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Abstract—We propose and analyze a broad family of games
played by resource-constrained players, which are characterized
by the following central features: 1) each user has a multi-
dimensional action space, subject to a single sum resource
constraint; 2) each user’s utility in a particular dimension
depends on an additive coupling between the user’s action in
the same dimension and the actions of the other users; and 3)
each user’s total utility is the sum of the utilities obtained in each
dimension. Familiar examples of such multi-user environments
in communication systems include power control over frequency-
selective Gaussian interference channels and flow control in
Jackson networks. In settings where users cannot exchange
messages in real-time, we study how users can adjust their actions
based on their local observations. We derive sufficient conditions
under which a unique Nash equilibrium exists and the best-
response algorithm converges globally and linearly to the Nash
equilibrium. In settings where users can exchange messages in
real-time, we focus on user choices that optimize the overall
utility. We provide the convergence conditions of two distributed
action update mechanisms, gradient play and Jacobi update.

I. INTRODUCTION

Game theory provides a formal framework for describing
and analyzing the interactions of multiple decision-makers.
Recently, there has been a surge in research activities that
adopt game theoretic tools to investigate a wide range of mod-
ern communications and networking problems. In resource-
constrained communication networks, a user’s utility is usually
not only affected by its own action but also by the actions
taken by all the other users sharing the same resources. Due
to the mutual coupling among users, the performance opti-
mization of multi-user communication systems is challenging.
Depending on the characteristics of different applications,
numerous game-theoretical models and solution concepts have
been proposed to characterize the multi-user interactions and
optimize the users’ decisions in communication networks.
A variety of game theoretic solutions have been developed
to characterize the resulting performance of the multi-user
interactions, including Nash equilibrium (NE) and Pareto
optimality [1].

The majority of the existing game theoretic research works
in communication networking applications usually depend
on the specific structures and inter-user coupling of their
action sets and utility functions. By considering or even
architecting these specific structures, the associated games
become analytically tractable and possess various important
convergence properties. For instance, if users cannot exchange
messages with each other and choose to individually maximize
their utilities, to show the existence of and the convergence
to a pure NE, several well-investigated classes of game
models, such as concave games, supermodular games, and

potential games, have been extensively applied in various
communication scenarios [1]- [8]. When real-time information
exchange is possible, various mechanisms have also been
proposed to enable collaborative users to jointly improve their
performance and find the optimum joint policy. A well-known
example is the framework of network utility maximization
(NUM) started by Kelly etc. [9] [10], which has recently been
widely adopted to analyze the problems related to fairness
and efficiency in communication networks. Moreover, various
distributed resource allocation algorithms have been developed
to implement the NUM framework in an informationally-
decentralized manner. In particular, if a convex NUM problem
can be decomposed into several subproblems by introducing
Lagrange multipliers associated with different resource con-
straints, the global optimum can be computed using distributed
algorithms by deploying message passing mechanisms [11].

Power control is one of the first few communication prob-
lems in which researchers started to apply game theoretic
tools to formalize the multi-user interaction and characterize
its properties. An interesting and important topic that has
been extensively investigated recently is how to optimize
multiple devices’ power allocation when sharing a common
frequency-selective interference channel. In [12], Yu et. al.
first defined such a power control game from a game-theoretic
perspective, proposed a best-response algorithm in which all
users iteratively update their power allocations using the water-
filling solution, and proved several sufficient conditions under
which the algorithm globally converges to a unique pure
NE. Many follow-up papers further establish various sufficient
convergence conditions with or without real-time information
exchange for power control in communication networks [13]-
[17]. The purpose of this paper is to introduce and analyze a
general framework that abstracts the common characteristics of
this family of multi-user interaction scenarios, which includes,
but is not limited to, the power control scenario. In particular,
the main contributions of this paper are as follows.

First of all, we define the class of Additively Coupled Sum
Constrained Games (ACSCG), which captures and character-
izes the key features of several communication and networking
applications. In particular, the central features of ACSCG are:
1) each user has a multi-dimensional strategy that is subject
to a single sum resource constraint; 2) each user’s payoff in
each dimension is impacted by an additive combination of
its own action in the same dimension and a function of the
other users’ actions; 3) users’ utilities are separable across
different dimensions and each user’s total utility is the sum of
the utilities obtained within each dimension.

Second, based on the feasibility of real-time information



exchange, we provide the convergence conditions of various
generic distributed algorithms in different scenarios. When no
message exchanges between users are possible and every user
maximizes its own utility, it is essential to determine whether
a NE exist and if yes, how to achieve such an equilibrium.
In ACSCG, a pure NE exists in ACSCG because ACSCG
belongs to concave games [1] [2]. Our key contribution in
this context is that we investigate the uniqueness of pure NE
and consider the best response dynamics to compute the NE.
We explore the properties of the additive coupling among
users given the sum constraint and provide several sufficient
conditions under which best response dynamics converges
linearly1 to the unique NE, for any set of feasible initialization
with either sequential or parallel updates. We also explain the
relationship between our results and the conditions previously
developed in the game theory literature [2] [19]. When users
can collaboratively exchange messages with each other in
real-time, we present the sufficient convergence conditions
of two alternative distributed pricing algorithms, including
gradient play and Jacobi update, to coordinate users’ action
and improve the overall system efficiency. The proposed
convergence conditions generalize the results that have been
previously obtained in [12]- [17] for the multi-user power
control problem and they are immediately applicable to other
multi-user applications in communication networks that fulfill
the requirements of ACSCG.

The rest of this paper is organized as follows. Section II
defines the model of ACSCG. For ACSCG models, Sections III
and IV present several distributed algorithms without and with
real-time information exchanges, respectively, and provide
sufficient conditions that guarantee the convergence of the
proposed algorithms. Conclusions are drawn in Section V. Due
to space limitations, the formal proofs and numerical examples
are omitted; for these proofs and examples, the reader is
referred to [25].

