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Abstract We have witnessed an explosion in wireless video traffic in recent years.
Video applications are bandwidth-intensive and delay-sensitive, and hence require
efficient utilization of spectrum resources. Born to utilize wireless spectrum more
efficiently, cognitive radio networks are promising candidates for deployment of
wireless video applications. In this chapter, we introduce our recent advances in
foresighted resource allocation mechanisms that enable multi-user wireless video
applications over cognitive radio networks. The introduced resource allocation
mechanisms are foresighted, in the sense that they optimize the long-term video
quality of the wireless users. Due to the temporal coupling of delay-sensitive video
applications, such foresighted mechanisms outperform mechanisms that maximize
the short-term video quality. Moreover, the introduced resource allocation mech-
anisms allow wireless users to optimize while learning the unknown dynamics in
the environment (e.g., incoming traffic, primary user activities). Finally, we intro-
duce variations of the mechanisms that are suitable for networks with self-interested
users. These mechanisms ensure efficient video resource allocation even when the
users are self-interested and aim to maximize their individual video quality. The
foresighted resource allocation mechanisms introduced in this chapter are built upon
our theoretical advances in multi-user Markov decision processes, reinforcement
learning, and dynamic mechanism design.
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1 Introduction

Video applications, such as video streaming, video conferencing, remote teaching,
surveillance, have become the major applications deployed over wireless networks.
Video applications are bandwidth-intensive and delay-sensitive, and hence require
efficient allocation of spectrum resources among the users, and efficient scheduling
of each user’s video packets based on its allocated resources.

One promising physical-layer technology to improve the spectrum efficiency is
cognitive radio. In cognitive radio, secondary users (SUs) can utilize the idle spec-
trum when primary users (PUs) are inactive. Due to the potential of high spectrum
efficiency, cognitive radio is a promising candidate for the physical-layer technol-
ogy of video applications. Although cognitive radio is promising, there are several
challenges in efficiently deploy video applications over cognitive radio networks.

First, video applications are delay-sensitive, namely the video packets have to
be received before strict deadlines for successful decoding. Therefore, video appli-
cations require not only high spectrum efficiency, but also efficient scheduling of
video packets.

In addition, there is interdependency across video packets, which makes the issue
of delay sensitivity more challenging. Specifically, the successful decoding of some
video packets may depend on the successful decoding of others. In other word, even
if a video packet is received before its deadline, it may not be decoded if some
packets that it depends on were not received by deadlines. This interdependency
results in temporal coupling of packet scheduling decisions. Therefore, we need
foresighted video packet scheduling that aims at maximizing the long-term video
quality, instead of instantaneous video quality.

Moreover, the delay sensitivity and interdependency mentioned above require not
only efficient packet scheduling, but also efficient allocation of spectrum resources.
More specifically, we need foresighted resource allocation among the users in the
network, in order to maximize the long-term video quality.

Furthmore, the unknown dynamic enviroment requires users to make resource
allocation and packet scheduling decisions while learning the unknown dynamics.
Here the unknown dynamics include incoming video traffic, the channel quality, and
the PU activities.

Finally, the users in cognitive radio networks are autonomous, and may aim to
maximize their own video quality (i.e., they are self-interested). It is more chal-
lenging to design efficient resource allocation mechanism for self-interested users,
because they may misreport their information (e.g., their video traffic and channel
quality). In this case, the resource allocation mechanism has to be strategy-proof.

In this chapter, we introduce our solutions to the aforementioned challenges in
multi-user wireless video transmission over cognitive radio networks. Specifically,
we introduce a framework to design foresighted resource allocation mechanisms and
packet scheduling algorithms [1]–[7]. The introduced resource allocation mecha-
nisms allow wireless users to optimize while learning the unknown dynamics in the
environment (e.g., incoming traffic, channel qualilty, primary user activities). We
also describe variations of the mechanisms that are suitable for self-interested users
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[1]–[5]. These mechanisms ensure efficient video resource allocation even when
the users are self-interested and aim to maximize their individual video quality. The
foresighted resource allocation mechanisms introduced in this chapter are built upon
our theoretical advances in multi-user Markov decision processes, reinforcement
learning, and dynamic mechanism design.

The rest of this chapter is organized as follows. We give a literature review in
Section 2. We introduce the system model in Section 3, and then formulate the
design problem in Section 4. We describe the introduced solutions in Section 5.
We also briefly describe the strategy-proof variations of the solutions in Section 6.
Finally, we conclude the chapter in Section 7.

