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Abstract— We propose a class of medium access control
(MAC) protocols that utilize users’ own transmission decisions
and feedback information from the past slots. We consider an
idealized slotted Aloha system and formulate the problem of
a protocol designer who cares about the total throughput, the
short-term fairness, and the complexity of protocols. A solution
to the protocol designer’s problem is provided with two users,
and an approximate solution with three or more users. We
use numerical methods to obtain optimal protocols that solve
the protocol designer’s problem, compare the total throughput
of optimal protocols with that of other protocols proposed
in the literature, and analyze a trade-off between throughput
and fairness. The results show that by utilizing information
obtained in the previous slot, users can achieve some degree of
coordination without explicit message passing, which leads to
high total throughput.

I. INTRODUCTION

In wireless communication networks, multiple users of-
ten share a common channel and contend for access. In
a scenario where transmissions of packets by more than
one user result in a collision, there is a need for medium
access control (MAC) protocols to coordinate transmissions
by users. In this paper, we consider an idealized slotted Aloha
system and propose a particular class of protocols that utilize
users’ own transmission decisions and feedback information
from the past slots. The proposed protocols allow users to
coordinate their access (at least partially) without explicit
message passing.

Early work on slotted Aloha focused on exponential
backoff (EB) protocols and analyzed the stability and perfor-
mance of EB protocols [1]–[4]. Recently, the framework of
game theory has been used to analyze slotted Aloha models
in which users determine their transmission probabilities [5]–
[8]. In [5], the strategy, or the decision rule, for a user is
simply its transmission probability used over time to attain
its desired throughput. In [6], the number of users contending
for the channel varies over time, and users know the number
of users currently in the system. The decision rule for a user
in [6] is its transmission probability as a function of the
number of users.

Altman et al. [7] assume that information on the number
of users in the system is unavailable to users and that newly
arrived packets are always transmitted. The decision rule is
the transmission probability for backlogged packets. Ma et al.
[8] define two states for a user, a free state and a backlogged
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state, and relax the assumption of [7] that newly arrived
packets are always transmitted. The decision rule for a user
in their model is two transmission probabilities used in each
state.

In a repeated game, a strategy for a player is a mapping
from the set of possible histories to the set of (mixed) actions
[9]. Using this idea, we can define a decision rule for a
user as a mapping from the set of possible local information
to the set of transmission probabilities. We assume that
users receive immediate feedback on the transmissions by
other users at the end of each slot. In each slot, a user
knows its own transmission decision and obtain feedback
information on others’ transmission decisions. Hence, the
local information of a user includes its own transmission
decisions and feedback information in the past.

Local information may include information obtained
through message exchanges or other devices. For example,
in token ring networks [10], users know whether they have
a token or not, and this information can be used to deter-
mine their transmission probabilities. Another example is a
correlation device as in [11]. With the presence of a correla-
tion device, users can adjust their transmission probabilities
depending on random signals generated by the correlation
device. In this paper, we preclude any kind of message pass-
ing other than users’ receiving feedback information on the
transmission decisions by other users. This assumption can
be justified by the distributed nature of wireless networks,
where communication schemes incur large overhead costs.
Another reason for making this assumption is that analysis
based on no message passing will provide a benchmark case
against which various schemes allowing message exchanges
can be compared.

The remainder of this paper is organized as follows. We
describe the considered slotted Aloha model in Section II
and formulate the problem of a protocol designer in Section
III. Section IV provides analytical results while Section V
analyzes the performance of the proposed protocol using
numerical methods. We conclude the paper in Section VI.

II. MODEL

We consider an idealized slotted Aloha system as in [8].
Users (pairs of transmitter-receiver nodes) share a commu-
nication channel though which they transmit packets. The
total number of users is N , and the set of users is denoted
by N = {1, . . . , N}. We assume that the number of users is
fixed over time and known to users.