II. GAME MODEL

A. Strategic Games, Nash equilibrium, and Pareto Optimality

A strategic game is a suitable model for the analysis of a
game where all users act independently and simultaneously
according to their own self-interests and with no or limited
a priori knowledge of the other users’ strategies. This can be
formally defined as a tuple Γ = ⟨N ,A, u⟩. In particular, N =
{1, 2, . . . , N} is the set of decision makers. Define A to be
the joint action set A = ×n∈NAn, with An ⊆ RK being the
action set available for user n. The vector utility function u =
×n∈Nun is a mapping from the individual users’ joint action
set to real numbers, i.e. u : A → RN . In particular, un(a) :
A → R is the utility of the nth user that generally depends
on the strategies a = (an, a−n) of all users, where an ∈ An

denotes a feasible action of user n, and a−n = ×m̸=nam is a
vector of the actions of all users except n. We also denote by

1A sequence x(k) with limit x∗ is linearly convergent if there exists a
constant c ∈ (0, 1) such that |x(k)−x∗| ≤ c|x(k−1)−x∗| for k sufficiently
large [18].

A−n = ×m̸=nAm the joint action set of all users except n. To
capture the multi-user performance tradeoff, the utility region
is defined as U = {(u1(a), . . . , uN (a))| ∃ a ∈ A}. Various
game theoretic solutions, such as NE and Pareto optimality,
were developed to characterize the resulting performance [1].
Significant research efforts have been devoted in the literature
to constructing operational algorithms in order to achieve NE
and Pareto optimality in various games with special structures
of action set An and utility function un.

1) Nash equilibrium: definition, existence, and conver-
gence: To avoid the overhead associated with exchang-
ing information in real-time, network designers may pre-
fer fully decentralized solutions in which the participating
users simply compete against other users by choosing ac-
tions an ∈ An to selfishly maximize their individual utility
functions un(an, a−n), given the actions a−n ∈ A−n. Most
of these approaches focus on investigating the existence and
properties of NE. NE is defined to be an action profile
(a∗1, a∗2, . . . , a∗N ) with the property that for every player, it
satisfies un(a∗

n, a∗−n) ≥ un(an, a∗−n) for all an ∈ An, i.e.
given the other users’ actions, no user can increase its utility
alone by changing its action. Many of the well-known results
on NE rely on specific structural properties of action set A and
utility function u in the investigated multi-user interactions.
For an extensive discussion of the methodologies studying the
existence, uniqueness, and convergence of various equilibria
in communication networks, we refer the readers to [20].

2) Pareto optimality and network utility maximization: A
profile of actions is Pareto optimal if there is no other profile
of actions that makes every user at least as well off and at least
one user strictly better off. It is important to note that operating
at a NE will generally limit the performance of the user itself
as well as that of the entire network, because the available
network resources are not always effectively exploited due to
the conflicts of interest occurring among users. As opposed to
the NE-based approaches, there exists a large body of literature
that focuses on studying how to compute Pareto optimal
solutions in large-scale networks where centralized solutions
are infeasible by optimizing a certain common objective
function f(u1(a), u2(a), . . . , uN (a)). This function represents
the fairness rule based on which the system-wide resource
allocation is performed. Different objective functions, e.g. sum
utility maximization in which f(u1(a), u2(a), . . . , uN (a)) =∑N

n=1 un(a), can provide reasonable allocation outcomes
by jointly considering fairness and efficiency. An important
example is the NUM framework that develops distributed
algorithms to solve network resource allocation problems [10].
The majority of the results in the existing NUM literature are
based on convex optimization theory. It is well-known that,
for convex optimization problems, users can collaboratively
exchange price signals that reflect the “cost” for consuming
the constrained resources and the Pareto optimal allocation
that maximizes the network utility can be determined in a
fully distributed manner [11].

Summarizing, these general structural results without and
with real-time message exchange turn out to be very useful



when analyzing various multi-user interactions in communi-
cation networks. In the remaining part of this paper, we will
derive several structural results for a particular type of multi-
user interaction scenario.

B. Additively Coupled Sum Constrained Games

Definition 1: A multi-user interaction Γ = ⟨N ,A, u⟩ is a
ACSCG if it satisfies the following assumptions:

A1: ∀n ∈ N , action set An ⊆ RK is defined as An = 2

{
(a1n, a

2
n, · · · , aKn )

∣∣ akn ∈ [amin
n,k , a

max
n,k ] and

K∑
k=1

akn ≤ Mn

}
.

(1)
A2: There exist hk

n : R → R, fk
n : A−n → R, and gkn :

A−n → R, k = 1, . . . ,K, such that

un(a) =
K∑

k=1

[
hk
n

(
akn + fk

n(a−n)
)
− gkn(a−n)

]
, (2)

for all a ∈ A and n ∈ N . hk
n(·) is an increasing, twice

differentiable, and strictly concave function and fk
n(·) and

gkn(·) are both twice differentiable.
The ACSCG model defined by assumptions A1 and A2

covers a broad class of multi-user interactions. Assumption
A1 indicates that each player’s action set is a K-dimensional
vector set and its action vector is sum-constrained. This repre-
sents the communication scenarios in which each user needs to
determine its multi-dimensional action in various channels or
networks while the total amount of resources it can consume
is constrained. Assumption A2 implies that each user’s utility
is separable and can be represented by the summation of
concave functions hk

n minus “penalty” functions gkn across the
K dimensions. In particular, within each dimension, the input
of hk

n is an additive combination of user n’s action akn and
function fk

n(a−n) that depends on the remaining users’ joint
action a−n. Since akn only appears in the concave function
hk
n, it implies that each user’s utility is concave in its own

action, i.e. diminishing returns per unit of user n’s invested
action an, which is common for many application scenarios
in communication networks.