2 Related Work

2.1 Related Works on Video Transmission

A plethora of recent works [1]–[16] propose distinct solutions to optimize the video
quality. Some works [8]–[14] assume that the users are myopic, namely they only
maximize their instantaneous video quality over a given time interval without con-
sidering the impact of their actions on the long-term video quality. They cast the
problem in a network utility maximization (NUM) framework to maximize the in-
stantaneous joint video quality of all the users, and apply the NUM framework re-
peatedly when the channel conditions or video traffic characteristics change. How-
ever, since the users are optimizing their transmission decisions myopically, their
long-term average performance is inferior to the performance achieved when the
users are foresighted [15]. Some of the works considering the foresighted decision
of users focus solely on a single foresighted user making sequential transmission de-
cisions (e.g. packet scheduling, retransmissions etc.) [15][16]. However, these single
user solutions do not discuss how to allocate resources among multiple users as well
as how this allocation is impacted by and impacts the foresighted scheduling deci-
sions of individual users. Static allocations of resources, which are often assumed
in the works studying the foresighted decisions of a single user, have been shown to
be suboptimal compared to the solutions that dynamically allocate resources among
multiple users [6].

In contrast, our introduced solutions, based on [1]–[7], make foresighted resource
allocation and packet scheduling decisions over multiple video users.

Table 1 Related works on video (the first two rows are works introduced in this chapter).

Users Foresighted Learning Strategy-Proof Optimal
[1]–[5] Multiple Yes Yes Yes No
[6][7] Multiple Yes Yes No Yes

[8]–[14] Multiple No No No No
[15][16] Single Yes Yes No No
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Table 1 summarizes the above discussions. Note that the optimality shown in the
last column of Table 1 indicates whether the solution is optimal for the long-term
network utility (i.e., the joint long-term video quality of all the users in the network).

2.2 Related Theoretical Frameworks

Single-user foresighted decision making in a dynamically changing environment
has been studied and formulated as Markov Decision Process (MDP). Foresighted
decision making in a dynamically changing environment can also be solved using
the Lyapunov optimization framework [22]. However, the Lyapunov optimization
framework is not able to make optimal decisions for video streaming since it disre-
gards specific interdependency and distortion impact of video traffic [23].

Table 2 Related theoretical frameworks (the first row is works introduced in this chapter).

Decision Foresighted Learning Optimalmakers
MU-MDP [6][7] Multiple Yes Yes Yes

MDP [15] Single Yes Yes No
Repeated NUM [14] Multiple No No No

Lyapunov Optimization [22] Single Yes Yes No

Table 2 summarizes the above discussions about existing theoretical frameworks.

3 General Model For Video Applications Over Cognitive Radio

We first present a general model for multi-user wireless video transmission in cog-
nitive radio networks. Then we give an example of a commonly-used model as in
[6][15][16] as an instantiation of our general model.

3.1 The General Model

We consider a cognitive radio network with a network manager indexed by 0,
and a set I of I wireless video users, indexed by i = 1, . . . , I. Time is slotted at
t = 0,1,2, . . .. In the rest of the paper, we will put the user index in the superscript
and the time index in the subscript of variables. The multi-user wireless video trans-
mission system is described by the following features.
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3.1.1 States

Each user i has a finite state space Si, from which a state si is realized and revealed to
user i at the beginning of each time slot. The state si may consist of several compo-
nents, such as the video traffic state and the channel state. An example of a simplified
video traffic state can be the types of video frames (I, P, or B frame) available for
transmission and the numbers of packets in each available video frame. Note that
the video traffic in our model can come from video sequences that are either en-
coded in real-time, or offline and stored in the memory before the transmission. An
example channel state can be the channel quality reported to the application layer by
the lower layers. The network manager has a finite state space S0 that describes the
status of the resource in the network. An example resource state can be the available
idle bandwidth.

3.1.2 Actions

At each state si, each user i chooses an action ai ∈ Ai(si). For example, an action
can be how many packets within each available video frame should be transmitted.
We allow the sets of actions taken under different states to be different, in order to
incorporate the minimum video quality requirements that will be discussed.

3.1.3 Payoffs

Each user i has a payoff function ui : Si×Ai→R. The payoff function ui is concave
in the action under any state. A typical payoff can be the distortion impact of the
transmitted packets minus the cost of energy consumption in transmission.

3.1.4 State Transition

Each user i’s state transition is Markovian, and can be denoted by pi(si′|si,ai) ∈
∆(Si), where ∆(Si) is the probability distribution over the set of states.

