) ≥ τd − τc , (21)

0 ≤ f(k) ≤ 1 ∀k = 0, . . . , t . (22)

The LP problem (20)–(22) is to minimize the expected transmission probability
of the intervention device while satisfying the incentive constraint and the prob-
ability constraints. Exerting intervention following some signals is necessary to
punish a deviation, but at the same time intervention incurs efficiency loss under
imperfect monitoring. Thus, the manager wants to use the minimum possible in-
tervention level while providing the incentive for cooperation. The left-hand side
of the incentive constraint (21) is the expected loss from deviation due to the
change in the probability distribution of signals induced by deviation, while the
right-hand side is the gain from deviation.
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Lemma 1. Suppose that an optimal solution to the LP problem (20)–(22) ex-
ists. Then the incentive constraint (21) is satisfied with equality at the optimal
solution.

Proof. Let f∗ be an optimal solution. Suppose that [(T − t)/T ]
∑t

k=0[τdµ(k; t)−
τcλ(k; t)]f

∗(k) > τd − τc. Since τd > τc, there exists k′ such that τdµ(k
′; t) −

τcλ(k
′; t) > 0 and f∗(k′) > 0. Then we can reduce f∗(k′) while satisfying the

incentive constraint and the probability constraint for k′, which decreases the
objective value since λ(k; t) > 0 for all k. This contradicts the optimality of f∗.
ut

Lemma 1 validates the intuition that the manager wants to use a punishment
just enough to prevent deviation. The following proposition provides a necessary
and sufficient condition for the LP problem to have a feasible solution, and the
structure of an optimal solution.

Proposition 1. Let k0 = max{k : τdµ(k; t) − τcλ(k; t) > 0}. Then the LP
problem has a feasible solution if and only if

T − t

T

∑

k≤k0

[τdµ(k; t)− τcλ(k; t)] ≥ τd − τc . (23)

Moreover, if the LP problem has a feasible solution, then there exists a unique
optimal solution f∗ described by

f∗(k) =





1 , if k < k̄ ,
1

τdµ(k̄;t)−τcλ(k̄;t)

[
T

T−t (τd − τc)−
∑k̄−1

k=0[τdµ(k; t)− τcλ(k; t)]
]
,

if k = k̄ ,
0 , if k > k̄ ,

(24)

where

k̄ = min



k′ :

T − t

T

∑

k≤k′
[τdµ(k; t)− τcλ(k; t)] ≥ τd − τc



 . (25)

Proof. Define the likelihood ratio of signal k by

L(k; t) =
µ(k; t)

λ(k; t)
=

(
1− ph
1− pl

)k (
1− (1− pl)

N−1(1− ph)

1− (1− pl)N

)t−k

. (26)

It is easy to see that L(0; t) > 1, L(t; t) < 1, and L(k; t) is monotonically
decreasing in k. Note that τdµ(k; t)− τcλ(k; t) > 0 if and only if L(k; t) > pl/ph.
Hence, k0 is well-defined, and τdµ(k; t) − τcλ(k; t) > 0 if and only if k ≤ k0. If
(23) is satisfied, then f̃ defined by f̃(k) = 1 for all k ≤ k0 and f̃(k) = 0 for
all k > k0 is a feasible solution. To prove the converse, suppose that a feasible
solution, say f , exists. Then we have
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T − t

T

∑

k≤k0

[τdµ(k; t)− τcλ(k; t)] ≥ T − t

T

t∑

k=0

[τdµ(k; t)− τcλ(k; t)]f(k) (27)

and
T − t

T

t∑

k=0

[τdµ(k; t)− τcλ(k; t)]f(k) ≥ τd − τc , (28)

and combining the two yields (23).
To prove the remaining result, suppose that the LP problem has a feasible

solution. Then there exists a feasible solution, say f , that satisfies the incentive
constraint with equality. Define the likelihood ratio of f by

l(f) =

∑
k µ(k; t)f(k)∑
k λ(k; t)f(k)

. (29)

Then the objective value in (20) at f can be expressed as

T

T − t

τd − τc
τdl(f)− τc

. (30)

Hence, the objective value decreases as f has a larger likelihood ratio. To opti-
mize the objective function, f should put the probabilities on the signals starting
from signal 0 to signal 1, and so on, until the incentive constraint is satisfied
with equality. Thus, we obtain k̄ in (25), where 0 ≤ k̄ ≤ k0, associated with the
unique optimal solution. ut

Since a smaller number of idle slots gives a higher likelihood ratio, an inter-
vention rule yields a smaller efficiency loss when intervention is exerted following
a smaller number of idle slots. Put differently, signal k provides a stronger in-
dication of defection as k is smaller. However, using only signal 0 may not be
sufficient to provide the incentive for cooperation, in which case other signals
need to be used as well. Using signal k with k ≤ k0 contributes to the incentive
for cooperation, although the “quality” of the signal decreases as k increases.
Hence, it is optimal for the manager to use signals with smaller k primarily,
which yields a threshold k̄.