Summarizing, the key features of the game model defined by
A1 and A2 include: each user’s action is subject to a sum con-
straint; users’ utilities are impacted by additive combinations
of akn and fk

n(a−n) through concave functions hk
n. Therefore,

we term the game Γ that satisfies assumptions A1 and A2
as ACSCG. In [25], we present several illustrative multi-user
interaction examples that belong to ACSCG, including power
control in frequency-selective Gaussian interference channel,
delay minimization in Jackson networks, and asynchronous
transmission in digital subscriber lines network.

2We consider a sum constraint throughout the paper rather than a weighted-
sum constraint, because a weighted-sum constraint can be easily converted
to a sum constraint by rescaling An. Besides, we nontrivially assume that∑K

k=1 a
max
n,k ≥ Mn.

C. Issues related to ACSCG

Since ACSCG represents a good abstraction of numerous
multi-user resource allocation problems, we aim to investigate
the convergence properties of various distributed algorithms in
ACSCG without and with real-time message passing.

ACSCG is a concave game [1] [2] and therefore, it admits
at least one pure NE. In practice, we want to provide the
sufficient conditions under which best response dynamics
provably and globally converges to a pure NE. However, the
existing literature, e.g. the diagonal strict concavity (DSC)
conditions in [2] and the supermodular game theory [3]- [5],
does not provide such convergence conditions for the general
ACSCG model. For example, the DSC conditions developed
for general concave games do not guarantee the convergence
of best response dynamics [2]. Even if the utility functions
in ACSCG possess the supermodular type structure, due to
the sum constraint, the action set of each user is generally
not a sublattice3 of RK . Therefore, the convergence results
based on supermodular games cannot be directly applied in
ACSCG. On the other hand, if we want to maximize the sum
utility by enabling real-time message passing among users,
we also note that, the utility un is not necessarily jointly
concave in a because of the existence of gkn(·). Therefore,
the existing algorithms developed for the convex NUM are
not immediately applicable either.

In fact, a unique feature of the ACSCG is that different
users’ actions are additively coupled in hk

n(·) and each user’s
action space is sum-constrained. In the following sections,
we will fully explore these specific structures and address
the convergence properties of various distributed algorithms
in two different scenarios. Specifically, Section III investi-
gates the scenarios in which each user n can only observe
{fk

n(a−n)}Kk=1 and cannot exchange any information with any
other user. Section IV focuses on the scenarios in which each
user n is able to announce and receive information in real-time
to and from the remaining users about ∂un(a)

∂ak
m

and ∂um(a)
∂ak

n
,

∀m ̸= n, k = 1, . . . ,K.

III. SCENARIO I: NO MESSAGE EXCHANGE AMONG USERS

In communication scenarios where users cannot exchange
messages to achieve coordination, the participating users can
simply choose actions to selfishly maximize their individual
utility functions un(a) by solving the following optimization
program:

max
an∈An

un(a). (3)

The steady state outcome of such a multi-user interaction is
usually characterized as a NE.

A. Properties of Best Response Dynamics in ACSCG

In this subsection, we first focus on the scenarios in which
fk
n(a−n) is the linear combination of the remaining users’

3In supermodular games, for each player, the action set is a nonempty and
compact sublattice of RK . We can verify that with the sum constraint, An

is usually not a sublattice of RK by taking the component-wise maximum.



action in the same dimension k, i.e.

fk
n(a−n) =

∑
m̸=n

F k
mna

k
m (4)

and F k
mn ∈ R, ∀m,n, k. In Section III-B, we will extend the

results derived for the functions fk
n(a−n) defined in (4) to

general fk
n(a−n).

Since hk
n(·) is concave, the objective in (3) is a concave

function in akn when the other users’ actions a−n are fixed. To
find the globally optimal solution of the problem in (3), we
can first form its Lagrangian

Ln(an, λ) = un(a) + λ(Mn −
K∑

k=1

akn), (5)

in which akn ∈ [amin
n,k , a

max
n,k ]. By taking the first derivatives of

(5), we have

∂Ln(an, λ)

∂akn
=

∂hk
n(a

k
n +

∑
m̸=n F

k
mna

k
m)

∂akn
− λ = 0. (6)

Denote

lkn(a−n, λ) ,
[{∂hk

n

∂x

}−1

(λ)−
∑
m̸=n

F k
mna

k
m

]amax
n,k

amin
n,k

, (7)

in which
{∂hk

n

∂x

}−1
is the inverse function4 of ∂hk

n

∂x and
[x]ab = max{min{x, a}, b}. The optimal solution of (3) is
given by a∗kn = lkn(a−n, λ

∗), where the Lagrange multiplier
λ∗ is chosen to satisfy the sum constraint

∑K
k=1 a

∗k
n = Mn.

We define the best response operator Bk
n(·) as

Bk
n(a−n) = lkn(a−n, λ

∗). (8)

We consider the dynamic adjustment process in which users
revise their actions over time based on their observations about
their opponents. A well-known candidate for such adjustment
processes is the so-called best response dynamics. In the best
response algorithm, each user updates its action using the best
response strategy that maximizes its utility function in (2).
We consider two types of update orders, including sequential
update and parallel update. Specifically, in sequential update,
individual players iteratively optimize in a circular fashion
with respect to their own actions while keeping the actions
of their opponents fixed. Formally, at stage t, user n chooses
its action according to

ak,tn = Bk
n([a

t
1, . . . ,a

t
n−1,a

t−1
n+1, . . . ,a

t−1
N ]). (9)

On the other hand, players adopting the parallel update revise
their actions at stage t according to

ak,tn = Bk
n(a

t−1
−n ). (10)

We obtain several sufficient conditions under which best
response dynamics converges. Similar convergence conditions
are proved in [13]- [15] in which hk

n(x) = log2(σ
k
n +Hk

nnx).
We consider more general functions hk

n(·) and further extend
the convergence conditions in [13]- [15]. The key differences
among all the sufficient conditions which will be provided in
this section are summarized in Table I.