3.1.5 Resource Constraints

Given the status of the resource (i.e. the network manager’s state s0), we can write
the (linear) resource constraint as

f (s0,a1, . . . ,aI), f 0(s0)+∑
I
i=1 f i(s0) ·ai ≤ 0,

where f i(s0) is the coefficient under state s0. When ai is a vector, f i(s0) is a vector
of the appropriate length, and f i(s0) ·ai is the inner product of the two vectors.
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A variety of multi-user wireless video transmission systems can be modeled as
special cases of our general model. Next, we present a packet-level video transmis-
sion model as an example.

3.2 An Example Packet-Level Video Transmission Model

Packet-level video transmission models have been proposed in a variety of related
works, including [16]–[6]. In the following, we briefly describe the model based on
[16]–[6], and refer interested readers to [16]–[6] for more details.

We first consider a specific video user i, and hence drop the superscript before
we describe the resource constraints. The video source data is encoded using an
H.264 or MPEG video coder under a Group of Pictures (GOP) structure: the data is
encoded into a series of GOPs, indexed by g= 1,2, . . ., where one GOP consists of N
data units (DUs). Each DU n ∈ {1, . . . ,N} in GOP g, denoted DUg

n , is characterized
by its size lg

n ∈ N+ (i.e. the number of packets in it), distortion impact qg
n ∈ R+,

delay deadline dg
n ∈ N+, and dependency on the other DUs in the same GOP. The

dependency among the DUs in one GOP comes from encoding techniques such
as motion estimation/compensation. In general, if DUg

n depends on DUg
m, we have

dg
n ≥ dg

m and qg
n ≤ qg

m, namely DUg
m should be decoded before DUg

n and has a higher
distortion impact than DUg

n [15]. Note that in the case of scalable video coding, there
is no dependency among the DUs, and the following representation of the model can
be greatly simplified. We will keep the dependency for generality in our exposition.

Among the above characteristics, the distortion impact qg
n, delay deadline dg

n ,
and the dependency are deterministic and fixed for the same DUs across different
GOPs (e.g. qg

n = qg+1
n ) [15][6]. As in [6], the sizes of all the DUs are independent

random variables, and that the sizes of the nth DUs in different GOPs have the same
distribution.
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3.2.1 States

Each user’s state consists of the traffic state Tt and the channel state ht . We describe
the traffic state Tt first. At time slot t, as in [16][15][6], we assume that the wireless
user will only consider for transmission the DUs with delay deadlines in the range of
[t, t +W ), where W is referred to as the scheduling time window (STW). Following
the model in [15][6], at time slot t, we introduce context to represent the set of
DUs that are considered for transmission, i.e., whose delay deadlines are within the
range of [t, t+W ). We denote the context by Ct =

{
DUg

j |d
g
j ∈ [t, t +W )

}
. Since the

GOP structure is fixed, the transition from context Ct to Ct+1 is deterministic. An
illustration of the context is given in Fig. 1.

Given the current context Ct , we let xt,DU denote the number of packets in the
buffer associated with a DU in Ct . We denote the buffer state of the DUs in Ct by
xt = {xt,DU |DU ∈Ct}. The traffic state Tt at time slot t is then Tt = (Ct ,xt), where
the context Ct represents which DUs are available for transmission, and the buffer
state xt represents how many packets each available DU has left in the buffer .

Next we describe the channel state ht . At each time slot t, the wireless user expe-
riences a channel condition ht ∈H , where H is the finite set of possible channel
conditions. We assume that the wireless channel is slow-fading (i.e. remains the
same in one time slot), and that the channel condition ht can be modeled as a finite-
state Markov chain [25].

In summary, the state of a user at each time slot t is st = (Ct ,xt ,ht), which in-
cludes the current context, buffer state and channel state.

3.2.2 (Packet Scheduling) Actions

At each time slot t, the user decides how many packets should be transmitted from
each DU in the current context. The decision is represented by at(st) = {yt,DU |DU ∈
Ct ,yt,DU ∈ [0,xt,DU ]}, where yt,DU is the amount of packets transmitted from the DU.