Time is slotted, and slots are synchronized. We label slots
by t = 1, 2, . . .. Packets are of the same size, and each packet



requires one slot for transmission. A user always has a packet
to transmit and makes a decision on whether to transmit or
not in every slot [5] [8]. Hence, the set of actions available
to a user is A = {T, W}, where T stands for “transmit” and
W for “wait.” We denote the action of user i by ai ∈ A and
an action profile or outcome by a = (a1, . . . , aN ). The set
of outcomes is denoted by A , AN .

A packet is successfully transmitted if it is the only trans-
mission in the slot. If there is more than one transmission,
a collision occurs. If the transmission of a packet results
in a collision, it is retransmitted in some later slot until it
is successfully received. We assume that at the end of each
slot users obtain feedback information on whether there is no
transmission or at least one transmission by other users in the
slot. Let Z , {0, 1} be the set of feedback information for a
user and zi ∈ Z be the feedback information of user i. Then
zi = 0 if aj = W for all j ∈ N \ {i} and zi = 1 otherwise.
That is, each user receives binary feedback information on
the number of transmissions by other users. There are four
possible action-feedback pairs for a user: (W, 0), (W, 1),
(T, 0), and (T, 1).

We define the local information of user i in slot t as all
information that user i has at the beginning of slot t. Without
explicit message passing, it consists of the action-feedback
pairs of user i from slot 1 to slot t− 1. The m-period local
information of user i in slot t is given by

Lt
i = (at−m

i , zt−m
i ; at−m+1

i , zt−m+1
i ; . . . ; at−1

i , zt−1
i ), (1)

where we set (at
i, z

t
i) = (W, 0) for t ≤ 0 as a default. Let

Lm , (A × Z)m be the set of all possible m-period local
information, for m = 0, 1, . . .. A stationary decision rule for
user i based on m-period memory is defined to be a mapping

fi : Lm → [0, 1]. (2)

fi(Li) gives the transmission probability for user i when
user i has m-period local information Li ∈ Lm. We use
Fm to denote the set of stationary decision rules based on
m-period memory. The set of all stationary decision rules
based on finite memory is denoted by F , ∪∞m=0Fm.

We define a protocol as a decision rule profile f ,
(f1, . . . , fN ) ∈ FN . Given a protocol f , let mi be the
minimum length of memory required to implement the
decision rule fi. Then mi takes a value in N+ , {0, 1, . . .}.
We take the maximum of mi across users to obtain m∗(f) ,
max{m1, . . . ,mN}. Then m∗(f) is the minimum length
of memory required to implement the protocol f , and we
say that the protocol f is based on m∗(f)-period memory.
Intuitively, a protocol is simpler when it is based on shorter
memory, and thus we call m∗(f) the complexity level of the
protocol f .

III. PROBLEM FORMULATION

We approach the system problem from a protocol de-
signer’s perspective. That is, we consider the problem of
the protocol designer who prescribes decision rules in F
to users in order to achieve his objective. By requiring the
protocol designer to consider decision rules in F , we impose

stationarity on decision rules. This requirement is reasonable
in a distributed system where users do not maintain common
labels for slots. To implement stationary decision rules, it
suffices that the system is slotted and users know when slots
start. Moreover, stationary decision rules can be easily used
in an environment where users enter and leave the system
over time.

In this paper, we mainly consider protocols based on
one-period memory. Considering the large memory spaces
of computing devices, one may find that the restriction on
decision rules to be based only on one-period memory is
too restrictive. However, decision rules based on one-period
memory are easy to follow and robust to variations on mem-
ory and computation constraints. Suppose that the protocol
designer is uncertain about the memory and computation
capacities of individual users. If a failure to follow the
prescribed decision rule by a single user results in a total
breakdown of the system, then the protocol designer wants
to provide a simple protocol to ensure that every user can
follow it. Moreover, analysis with decision rules based on
one-period memory is meaningful in that the performance
of protocols based on one-period memory provides a lower
bound on that of more complicated protocols based on longer
memory.