4If @ x = x∗ such that ∂hk
n

∂x
|x=x∗ = λ, we let

{ ∂hk
n

∂x

}−1
(λ) = −∞.

1) General hk
n(·): The first sufficient condition is devel-

oped for the general cases in which the functions hk
n(·) in the

utilities un(·) are specified in assumption A2. Define

[Tmax]mn ,
{

maxk |F k
mn|, if m ̸= n

0, otherwise. (11)

and let ρ(Tmax) denote the spectral radius of the matrix Tmax.
Theorem 1: If

ρ(Tmax) <
1

2
, (C1)

then there exists a unique NE in game Γ and best response
dynamics converges linearly to the NE, for any set of initial
conditions belonging to A with either sequential or parallel
updates.

Proof : This theorem is proved by showing that the best
response dynamics defined in (9) and (10) is a contraction
mapping under (C1). See Appendix A in [25] for details. �

In multi-user communication applications, it is common to
have games of strategic complements (or strategic substitutes),
i.e. the marginal returns to any one component of the player’s
action rise with increases (or decreases) in the components of
the competitors’ actions [21]. For instance, in power control
applications, increasing user n’s transmitted power creates
stronger interference to the other users and decreases their
marginal achievable rates. Mathematically, if un is twice
differentiable, strategic complementarities (or strategic substi-
tutes) can be described as

∂2un(an,a−n)

∂aj
n∂ak

m

≥ 0, ∀m ̸= n, j, k,

(or ∂2un(an,a−n)

∂aj
n∂ak

m

≤ 0, ∀m ̸= n, j, k).
(12)

For the ACSCG models that exhibit strategic complementar-
ities (or strategic substitutes), the following theorem further
relaxes condition (C1).

Theorem 2: Let Γ be an ACSCG with strategic complemen-
tarities (or strategic substitutes), i.e. F k

mn ≤ 0, ∀k,m ̸= n, (or
F k
mn ≥ 0, ∀k,m ̸= n). If

ρ(Tmax) < 1, (C2)

then there exists a unique NE in game Γ and best response
dynamics converges linearly to the NE, for any set of initial
conditions belonging to A with either sequential or parallel
updates.

Proof : This theorem is proved by adapting the proof of
Theorem 1. See Appendix B in [25]. �

Remark 1: (Implications of conditions (C1) and (C2)) The-
orem 1 and Theorem 2 give sufficient conditions for best
response dynamics to globally converge to a unique fixed
point. Specifically, maxk |F k

mn| can be regarded as a measure
of the strength of the mutual coupling between user m and
n. The intuition behind (C1) and (C2) is that, the weaker
the coupling among different users is, the more likely that
best response dynamics converges. Consider the extreme case
in which F k

mn = 0,∀k,m ̸= n. Since each user’s best
response is not impacted by the remaining users’ action a−n,



TABLE I
COMPARISON AMONG CONDITIONS (C1)-(C6).

Conditions Assumptions about fk
n(a−n) hk

n(x) Measure of residual error at+1
n − atn Contraction factor

(C1) (4) A2 1-norm 2ρ(Tmax)

(C2) (4) and Fk
mn have A2 1-norm ρ(Tmax)the same sign for ∀k,m ̸= n

(C3) (4) (13) weighted Euclidean norm ρ(Smax)
(C4) general A2 1-norm 2ρ(T̄max

)

(C5)
∂fk

n(a−n)

∂ak′
m

have the same sign A2 1-norm ρ(T̄max
)

for ∀a ∈ A, k, k′,m ̸= n
(C6) general (13) weighted Euclidean norm ρ(S̄max

)

the convergence is immediately achieved after a single best-
response iteration. If no restriction is imposed on F k

mn, Theo-
rem 1 specifies a mutual coupling threshold under which best
response dynamics provably converge. The proof of Theorem
1 can be intuitively interpreted as follows. We regard every
best response update as the users’ joint attempt to approach
the NE. Due to the linear coupling structure in (4), user n’s
best response in (7) contains a term

∑
m̸=n F

k
mna

k
m that is

a linear combination of a−n. As a result, the residual error∣∣at+1
n −atn

∣∣
1
, which is the 1-norm distance between the updated

action profile at+1
n and the current action profile atn, can be

upper-bounded using linear combinations of
∣∣atm − at−1

m

∣∣
1

in which m ̸= n. Recall that F k
mn can be either positive

or negative. We also note that, if atm ̸= at−1
m , atm − at−1

m

contains both positive and negative terms due to the sum-
constraint. In the worst case, the distance

∣∣at+1
n − atn

∣∣
1

is
maximized if

{
F k
mn

}
and

{
ak,tm − ak,t−1

m

}
are co-phase mul-

tiplied and additively summed, i.e. F k
mn

(
ak,tm − ak,t−1

m

)
≥ 0,

for ∀k = 1, . . . ,K,m ̸= n. After an iteration, all users except
n contributes to user n’s residual error at stage t + 1 up to∑

m̸=n 2maxk
∣∣F k

mn

∣∣∣∣atm−at−1
m

∣∣
1
. Under condition (C1), it is

guaranteed that the residual error contracts. Theorem 2 focuses
on the situations in which the signs of F k

mn are the same,
∀m ̸= n, k. In this case,

{
F k
mn

}
and

{
ak,tm − ak,t−1

m

}
cannot

be co-phase multiplied. Therefore, the region of convergence
enlarges and hence, condition (C2) stated in Theorem 2 is
weaker than condition (C1) in Theorem 1.