3.2.3 Payoffs

As in [15], we consider the following instantaneous payoff at each time slot t:1

u(st ,at) = ∑DU∈Ct qDU yt,DU −β ·ρ (ht ,‖at‖1) , (1)

where the first term ∑DU∈Ct qDU yt,DU is the instantaneous video quality, namely
the distortion reduction obtained by transmitting the packets from the DUs in the
current context, and the second term β ·ρ (ht ,‖at‖1) represents the disutility of the

1 The payoff function can be easily extended within our framework to include additional features in
the model. For example, when there are packet loss, we can modify the first term to be the expected
distortion reduction given the packet loss rate, or modify the second term to consider the additional
energy consumption associated with packet retransmission.
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energy consumption by transmitting the packets. Since the packet scheduling action
at is a vector with nonnegative components, we have ‖at‖1 = ∑DU∈Ct yt,DU , namely
‖at‖1 is the total number of transmitted packets. As in [15], the energy consump-
tion function ρ(h,‖a‖1) is assumed to be convex in the total number of transmitted
packets ‖a‖1 given the channel condition h. An example of such a function can be
ρ(h,‖a‖1) = σ2(e2‖a‖1b− 1)/h, where b is the number of bits in one packet [24].
The payoff function is a tradeoff between the distortion reduction and the energy
consumption, where the relative importance of energy consumption compared to
distortion reduction is characterized by the tradeoff parameter β > 0. In the simula-
tion, we will set different values for β to illustrate the tradeoff between the distortion
reduction and energy consumption.

3.2.4 The Resource Constraint

Suppose that the users access the channels in a FDMA (frequency-division multiple
access) manner. The total bandwidth B is shared by the users. We assume that each
user i uses adaptive modulation and coding (AMC) based on its channel condition.
In other words, each user i chooses a data rate ri

t under the channel state hi
t . Note

that the rate selection is done by the physical layer and is not a decision variable in
our framework. Then as in [?][8], we have the following resource constraint:

∑
I
i=1
‖ai

t‖1b
ri
t (h

i
t )
≤ B, (2)

where ‖a
i
t‖1·b

ri
t (h

i
t )

is the bandwidth needed for transmitting the amount ‖ai
t‖1 · b of bits

given the data rate ri
t(h

i
t).

In this model, the network manager’s state s0 is then the collection of channel
states, namely s0 = (h1, . . . ,hI). The information about the channel states is fed
back from the users to the network manager. We can write the constraint compactly
as the linear constraint f (s0

t ,a
1
t , . . . ,a

N
t ) ≤ 0 with f i(s0

t ) =
b

ri
t (h

i
t )
, i = 1, . . . , I and

f 0(s0
t ) =−B.

4 The Design Problem

Each user makes decisions based on its state st . Hence, each user i’s strategy can be
defined as a mapping π i : Si→∪siAi(si), where Ai(si) is the set of actions available
under state si. We allow the set of available actions to depend on the state, in order
to capture the minimum video quality guarantee. For example, at any time, user i
has a minimum distortion impact reduction requirement Di, formulated as

Ai(si
t) =

{
ai

t : ∑DU∈Ci
t
qDU · yi

t,DU ≥ Di
}
.
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The users aim to maximize their expected long-term payoff. Given its initial state
si

0, each user i’s strategy π i induce a probability distribution over the sequences of
states si

1,s
i
2, . . ., and hence a probability distribution over the sequences of instanta-

neous payoffs ui
0,u

i
1, . . .. Taking expectation with respect to the sequences of pay-

offs, we have user i’s long-term payoff given the initial state as

U i(π i|si
0) = E

{
(1−δ )∑

∞
t=0
(
δ t ·ui

t
)}

, (3)

where δ ∈ [0,1) is the discount factor.
The design problem can be formulated as

maxπ1,...,πI ∑s1
0,...,s

I
0

∑
I
i=1 U i(π i|si

0) (4)
s.t. minimum video quality guarantee :

π
i(si) ∈ Ai(si), ∀i,si,

resource constraint :
f (s0,π1(s1), . . . ,π I(sI))≤ 0, ∀s0.

Note that the design problem (4) is a weakly-coupled MU-MDP as defined by [26].
It is a MU-MDP because there are multiple users making foresighted decisions. The
MU-MDP is coupled, because the users influence each other through the resource
constraints (namely the choice of one user’s action depends on the choices of the
other users). However, it is weakly-coupled, because the coupling is through the
resource constraints only, and because one user’s instantaneous payoff ui(si,ai) is
not affected by the other users’ actions a j. It is this weak coupling that enables us
to decompose the multi-user problem into multiple single-user problems through
prices. Such a decomposition of weakly-coupled MU-MDPs has been studied in
a general setting [26] and in wireless video transmission [6], both adopting a dual
decomposition approach based on uniform price (i.e. the same Lagrangian multiplier
for the resource constraints under all the states).

Note also that we sum up the network utility ∑
I
i=1 U i(π i|si

0) under all the ini-
tial states (s1

0, . . . ,s
I
0). This can be interpreted as the expected network utility when

the initial state is uniformly distributed. The optimal stationary strategy profile that
maximizes this expected network utility will also maximize the network utility given
any initial state.