A decision rule for user i based on one-period memory
can be expressed as fi : (A × Z) → [0, 1]. fi(ai, zi) is
the transmission probability of user i when it took action ai

and received feedback information zi in the previous slot.
Suppose that users follow a protocol f based on one-period
memory. Then a Markov model can be constructed where
the state space of the Markov chain is taken to be A. If f
is chosen so that the induced Markov chain is irreducible,
then there exists a unique stationary distribution π on A,
independent of the initial distribution [12]. The throughput
of user i is defined by

τi(f) , π(ai), (3)

where ai ∈ A is the outcome in which only user i transmits.
Total throughput is defined by

τ(f) ,
N∑

i=1

τi(f). (4)

We assume that protocols cannot be specialized for in-
dividual users due to the anonymity of users, and thus the
protocol designer is bound to prescribe the same decision rule
to all users. We partition the set of outcomes A into (N +1)
sets according to the number of transmissions in outcomes.
That is, we express A = A0 ∪ · · · ∪ AN where Ak is the
set of outcomes with k transmissions, for k = 0, 1, . . . , N .
When every user uses the same decision rule, we can take
the set of Markov states as {A0, . . . ,AN} instead of A.
For the moment, let us assume that the protocol designer’s
problem is to find a decision rule f in F1 that maximizes
one-step transition probabilities to A1, in which a successful
transmission occurs, when followed by every user.

First, suppose that the outcome in the previous slot is in
A0, i.e., the channel was idle. Then every user transmits with



probability f(W, 0). If every user uses the same transmission
probability, say p, then the probability of success is given by
Np(1−p)N−1, and this expression is maximized at p = 1/N .
Hence, we set f(W, 0) = 1/N to maximize the one-step
transition probability from A0 to A1.

Next, suppose that the outcome in the previous slot is in
A1, i.e., there was a successful transmission. Then one user
transmits with probability f(T, 0) while (N − 1) users with
f(W, 1). If we choose f(T, 0) = 1 and f(W, 1) = 0, then
a success is guaranteed in the current slot. However, this
allows an initially successful user to “capture” the channel
for all the subsequent slots. We assume that the protocol
designer wants to prevent this phenomenon and to bound
the expected number of slots with consecutive successes
from fairness considerations. This requirement leads to the
following constraint:

f(T, 0) ≤ 1− θ. (5)

Since 0 ≤ f(T, 0) ≤ 1, we require that 0 ≤ θ ≤ 1.
When (5) is imposed, the expected number of slots with
consecutive successes is bounded by 1/θ when θ > 0. We
call θ the short-term fairness parameter because as θ is
larger, a capture by a user lasts shorter on average.

Lastly, suppose that the outcome in the previous slot is
in A2, . . . ,AN , i.e., there was a collision. The transmission
probability that has not been specified is f(T, 1). With
transmission probabilities chosen so far, i.e., f(W, 0) = 1/N ,
f(W, 1) = 0, and f(T, 0) = 1−θ, a transition from a success
state to a collision state is not possible, and from an idle state,
A2 is most likely among A2, . . . ,AN . Hence, we choose
f(T, 1) to maximize the one-step transition probability from
A2 to A1. Since there are two users who transmit with
f(T, 1) while others wait, the one-step transition probability
is maximized at f(T, 1) = 1/2. The discussion so far pro-
vides an approximate solution to the problem of maximizing
one-step transition probabilities to a success state, which
we denote by f̃ where f̃(W, 0) = 1/N , f̃(W, 1) = 0,
f̃(T, 0) = 1− θ, and f̃(T, 1) = 1/2.

Fixing the short-term fairness parameter at θ and consid-
ering stationary decision rules based on one-period memory,
we can formulate the problem of the protocol designer who
seeks to maximize total throughput. The protocol designer’s
problem (PDP) is written as

(PDP(θ,1)) τ̂(θ) = max
f∈FN

1

τ(f) (6)

subject to

f1 = · · · = fN , (7)
fi(T, 0) ≤ 1− θ, for all i ∈ N . (8)

(7) is the symmetry constraint that the protocol designer
cannot differentiate users. We use f∗ to denote a decision
rule that solves (PDP(θ,1)) when used by every user.