Timing of Intervention. So far we have analyzed the problem of designing an
optimal intervention rule given the length of the test phase, t. Now we consider
a scenario where the manager can choose a length of the test phase as well
as an intervention rule. In this scenario, there are two counteracting effects of
increasing t. First, note that the objective function in (17) can be expressed as

N

[
1− τd − τc

τdl(f)− τc

]
τc , (31)

which shows that increasing t affects the objective value only through f . Since
L(k; t1) > L(k; t2) for all t1, t2 such that t1 > t2 and for all k ≤ t2, increasing
t increases the likelihood ratios of existing signals. At the same time, it adds
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new signals available for the manager. Thus, a larger likelihood ratio l(f) can be
achieved with larger t. In other words, as the intervention device collects more
observations, the information about deviation becomes more accurate (quality
effect). On the other hand, increasing t decreases the weight given on the inter-
vention phase, which makes the impact of intervention weaker and the incentive
constraint harder to satisfy (delay effect).

Let τ∗(t) be the optimal value of the design problem (17)–(19) with the length
of the test phase t, where we set τ∗(t) = Nph(1− ph)

N−1 if there is no feasible
solution with t. The problem of finding an optimal length of the test phase can be
written as maxt∈{1,...,T} τ∗(t). In general, τ∗(t) is a non-monotonic function of t,
and we provide a numerical example to illustrate non-monotonicity. We consider
system parameters N = 5, pl = 1/N = 0.2, ph = 0.8, and T = 100. Then we
have τc = 0.08 and τd = 0.33. The numerical results show that the LP problem
is infeasible for t = 1 and t ≥ 21. With t = 1, there is not sufficient information
based on which intervention can provide the incentive for cooperation. With
t ≥ 21, the delay effect is too strong to have the incentive constraint satisfied.
Figure 1 plots τ∗(t) for t = 2, . . . , 20. We can see that τ∗(t) is non-monotonic
while reaching the maximum at t = 18 with τ∗(18) = 0.37. In the plot, the
dotted line represents the total throughput at (pl, . . . , pl), Nτc. The difference
between τ∗(t) and Nτc can be interpreted as the efficiency loss due to imperfect
monitoring.2 Lastly, we note that k̄ in Proposition 1 is non-decreasing in t, with
k̄ = 1 for t = 2, . . . , 7, k̄ = 2 for t = 8, . . . , 13, k̄ = 3 for t = 14, . . . , 18, and k̄ = 4
for t = 19, 20.

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

t

τ* (t
)

Fig. 1. Plot of τ∗(t) for t = 2, . . . , 20

2 If the intervention device can observe the actions of the users immediately (i.e.,
perfect monitoring), it can sustain cooperation without incurring an efficiency loss
by using the threat of transmitting with probability 1 when a deviation is detected.
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4 Conclusion

In this paper, we have proposed a class of incentive schemes, called interven-
tion schemes. We have presented a general game-theoretic framework for the
design of intervention schemes under imperfect monitoring. In order to illustrate
our framework and obtain concrete results, we have analyzed a simple model of
slotted multiaccess communication. Our results suggest that we can design an
intervention scheme that sustains an action profile from which a deviation yields
a sufficiently distinct distribution of signals. When the manager cares about ef-
ficiency, it is optimal to use a punishment just enough to prevent deviation,
in order to minimize the efficiency loss due to imperfect monitoring. Also, in a
scenario where the manager can decide the timing of intervention, we have iden-
tified the two counteracting effects of having a longer test phase. Our framework
of intervention schemes can be potentially applied to any application scenario in
which individual objectives are in conflict with the system objective and some
monitoring is possible. Investigating intervention schemes in various settings will
provide us with insights into the properties of optimal intervention schemes as
well as the capabilities and limitations of intervention schemes.
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