The design problem (4) is very challenging, and has never been solved optimally.
To better understand this, let us assume that a central controller would exist which
knows the complete information of the system (i.e. the states, the state transitions,
the payoff functions) at each time step. Then, this central controller can solve the
above problem (4) as a centralized single-user MDP (e.g. using well-known Value
Iteration or Policy Iteration methods) and obtain the solution to the design problem
πππ? and the optimal value function U?. However, the multi-user wireless video sys-
tem we discussed is inherently informationally-decentralized and there is no entity
in the network that possesses the complete information. Moreover, the computa-
tional complexity of solving (4) by a single entity is prohibitively high. Hence, our
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goal is to develop an optimal decentralized algorithm that converges to the optimal
solution.

5 Optimal Foresighted Video Transmission

In this section, we show how to determine the optimal foresighted video transmis-
sion policies. We propose an algorithm that allows each entity to make decisions
based on its local information and the limited information exchange between the BS
and the users. Specifically, in each time slot, the BS sends resource prices to each
user, and the users send their total numbers of packets to transmit to the BS. The
BS keeps updating the resource prices based on the resource usage by the users, and
obtains the optimal resource prices based on which the users’ optimal individual
decisions achieve the optimal network utility.

5.1 Decoupling of The Users’ Decision Problems

Each user aims to maximize its own long-term payoff U i(π i|si
0) subject to the con-

straints. Specifically, given the other users’ strategies πππ−i =(π1, . . . ,π i−1,π i+1, . . . ,π I)
and states sss−i = (s1, . . . ,si−1,si+1, . . . ,sI), each user i solve the following long-term
payoff maximization problem:

π
i = argmax

π̃ i
Ui(π̃

i|si
0) (5)

s.t. π̃
i(si) ∈ Ai(si), ∀si,

f (s0, π̃ i(si),πππ−i(sss−i))≤ 0.

Assuming that the user knows all the information (i.e. the other users’ strategies πππ−i

and states sss−i), user i’s optimal value function should satisfy the following:

V (si) =max
ai∈Ai(si)

(1−δ )ui(si,ai)+δ ∑
si′

pi(si′|si,ai)V (si′)

s.t. f (s0,ai,πππ−i(sss−i))≤ 0. (6)

Note that the above equations would be the Bellman equation, if user i knew the
other users’ strategies πππ−i and states sss−i and the BS’s state s0 (i.e. the channel
states of all the users). However, such information is never known to a particular
user. Without such information, one user cannot solve the decision problem above
because the resource constraint contains unknown variables. Hence, we need to sep-
arate the influence of the other users’ decisions from each user’s decision problem.

One way to decouple the interaction among the users is to remove the resource
constraint and add it as a penalty to the objective function. Denote the Lagrangian
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multiplier (i.e. the “price”) associated with the constraint under state s0 as λ 0(s0).
Then the penalty at state s0 is

−λ 0(s0) · f (s0,a1, . . . ,aI) =−λ 0(s0) ·∑I
i=1 f i(s0) ·ai.

Since the term−λ 0(s0) ·∑ j 6=i f j(s0) ·a j is a constant for user i, we only need to add
−λ 0(s0) · f i(s0) ·ai to each user i’s objective function. We define λ i(s0) , λ 0(s0) ·
f i(s0). Then we can rewrite user i’s decision problem as

Ṽ λ i(s0)(si) = max
ai∈Ai(si)

(1−δ )
[
ui(si,ai)−λ

i(s0) ·ai]

+δ ·∑s′i

[
pi(si′|si,ai)Ṽ λ i(s0)(si′)

]
. (7)

By contrasting (7) with (6), we can see that given the price λ i, each user can make
decisions based only on its local information since the resource constraint is elimi-
nated. Note, importantly, that the above decision problem (7) for each user i is dif-
ferent from that in [6] with uniform price. This can be seen from the term λ i(s0) ·ai

in (7), where the price λ i(s0) is user-specific and depends on the state, while the uni-
form price in [6] is a constant λ . The decision problem (7) is also different from the
subproblem resulting from dual decomposition in NUM, because it is a foresighted
optimization problem that aims to maximize the long-term payoff. This requires a
different method to calculate the optimal Lagrangian multiplier λ i(s0) than that in
NUM.

5.2 Optimal Decentralized Video Transmission Strategy

For the general model described in Section 3-A, we propose an algorithm used by
the BS to iteratively update the prices and by the users to update their optimal strate-
gies. The algorithm will converge to the optimal prices and the optimal strategy pro-
file that achieves the minimum total system payoff U?. The algorithm is described
in Table 3.