Given a protocol f , we define

θi = 1− fi(T, 0), (9)

for i ∈ N . Then the expected number of slots with the
consecutive successes of user i is bounded by 1/θi. We take
the minimum of θi to obtain

θ∗(f) , min{θ1, . . . , θN}, (10)

and call θ∗(f) the short-term fairness level of the protocol
f . Then the protocol designer can evaluate a given protocol
f in three aspects:

1) Throughput τ∗(f) , (τ1(f), . . . , τN (f)),
2) Short-term fairness θ∗(f), and
3) Complexity m∗(f).

Criteria to evaluate throughput can include efficiency (i.e.,
total throughput) and equity (i.e., uniformity of individual
throughput).

To formulate the problem of the protocol designer at a
general level, we assume that the protocol designer has pref-
erences over throughput, short-term fairness, and complexity,
which are represented by a utility function U defined on
[0, 1]N × [0, 1] × N+. Then the protocol designer’s overall
problem (PDOP) can be written as

(PDOP) max
f∈FN

U(τ∗(f), θ∗(f),m∗(f)). (11)

In this formulation, (PDP(θ,1)) can be interpreted as a
reduced problem of (PDOP) when the protocol designer
desires to yield equal throughput for every user and has a
strong preference for the short-term fairness level of θ and
the complexity level of 1.

If users can manipulate a given decision rule to increase
their own throughput, then the protocol designer needs to
take the incentives of users into consideration. A protocol is
incentive compatible if no user can increase its throughput by
choosing a different decision rule than the one prescribed by
the protocol provided that other users follow the prescribed
decision rules. Formally, the incentive compatibility (IC)
constraint can be expressed as follows and can be incor-
porated as an additional constraint to the protocol designer’s
problems, (PDP(θ,1)) and (PDOP), when he faces users who
may disobey protocols.

(IC) τi(fi, f−i) ≥ τi(gi, f−i),
for any gi ∈ F , for all i ∈ N , (12)

where f−i , (f1, . . . , fi−1, fi+1, . . . , fN ).

IV. ANALYTICAL RESULTS

In this section, we provide analytical results on the optimal
protocol and the optimal value of (PDP(θ,1)). When there are
only two users, the protocol designer can find an incentive
compatible optimal protocol based on one-period memory
that achieves maximum total throughput 1.

Theorem 1: With N = 2, τ̂(θ) = 1 for any θ ∈ [0, 1].
Proof: Consider a decision rule f̂ ∈ F1 de-

fined by f̂(W, 0) = f̂(T, 1) = 1/2, f̂(W, 1) = 1,
and f̂(T, 0) = 0. Note that f̂ satisfies (8) for any
θ ∈ [0, 1]. The transition probability matrix on A =



{(W,W ), (W,T ), (T, W ), (T, T )} when both users use f̂ is
given by

P =




1
4

1
4

1
4

1
4

0 0 1 0
0 1 0 0
1
4

1
4

1
4

1
4


 . (13)

From the structure of P, we can see that (W,W ) and (T, T )
are transient states while (W,T ) and (T, W ) are ergodic
states [12]. Once an ergodic state is reached, (W,T ) and
(T,W ) alternate. Thus, τ1(f̂) = τ2(f̂) = 1/2 and τ(f̂) = 1
where f̂ , (f̂ , f̂). Since τ(f) ≤ 1 for all f , f̂ attains the
maximum of (PDP(θ,1)).

Theorem 2: With N = 2, f̂ is incentive compatible.
Proof: Suppose that user j uses f̂ . Since f̂(W, 1) = 1,

user i 6= j cannot have two consecutive successes. Hence,
τi(fi, f̂) ≤ 1/2 for any fi ∈ F . Since τi(f̂) = 1/2, it follows
that f̂ is incentive compatible.