Remark 2: (Relation to the results in references [13]- [15])
Similar to [13] [14], our proofs choose 1-norm as the distance
measure for the residual errors at+1

n − at
n after each best-

response iteration. However, by manipulating the inequalities
in a different way, condition (C2) is more general than the
results in [13] [14], where they require maxk F

k
mn < 1

N−1 .
Interestingly, condition (C2) recovers the result obtained in
[15] where it is proved by choosing the Euclidean norm as the
distance measure for the residual errors at+1

n − atn after each
best-response iteration. However, the approach in [15] using
the Euclidean norm only applies to the scenarios in which
hk
n(·) is a logarithmic function. We prove that condition (C2)

applies to any hk
n(·) that is increasing and strictly concave.

2) A special class of hk
n(·): In addition to conditions (C1)

and (C2), we also develop a sufficient convergence condition
for a family of utility functions parameterized by a negative

number θ. In particular, hk
n(·) satisfies5

hk
n(x) =

{
log(αk

n + F k
nnx), if θ = −1,

(αk
n+Fk

nnx)
θ+1

θ+1 , if −1 < θ < 0 or θ < −1.
(13)

and αk
n ∈ R and F k

nn > 0. The interpretation of this type of
utilities has been addressed in [22]. It is shown that varying
the parameter θ leads to different types of fairness across
αk
n+F k

nn(a
k
n+
∑

m̸=n F
k
mna

k
m) for all k. In particular, θ = −1

corresponds to the proportional fairness; if θ = −2, then
harmonic mean fairness; and if θ = −∞, then max-min
fairness. In these cases, best response dynamics in equation
(7) is reduced to

lkn(a−n, λ) =
[( 1

F k
nn

)1+ 1
θ λ

1
θ − αk

n

F k
nn

−
∑
m̸=n

F k
mna

k
m

]amax
n,k

amin
n,k

,

(14)
Define [Smax]mn ,

∑K
k=1(F

k
mm)1+

1
θ∑K

k=1(F
k
nn)

1+ 1
θ
maxk

{
|F k

mn|
(

Fk
nn

Fk
mm

)1+ 1
θ
}
, if m ̸= n

0, otherwise.
(15)

For the class of utility functions in (13), Theorem 3 gives a
sufficient condition that guarantees the convergence of the best
response dynamics defined in (14).

Theorem 3: For hk
n(·) defined in (13), if

ρ(Smax) < 1, (C3)

then there exists a unique NE in game Γ and best response
dynamics converges linearly to the NE, for any set of initial
conditions belonging to A and with either sequential or parallel
updates.

Proof : It can be proved by showing that the best response
dynamics defined in (14) is a contraction mapping with respect
to the weighted Euclidean norm. See Appendix C in [25] for
details. �

Remark 3: (Relation between conditions (C3) and the re-
sults in reference [15]) For power control in frequency-
selective Gaussian interference channel, Scutari et al. estab-
lished in [15] a sufficient condition under which the iter-

5If αk
n + Fk

nnx ≤ 0, we let hk
n(x) = −∞. We assume for this class of

hk
n(·) that for ∀a−n ∈ A−n, there exists an ∈ An such that αk

n+Fk
nnx >

0 for ∀n, k.



ative water-filling algorithm converges. The iterative water-
filling algorithm essentially belongs to best response dynamics.
Specifically, in [15], Shannon’s formula leads to θ = −1
and cross channel coefficients satisfy F k

mn ≥ 0,∀k,m ̸= n.
Equation (14) reduces to the water-filling formula

lkn(a−n, λ) =
[ 1
λ
− αk

n

F k
nn

−
∑
m̸=n

F k
mna

k
m

]amax
n,k

amin
n,k

, (16)

and [Smax]mn = maxk F
k
mn. By choosing the weighted

Euclidean norm as the distance measure for the residual
errors at+1

n −atn after each best-response iteration, Theorem 3
generalizes the results in [15] for the family of utility functions
defined in (13).

Remark 4: (Relation between conditions (C1), (C2) and
(C3)) The connections and differences between conditions
(C1), (C2) and (C3) are summarized in Table I. We have
addressed the implications of (C1) and (C2) in Remark 1. Now
we discuss their relation with (C3). First of all, condition (C1)
is proposed for general hk

n(·) and condition (C3) is proposed
for the class of utility functions defined in (13). However,
Theorem 1 and Theorem 3 individually establish the fact that
best response dynamics is a contraction map by selecting
different vector and matrix norms. Therefore, in general, (C1)
and (C3) do not immediately imply each other. Note that
[Smax]mn ≤ ζmn ·maxk |F k

mn| in which ζmn satisfies

ζmn =
∑K

k=1(F
k
mm)1+

1
θ∑K

k=1(F
k
nn)

1+ 1
θ

·maxk
(Fk

nn)
1+ 1

θ

(Fk
mm)1+

1
θ

∈
[
1,

maxk(F
k
nn/F

k
mm)1+

1
θ

mink(Fk
nn/F

k
mm)1+

1
θ

]
.