Theorem 1. The algorithm in Table 3 converges to the optimal strategy profile,
namely

limt,k→∞

∣∣∣∑s1
t ,...,s

I
t
∑

I
i=1 Ui(π

i,λ i
k |si

t)−U?
∣∣∣= 0 .

Proof. See the appendix in [7].

We illustrate the the BS’s and users’ updates and their information exchange
in one time slot in Fig. 2. At the beginning of each time slot t, the BS and the
users exchange information to compute the optimal resource price and the optimal
actions to take. Specifically, in each iteration k, the BS updates the resource price
λ 0

k . Then based on the user-specific resource price λ i
k, each user i solves for the
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optimal individual strategy π
i,λ i

k , and sends the BS its resource request f i ·π i,λ i
k(si

t).
Then the BS updates the prices based on the users’ resource requests using the
stochastic subgradient method, which can be performed easily. The difference from
the dual decomposition in NUM is that each user’s decision problem in our work
is a foresighted optimization problem aiming to maximize the long-term, instead of
instantaneous, payoff. Our algorithm is also different from the algorithm in [6] in
that we have different prices under different states.

From Fig. 2, we can clearly see what information (namely resource prices λ 0
k and

resource requests f i ·π i,λ i
k(si

t)) is exchanged. The amount of information exchange
is small (O(I)), compared to the amount of information required by each user to
solve the decision problem (6) directly (∏ j 6=i |Si| states plus the strategies πππ−i). In
other words, the algorithm enables the entities to exchange a small amount (O(I))
of information and reach the optimal video transmission strategy that achieves the
same performance as when each entity knows the complete information (i.e. the
states and the strategies of all the entities) about the system.

Table 3 Distributed algorithm to compute the optimal strategy at time t.

Input: Performance loss tolerance ε

Initialization: Set k = 0, λ 0
k = 0.

Each user i observes si
t , the BS observes s0

t
repeat

Each user i solves the decoupled decision problem (7) to obtain π
i,λ i

k

Each user i submits its resource request f i(s0
t ) ·π i,λ i

k (si
t)

The BS updates the prices (stochastic subgradient update):
λ i

k+1(s
0
t ) = λ i

k(s
0
t )+

1
k+1 f (s0

t ,π
1,λ 1

k (s1
t ), · · · ,π I,λ I

k (sI
t ))

until ‖λ i
k+1(s

0
t )−λ i

k(s
0
t )‖ ≤ ε

Output: optimal price λ 0
k , optimal strategies {π i,λ i

k}I
i=1

5.3 Optimal Packet Scheduling

In the previous subsection, we propose an algorithm of optimal foresighted resource
allocation and packet scheduling for the general video transmission model described
in Section 3-A. In the algorithm, each user’s packet scheduling decision is obtained
by solving the Bellman equation (7) (see Table 3). The Bellman equation (7) can be
solved by a variety of standard techniques such as value iteration. However, the com-
putational complexity of directly applying value iteration may be high, because each
user’s state contains the information of all DUs and thus each user’s state space can
be very large. In the following, we show that for the specific model described in Sec-
tion 3-B, we can greatly simplify the packet scheduling decision problem. The key
simplification comes from the decomposition of each user’s packet scheduling prob-
lem with multiple DUs into multiple packet scheduling problems with single DU.
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In this way, we can greatly reduce the number of states in each single-DU packet
scheduling problem, such that the total complexity of packet scheduling grows lin-
early, instead of exponentially without decomposition, with the number of DUs.
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BS updates the price

(stochastic subgradient 

update)

t+1

BS User i
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Table III:

Fig. 2 Illustration of the interaction between the BS and user i (i.e. their decision making and
information exchange) in one period.

The decomposition closely follows the decomposition of multiple-DU packet
scheduling problems proposed in [15]. The only difference is that the decision prob-
lem (7) in our work has an additional term −λ i(s0) ·ai due to the price, while such
a term does not exist in [15] because the single-user packet scheduling problem is
considered in [15].

Lemma 1 (Structural Result). Suppose DU1 ∈ Ct and DU2 ∈ Ct . If DU2 depends
on DU1, we should schedule the packets of DU1 before scheduling the packets of
DU2.