Theorem 1 shows that channel sharing between two users
can be achieved without communication when they use the
decision rule f̂ . Initially, they contend with each other with
transmission probability 1/2. Once a user succeeds, they take
a turn by alternating between T and W . This perfect channel
sharing scheme is no longer possible with three or more
users. If three or more users use f̂ , then a success can last
only one slot because it will be followed by a collision
for sure, and as a result the system will be in a collision
state most of the time. Hence, with three or more users, the
approximate solution f̃ found in Section III is more relevant
than the optimal solution with two users, f̂ . The next theorem
provides a lower bound on the maximum value of (PDP(θ,1))
by deriving the expression for τ(f̃) where f̃ , (f̃ , . . . , f̃).

Theorem 3: Suppose θ > 0 in (8). Define

qk = CN
k (1/N)k(1− 1/N)N−k, (14)

for k = 0, . . . , N . Define recursively from k = N down to
2 by Hk(k) = 1 and

Hk′(k) =
Ck+1

k

2k+1 − 1
Hk′(k + 1) +

Ck+2
k

2k+2 − 1
Hk′(k + 2)

+ · · ·+ Ck′
k

2k′ − 1
Hk′(k′), (15)

for k′ = k + 1, . . . , N . Also, define

Gk =
2k

2k − 1

N∑

j=k

Hj(k)qj , (16)

for k = 2, . . . , N , and

G1(θ) =
1
θ

(
1− q0 −

N∑

k=2

Gk

2k

)
. (17)

Then

τ̂(θ) ≥ G1(θ)
1 + G1(θ) + G2 + · · ·+ GN

. (18)

If θ = 0, then τ̂(0) = 1.

Proof: The lower bound in the theorem is total throughput
attained at f̃ . Let P (k′|k) be the transition probability
from Ak to Ak′ when every user uses f̃ . The transition
probabilities are given by

P (k′|0) = qk′ for k′ = 0, . . . , N, (19)

P (k′|1) =





θ for k′ = 0
1− θ for k′ = 1
0 for k′ = 2, . . . , N,

(20)

P (k′|k) =

{
Ck

k′
2k for k′ = 1, . . . , k

0 for k′ = k + 1, . . . , N
, (21)

for k = 2, . . . , N.

If θ = 0, thenA1 is the unique ergodic state, and thus τ(f̃) =
1 implying τ̂(0) = 1. If θ > 0, then every state of the Markov
chain is positive-recurrent since P (0|k) > 0 for all k =
0, . . . , N and P (k′|0) > 0 for all k′ = 0, . . . , N . We denote
the unique stationary distribution by (πk)N

k=0 where πk is
the probability of Ak in steady state. Using the stationarity
condition π′k =

∑N
k=0 P (k′|k)πk for k = 0, . . . , N (one of

them redundant), we obtain πk = Gkπ0 for k = 1, . . . , N .
Imposing the probability condition

∑N
k=0 πk = 1, we get

π1 =
G1(θ)

1 + G1(θ) + G2 + · · ·+ GN
, (22)

which is total throughput at the approximate solution.
G2 through GN are independent of θ, and G1 is decreasing

in θ. This implies that the lower bound is decreasing in
the short-term fairness parameter θ, leading to a trade-off
between throughput and fairness. Since G1 → ∞ as θ →
0, total throughput can be made arbitrarily close to 1 by
choosing θ sufficiently small, and total throughput is 1 when
θ = 0, which allows the capture of the channel by a user for
an infinite number of slots.

V. NUMERICAL RESULTS
Since the objective function of (PDP(θ,1)) is derived from

the stationary distribution of a Markov chain, it is difficult
to express it analytically, and thus we rely on numerical
methods to compute f∗ for N ≥ 3. Table I and Fig. 1 show
optimal decision rules for (PDP(θ,1)) where θ = 0.1. We can
see that the approximate solution is quite close to the optimal
solution. As a result, the lower bounds found in Theorem 3
are tight as shown in Table II and Fig. 2.