(17)

The physical interpretation of ζmn is the similarity between the
preferences of user m and n across the total K dimensions
of their action spaces. Recall that both Smax and Tmax are
non-negative matrices and Smax is element-wise less than or
equal to maxm̸=n ζmnTmax. By the property of non-negative
matrix and condition (C1), we can conclude ρ(Smax) ≤
ρ(maxm̸=n ζmnTmax) < maxm̸=n

ζmn

2 . The relation between
(C1) and (C3) is pictorially illustrated in Fig. 1. Specifically,
if users have similar preference in their available actions and
the upper bound of ζmn that measures the difference of their
preferences is below the following threshold:

maxk,m ̸=n(F
k
nn/F

k
mm)1+

1
θ

mink,m ̸=n(F k
nn/F

k
mm)1+

1
θ

< 2, (18)

we know that (C1) implies (C3) in this situation because
ρ(Smax) < maxm,n ζmn · ρ(Tmax) < 2 · 1

2 = 1. We also
would like to point out that, the LHS of (18) is a function of
θ and the LHS ≡ 1 if θ = −1. When θ = −1, Tmax coincides
with Smax. Mathematically, in this case, (C3) is actually more
general than (C2), because it still holds even if coefficients
F k
mn have different signs.

B. Extensions to General fk
n(·)

As a matter of fact, the results above can be extended
to the more general situations in which fk

n(·) is a nonlinear
differentiable function, ∀n, k and its input a−n consists of the

C1 C1

C3 C3

In general

Fig. 1. Relation between (C1) and (C3).

remaining users’ action from all the dimensions. Accordingly,
equation (7) becomes

lkn(a−n, λ) ,
[{∂hk

n

∂x

}−1

(λ)− fk
n(a−n)

]amax
n,k

amin
n,k

. (19)

The conclusions in Theorem 1, 2, and 3 can be further
extended as Theorem 4, and 5, 6 that are listed below.

For general fk
n(·), we denote

[T̄max
]mn ,

{
maxa∈A,k′

∑K
k=1

∣∣∣∂fk
n(a−n)

∂ak′
m

∣∣∣, if m ̸= n

0, otherwise.
(20)

Besides, for hk
n(·) defined in (13), we define [S̄max

]mn ,
K∑

k=1

(Fk
mm)1+

1
θ

K∑
k=1

(Fk
nn)

1+ 1
θ

max
a∈A,k′

{ K∑
k=1

∣∣∣∂fk
n(a−n)

∂ak′
m

∣∣∣( Fk′
nn

Fk′
mm

)1+ 1
θ
}
, if m ̸= n

0, otherwise.
(21)

Theorem 4: If
ρ(T̄max

) <
1

2
, (C4)

then there exists a unique NE in game Γ and best response
dynamics converges linearly to the NE, for any set of initial
conditions belonging to A with either sequential or parallel
updates.

Proof : This theorem can be proved by combining the proof
of Theorem 1 and the mean value theorem for vector-valued
functions. See Appendix D in [25] for details. �

Similarly as in Theorem 2, for the general ACSCG models
that exhibit strategic complementarities (or strategic substi-
tutes), we can further relax condition (C4).

Theorem 5: For Γ with strategic complementarities (or
strategic substitutes), i.e. ∂fk

n(a−n)

∂ak′
m

≥ 0,∀m ̸= n, k, k′, a ∈ A,

(or ∂fk
n(a−n)

∂ak′
m

≤ 0,∀m ̸= n, k, k′, a ∈ A), if

ρ(T̄max
) < 1, (C5)

then there exists a unique NE in game Γ and best response
dynamics converges linearly to the NE, for any set of initial



conditions belonging to A with either sequential or parallel
updates.

Theorem 6: For hk
n(·) defined in (13), if

ρ(S̄max
) < 1, (C6)

then there exists a unique NE in game Γ and best response
dynamics converges linearly to the NE, for any set of initial
conditions belonging to A with either sequential or parallel
updates.

Remark 5: (Implications of conditions (C4), (C5), and
(C6)) Based on the mean value theorem, we know that
the upper bound of the additive sum of first derivatives∑K

k=1

∣∣∣∂fk
n(a−n)

∂ak′
m

∣∣∣ governs the maximum impact that user m’s
action can make over user n’s utility. As a result, Theorem 4,
Theorem 5, and Theorem 6 indicate that

∑K
k=1

∣∣∣∂fk
n(a−n)

∂ak′
m

∣∣∣ can
be used to develop similar sufficient conditions for the global
convergence of best response dynamics. Table I summarizes
the connections and differences among all the aforementioned
conditions from (C1) to (C6). We can verify that, for the linear
function fk

n(·) that is defined in (4) and studied in Section
III-A, ∀a ∈ A,m ̸= n, it satisfies

∂fk
n(a−n)

∂ak′
m

=

{
F k
mn, if k′ = k
0, otherwise. (22)

Remark 6: (Impact of sum constraints) An interesting phe-
nomenon that can be observed from the analysis above is
that, the convergence condition may depend on the maximum
constraints {Mn}Nn=1. This differs from the observation in
[15] that the presence of the transmit power and spectral
mask constraints does not affect the convergence capability
of the iterative water-filling algorithm. This is because when
functions fk

n(a−n) are affine, the elements in T̄max and S̄max

are independent of the values of {Mn}Nn=1. Therefore, (C1)-
(C6) are independent of Mn for affine fk

n(a−n). However,
for non-linear fk

n(a−n), the values of {Mn}Nn=1 specify the
range of users’ joint feasible action set A, and this will affect
T̄max and S̄max accordingly. In other words, in the presence
of non-linearly coupled fk

n(a−n), convergence may depend on
the players’ maximum sum constraints {Mn}Nn=1.