Although Lemma 1 is straightforward, it greatly simplifies the scheduling prob-
lem because we can now take advantage of the partial ordering of the DUs. However,
this still does not solve the scheduling decision for the DUs that are not dependent
on each other. Next, we provides the algorithm of optimal packet scheduling in Ta-
ble 4. The algorithm decomposes the multiple-DU packet scheduling problem into
a sequence of single-DU packet scheduling problems, and determines how many
packets to transmit for each DU sequentially. This greatly reduces the total com-
putational complexity (which is linear in the number of DUs) compared to solving
the multiple-DU packet scheduling problem directly (in which the number of states
grows exponentially withe number of DUs). The algorithm is similar to [15, Algo-
rithm 2]. The only difference is the term −λ i(s0) ·ai.
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5.4 Learning Unknown Dynamics

In practice, each entity may not know the dynamics of its own states (i.e., its own
state transition probabilities) or even the set of its own states. When the state dynam-
ics are not known a priori, each entity cannot solve their decision problems using
the distributed algorithm in Table 3. In this case, we can adapt the online learning al-
gorithm based on post-decision state (PDS) in [15], which was originally proposed
for single-user wireless video transmission, to the considered deployment scenario.

The main idea of the PDS-based online learning is to learn the post-decision
value function, instead of the value function. Each user i’s post-decision value func-
tion is defined as Ũ i(x̃i, h̃i), where (x̃i, h̃i) is the post-decision state. The difference
from the normal state is that the PDS (x̃i, h̃i) describes the status of the system after
the scheduling action is made but before the DUs in the next period arrive. Hence,
the relationship between the PDS and the normal state is

x̃i = xi−ai, h̃i = hi.

Then the post-decision value function can be expressed in terms of the value func-
tion as follows:

Ũ i(x̃i, h̃i) = ∑
xi′,hi′

pi(xi′,hi′|x̃i +ai, h̃i) ·Ṽ i(xi′, h̃i).

In PDS-based online learning, the normal value function and the post-decision value
function are updated in the following way:

V i
k+1(x

i
k,h

i
k) = max

ai
(1−δ ) ·ui(xi

k,h
i
k,a

i)

+ δ ·U i
k(x

i
k +(ai− li

k),h
i
k),

U i
k+1(x

i
k,h

i
k) = (1− 1

k
)U i

k(x
i
k,h

i
k)

+
1
k
·V i

k(x
i
k− (ai− li

k),h
i
k).

We can see that the above updates do not require any knowledge about the state dy-
namics. In particular, we propose the decomposed optimal packet scheduling with
PDS-based learning in Table 5. Note that the difference between the learning algo-
rithm in Table 5 with the algorithm assuming statistic knowledge in Table 4 is that
we use the post-decision state value function instead of the normal value function.
It is proved in [15] that the PDS-based online learning will converge to the optimal
value function. Hence, the distributed packet scheduling and resource allocation so-
lution in Table 3 can be modified by letting each user perform the packet scheduling
using the PDS-based learning in Table 5.
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Table 4 The optimal packet scheduling algorithm.

Input: Directed acyclic graph given the current context: DAG(Ct)

Initialization: Set DAG1 = DAG(Ct).
For k = 1, . . . , |Ct |

DUk = arg max
DU∈root(DAGk)

max
0≤y≤xt,DU

(1−δ )
[
qDU · y−λ

i
k(s

0) · y
]

+ δ ·∑si′
[

pi(si′|si,a f ,t)Ṽ i,λ i,(k)(s0)(si′)
]

y∗t,DUk
= arg max

0≤y≤xt,DUk

(1−δ )
[
qDUk · y−λ

i
k(s

0) · y
]

+ δ ·∑si′
[

pi(si′|si,a f ,t)Ṽ i,λ i,(k)(s0)(si′)
]

DAGk+1 = DAGk \{DUk}
End For

Table 5 The optimal decomposed packet scheduling algorithm with PDS-based learning.
Input: Directed acyclic graph given the current context: DAG(Ct )

Initialization: Set DAG1 = DAG(Ct ).
For k = 1, . . . , |Ct |

DUk = arg max
DU∈root(DAGk )

max
0≤y≤xt,DU

(1−δ )
[
qDU · y−λ

i
k(s

0) · y
]

+ δ ·UDU (Ct ,xt,DU − y,ht )

y∗t,DUk
= argmax0≤y≤xt,DU (1−δ )

[
qDU · y−λ i

k(s
0) · y

]

+ δ ·UDU (Ct ,xt,DU − y,ht )

DAGk+1 = DAGk \{DUk}
End For

6 Strategy-Proof Resource Allocation Mechanisms

When the users are self-interested, they may not follow the solutions introduced
in Section 5. In particular, they may not be truthful in the message exchange with
the network manager. There are several ways of designing strategy-proof resource
allocation mechanisms, based on pricing [3] and mechanism design [1]–[5]. In this
section, we describe a representative framework based on auctions [4][5].