Table II and Fig. 2 also make a comparison of total
throughput under different protocols. A two-state protocol
is proposed in [8] where users use different transmission
probabilities depending on whether they are in a free state
or in a backlogged state. The total throughput under η-
short-term fairness is given in (6) of [8]. We choose η =
1/θ = 10 so that the expected numbers of slots with
consecutive successes are the same with (8) and η-short-term
fairness. The total throughput of the two-state protocol can
be obtained by a decision rule based on one-period memory
ftwo where ftwo(T, 0) = 1 and ftwo(W, 0) = ftwo(W, 1) =
ftwo(T, 0) = 1 − N−1

√
1− 1

η . Since ftwo does not fully
utilize information from the previous slot, there is a reduction



TABLE I
OPTIMAL DECISION RULES FOR (PDP(0.1,1))

N f∗(W, 0) f∗(W, 1) f∗(T, 0) f∗(T, 1)

3 0.339 0 0.9 0.491
4 0.258 0 0.9 0.486
5 0.207 0 0.9 0.483
10 0.105 0 0.9 0.479
15 0.070 0 0.9 0.478
20 0.053 0 0.9 0.477
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Fig. 1. Optimal decision rules for (PDP(0.1,1))

in obtained total throughput compared to that obtained using
f∗. If users do not use information from the past at all,
i.e., m∗ = 0, then they transmit with the same transmission
probability in every slot. With (7), the probability of success
is maximized when users use fone ≡ 1/N . This yields
the total throughput of (1 − 1/N)N−1, which converges to
1/e ≈ 0.368 as N →∞.

Fig. 3 illustrates a trade-off between total throughput and
the short-term fairness parameter at f∗ and f̃ with N = 10.
A divergence between the two decision rules occurs for
θ > 0.5 because the structure of f∗ changes in that region
so that f∗(W, 1) > 0. With both decision rules, higher
total throughput can be achieved with a smaller short-term
fairness parameter. The key feature of protocols based on
one-period memory is their ability to correlate successful
users in the previous slot and in the current slot. The degree
of correlation is determined by θ. When θ is close to 1,
this correlation loses its force, and thus utilizing information
from the previous slot does not help to increase throughput.

VI. CONCLUSION

We have proposed a class of distributed MAC protocols
that can be implemented by users based on their local
information. Without explicit message passing, the local in-
formation of a user consists of its own transmission decisions
and feedback information on others’ transmission decisions
in the past. By utilizing one-period local information, users
can divide themselves into two groups unless all of them

TABLE II
COMPARISON OF TOTAL THROUGHPUT UNDER DIFFERENT PROTOCOLS

N f∗ f̃ ftwo fone

3 0.8200 0.8199 0.5808 0.4444
4 0.8140 0.8139 0.5541 0.4219
5 0.8105 0.8104 0.5391 0.4096
10 0.8040 0.8038 0.5116 0.3874
15 0.8020 0.8017 0.5030 0.3806
20 0.8009 0.8007 0.4988 0.3774
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Fig. 2. Total throughput under different protocols (fapprox = f̃ )
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Fig. 3. Trade-off between throughput and fairness with N = 10
(fapprox = f̃ )



took the same action in the previous slot. They can increase
the probability of successful transmission by choosing differ-
ent transmission probabilities depending on the group they
belong to. As shown in Section V, the utilization of this
information leads to high total throughput compared to the
case where no or limited information is used.

Our framework is general in that local information can
include any information that users have. For example, it can
contain information about channel conditions, the priorities
of packets, or the actions or characteristics of other users.
Therefore, the framework can be used to analyze more
complex scenarios in which local information contains more
than past transmission decisions and feedback information.
In the case where local information expands due to the
complications of the system, we can use the framework to
develop protocols that perform well facing a specific compli-
cation under consideration. If the amount of information in
local information increases because of message passing, then
the framework can be used to find a protocol that makes the
best use of additional information and to analyze the value
of additional information to the system and users.
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