C. Connections to the Results of Rosen [2] and Gabay [19]

In [2], Rosen proposed a continuous-time gradient projec-
tion based iterative algorithm to obtain a pure NE under the
assumption of DSC conditions. Here we present a discrete
version of the algorithm in [2], named “gradient play”. Specif-
ically, at stage t, each user first determines the gradient of its
own utility function un(an,a

t−1
−n ). Then each user updates its

action atn using gradient projection according to

a
′k,t
n = ak,t−1

n + κn
∂un(an,a

t−1
−n )

∂akn
(23)

and

atn = [a1,tn a2,tn · · · aK,t
n ] =

[
a

′1,t
n a

′2,t
n · · · a

′K,t
n

]∥·∥2

An

, (24)

TABLE II
A SUMMARY OF CONVERGENCE CONDITIONS IN CONCAVE GAMES.

Algorithms Sufficient conditions and the applicable games
Gradient play Rosen’s DSC conditions for concave games [2]

Best response
Gabay’s dominance solvability condition
for concave games with An = R+ [19],

conditions (C1)-(C6) for ACSCG

where κn is the stepsize and [v]∥·∥2

An
denotes the projection

of the vector v onto user n’s action set An with respect
to the Euclidean norm ∥ · ∥2. If κn is chosen to be suffi-
ciently small, gradient play approximates the continuous-time
gradient projection algorithm. For each nonnegative vector
κκκ = [κ1 . . . κN ], define

g(a,κκκ) = [κ1∇1u1(a) κ2∇2u2(a) . . . κN∇NuN (a)]T .
(25)

The definition of DSC in [2] is that, for fixed κκκ > 0 and every
a0,a1 ∈ A, we have

(a1 − a0)T g(a0,κκκ) + (a0 − a1)T g(a1,κκκ) > 0. (26)

A sufficient condition for DSC is that the symmetric matrix
G(a,κκκ) + GT (a,κκκ) be negative definite for a ∈ A, where
G(a,κκκ) is the Jacobian with respect to a of g(a,κκκ).

However, when using gradient play to search for a pure
NE, the stepsize κn needs to be carefully chosen and set
to be sufficiently small, which usually slows down the rate
of convergence. As an alternative distributed algorithm, for
concave games with An = R+, ∀n ∈ N , Gabay and Moulin
provided in [19] a dominance solvability condition under
which best response dynamics globally converges to a unique
NE. Specifically, the dominance solvability condition is given
by

−∂2un

∂2an
≥
∑
m̸=n

∣∣∣ ∂2un

∂an∂am

∣∣∣. (27)

The sufficient conditions provided in this section and Gabay’s
dominance solvability condition specify the convergence con-
ditions of best response dynamics in different subclasses of
concave games. Specifically, our results are developed for con-
cave games in which every user has a multi-dimensional action
space subject to a single sum-constraint and Gabay’s dom-
inance solvability condition is proposed for concave games
with single dimensional strategy.

IV. SCENARIO II: MESSAGE EXCHANGE AMONG USERS

In this section, our objective is to coordinate the users’
actions in ACSCG to maximize the overall performance of
the system, measured in terms of their total utilities, in a
distributed fashion. Specifically, the optimization problem we
want to solve is

max
a∈A

N∑
n=1

un(a). (28)

We will study two distributed algorithms in which the partici-
pating users exchange price signals that indicate the “cost” or
“benefit” that its action causes to the other users. Allocating



network resources via pricing has been well-investigated for
convex NUM problems [10], where the original NUM problem
can be decomposed into distributedly solvable subproblems by
setting price for each constraint resource, and each subproblem
has to decide the amount of resources to be used depending on
the charged price. However, unlike in the conventional convex
NUM, pricing mechanisms may not be immediately applicable
in ACSCG if the objective in (28) is not jointly concave in a.
Therefore, we are interested in characterizing the convergence
condition of different pricing algorithms in ACSCG.

We know that for any local maximum a∗ of problem
(28), there exist Lagrange multipliers λn, ν

1
n, · · · , νNn and

ν′1n , · · · , ν′Nn such that the following Karush-Kuhn-Tucker
(KKT) conditions hold for all n ∈ N :

∂un(a
∗)

∂akn
+
∑
m̸=n

∂um(a∗)

∂akn
= λn + νkn − ν

′k
n , ∀n (29)

λn

( K∑
k=1

ak∗n −Mn

)
= 0, λn ≥ 0 (30)

νkn(a
k∗
n − amax

n,k ) = 0, ν
′k
n (amin

n,k − ak∗n ) = 0, νkn, ν
′k
n ≥ 0.

(31)

Denote πk
mn user m’s marginal fluctuation in utility per unit

decrease in user n’s action akn within the kth dimension

πk
mn(a

k
m, ak−m) = −∂um(a)

∂akn
, (32)

which is announced by user m to user n and can be viewed as
the cost charged (or compensation paid) to user n for changing
user m’s utility. Using (32), equation (29) can be rewritten as

∂un(a
∗)

∂akn
−
∑
m̸=n

πk
mn(a

k∗
m , ak∗−m) = λn + νkn − ν

′k
n . (33)

If we assume fixed prices {πk
mn} and action profile ak−n, con-

dition (33) gives the necessary and sufficient KKT condition
of the following problem:

max
an∈An

un(a)−
K∑

k=1

akn ·
( ∑

m̸=n

πk
mn

)
. (34)

At an optimum, a user behaves as if it maximizes the differ-
ences between its utility minus its payment to the other users
in the network due to its impact over the other users’ utilities.
Different distributed pricing mechanisms can be developed
based on the individual objective function in (34) and the
convergence conditions may also vary based on the specific
action update equation.

We will investigate two distributed pricing mechanisms for
non-convex ACSCG and provide two sufficient conditions
that guarantee their convergence. Specifically, under these
sufficient conditions, both algorithms guarantee that the total
utility is monotonically increasing until it converges to a
feasible operating point that satisfies the KKT conditions.
Similarly as in Section III-A, we first assume fk

n(a−n) takes
the form in (4) and users update their actions in parallel.

A. Gradient Play

The first distributed pricing algorithm that we consider is
gradient play. The update iterations of gradient play need to
be properly redefined in presence of real-time information
exchange. Specifically, at stage t, users adopting this algorithm
exchange price signals {πk,t−1

mn } using the gradient information
at stage t−1. Within each iteration, each user first determines
the gradient of the objective in (34) based on the price vectors
{πk,t−1

mn } and its own utility function un(an,a
t−1
−n ). Then each

user updates its action atn using gradient projection algorithm
according to

a
′k,t
n = ak,t−1

n + κ
(∂un(an,a

t−1
−n )

∂akn
−
∑
m̸=n

πk,t−1
mn

)
. (35)

and

atn = [a1,tn a2,tn · · · aK,t
n ] =

[
a

′1,t
n a

′2,t
n · · · a

′K,t
n

]∥·∥2

An

. (36)

in which the stepsize κ > 0. The following theorem provides
a sufficient condition under which gradient play will converge
monotonically provided that we choose small enough constant
stepsize κ.

Theorem 7: If ∀n, k,x,y ∈ A−n,

inf
x

∂2hk
n(x)

∂2x
> −∞, and

∥∥∥▽gkn(x)−▽gkn(y)
∥∥∥ ≤ L′∥∥x−y

∥∥,
(C7)

gradient play converges for a small enough stepsize κ.
Proof : This theorem can be proved by showing the gradient

of the objective function in (28) is Lipschitz continuous and
applying Proposition 3.4 in [23]. See Appendix E in [25] for
details. �

Remark 7: (Application of condition (C7)) A sufficient con-
dition that guarantees the convergence of distributed gradient
projection algorithm is the Lipschitz continuity of the gradient
of the objective function in (28). For example, in the power
control problem in multi-channel networks [16], we have
hk
n(x) = log2(α

k
n + Hk

nnx) and gkn(P−n) = log2(σ
k
n +∑

m̸=n H
k
mnP

k
m). For this configuration, we can immediately

verify that condition (C7) is satisfied. Therefore, gradient
play can be applied. Moreover, as in [16], if we can further
ensure that the problem in (28) is convex for some particular
utility functions, gradient play converges to the unique optimal
solution of (28) at which achieving KKT conditions implies
global optimality.

B. Jacobi Update

We consider another alternative strategy update mechanism
called Jacobi update [24]. In Jacobi update, every user adjusts
its action gradually towards the best response strategy. Specifi-
cally, the maximizer of problem (34) takes the following form

B
′k
n (a−n) =

{∂hk
n

∂x

}−1(
λn+νkn−ν

′k
n +

∑
m̸=n

πk
mn

)
−
∑
m̸=n

F k
mna

k
m,

(37)
in which λn, νkn, and ν

′k
n are the Lagrange multipliers that

satisfy complementary slackness in (30) and (31), and πk
mn is



defined in (32). In Jacobi update, at stage t, user n chooses
its action according to

ak,tn = ak,t−1
n + κ

[
B

′k
n (at−1

−n )− ak,t−1
n

]
, (38)

in which the stepsize κ ∈ (0, 1]. The following theorem estab-
lishes a sufficient convergence condition for Jacobi update.

Theorem 8: If ∀n, k,x,y ∈ A−n,

infx
∂2hk

n(x)
∂2x > −∞, supx

∂2hk
n(x)

∂2x < 0, and∥∥∥▽ gkn(x)−▽gkn(y)
∥∥∥ ≤ L′

∥∥x− y
∥∥, (C8)

Jacobi update converges if the stepsize κ is sufficiently small.
Proof : This can be proved using the descent lemma and the

mean value theorem. The details of the proof are provided in
Appendix F in [25]. �

Remark 8: (Relation between condition (C8) and the result
in [17]) Shi et al. considered the power allocation for multi-
carrier wireless networks with non-separable utilities. Specif-
ically, un(·) takes the form

un(P) = ri

(
K∑

k=1

log2

(
1 +

Hk
nnP

k
n

σk
n +

∑
m̸=n H

k
mnP

k
m

))
, (39)

in which ri(·) is an increasing and strictly concave function.
Since the utilities are non-separable, the distributed pricing
algorithm proposed in [17], which in fact belongs to Jacobi
update, requires only one user to update its action profile at
each stage while keeping the remaining users’ action fixed.
The condition in (C8) gives the convergence condition of the
same algorithm in ACSCG. We prove in Theorem 7 that, if the
utilities are separable, convergence can still be achieved even
if these users update their actions at the same time. Therefore,
we do not need an arbitrator to select the single user that
updates its action at each stage.

Remark 9: (Extension to general cases) As a matter of fact,
conditions (C7) and (C8) apply to a broader class of multi-
user interaction scenarios, including the general model defined
in (2). Specifically, as addressed in Remark 7, the Lipschitz
continuity of the gradient of

∑N
n=1 un(a) is sufficient to guar-

antee that gradient play with a small enough stepsize achieves
an operating point at which KKT conditions are satisfied. In
addition, we can use the same technique in Appendix F in
[25] to show the convergence of Jacobi update given that
supx

∂2hk
n(x)

∂2x < 0, ∀n, k, and the gradient of
∑N

n=1 un(a)
is Lipschitz continuous.

V. CONCLUSION

In this paper, we propose and investigate a new game model,
which we refer to as additively coupled sum constrained
games, in which each player is subject to a sum constraint
and its utility is additively impacted by the remaining users’
actions. The convergence properties of various generic dis-
tributed adjustment algorithms, including best response, gra-
dient play, and Jacobi update, have been investigated. The
sufficient conditions obtained in this paper generalize the
existing results developed in the multi-channel power control
problem and can be extended to other applications that belong
to ACSCG.
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