The auction-based resource allocation mechanism is illustrated in Fig. 3. The
basic procedure at each time slot is described as follows:

1. The network manager announces the total amount of available resources (e.g.,
state s0).

2. The SUs submit bids of how much resources they are willing to get.
3. Based on SUs’ bids, the network manager determines the resource allocation and

the payments required from SUs.
4. Based on the allocated resources, the SUs schedule their video packets.

As we can see, most elements (e.g., states, rewards) in auction-based mechanisms
are the same as in the general model in Section 3. Here we list some key features of
the auction-based mechanism.

• In the auction-based mechanism, the SUs’ actions consist of two types of actions,
internal actions and external actions. The internal actions, denoted by bt

i in Fig. 3,
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are the packet scheduling actions described in Section 3. The external actions are
unique in the auction-based mechanism. Specifically, the external action is the
amount of resources each SU wants to get (i.e., their bids).

• In the auction-based mechanism, the network manager directly allocates the re-
sources to the SUs and announces the payments required from the SUs. This
is different from the mechanism in Section 3, where the network manager an-
nounces the prices and the SUs determine the resource allocation based on the
prices.

1906 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 4, MAY 2009

Fig. 1. Conceptual overview of the multi-SU interaction in the SN.

The polling policy is only changed at the start of every time
slot. For simplicity, we assume that each SU can access a
single channel, and that each channel can be accessed by
a single SU within the time slot. The SUs can switch the
channels only when crossing time slots. Note that this simple
medium-access model used for illustration in this paper can
easily be extended to more sophisticated models [10], where
each SU can simultaneously access multiple channels or the
channels are being shared by multiple SUs, etc. When using
this time-division channel access, we assume that the wireless
users deploy constant transmission power and experience no
interference. Furthermore, we assume that the wireless users
move slowly, and thus, their experienced channel conditions
slowly change.

During each time slot, an SU needs to first determine how to
compete with the other SUs for the time-varying TxOps. This
represents its external actions, since they determine the inter-
action between this SU and the other SUs, and the amount of
resources allocated to that SU. The external actions at time slot t
are denoted by at

i ∈ Ai, where Ai is the set of possible external
actions available to SU i. Based on the allocated resources,
the SU determines how to transmit its traffic (application layer
data) by selecting the various strategies at different layers of
the open systems interconnection (OSI) stack (e.g., through
cross-layer adaptation [12]). These actions are referred to as
internal actions, since they only determine the SU’s utility
at the current time. The internal actions at time slot t are
denoted by bt

i ∈ Bi, where Bi is the set of possible internal
actions available to SU i. In this paper, we propose an auction
mechanism deployed in the CSM. Hence, the external action at

i

of SU i is the bid it submits to CSM. The auction mechanism
will be detailed in Section III. The environment experienced
by an SU i can be characterized by its current “state” st

i ∈ Si,
which will be discussed in Section IV. At each time slot t, SU
i generates the external action at

i to compete for the TxOps yt.
The competition result is ϑt

i, based on which SU i performs its
internal action bt

i and obtains the reward rt
i at this time slot.

After packet transmission, SU i transits to the next state st+1
i ∈

Si. The conceptual overview of the multi-SU interactions
in the repeated auctions is illustrated in Fig. 1. The repeated

competition among the SUs can be modeled as a stochastic
game [16], [22]. The time slot corresponds to the term “stage,”
which is commonly used in stochastic games. In the remainder
of this paper, we interchangeably use the terms “time slot” and
“stage.”

We define the stochastic game for SN resource allocation as
⟨⟨Si, Ai, Bi, Oi, qi, ri⟩M

i=1,Y⟩, where each SU i is associated
with a tuple ⟨Si, Ai, Bi, Oi, qi, ri⟩. Specifically, we have the
following.

1) Y is a finite set of possible TxOps available for SUs.
In this paper, Y = {0, 1}N , and yt ∈ Y is the avail-
able TxOps at stage t, which is common information
for SUs.

2) Si is a finite local state space of SU i. We let S :=∏N
k=1 Sk be the global state space of all SUs and

S−i :=
∏

k ̸=i Sk be the global state space of SUs other
than i. At stage t, the global state is denoted by st =
(st

1, . . . , s
t
M ) = (st

i, s
t
−i), where −i represents all the

SUs other than i.
3) Ai is a finite set of external actions performed by SU i

to compete for the available TxOps. The external action
vector at stage t for all SUs will be at = (at

1, . . . , a
t
M ).

4) Bi is a finite set of internal actions performed by SU i to
determine the packet transmission.

5) Oi is a finite set of possible output from multi-SU com-
petition. In this paper, the output ϑt

i ∈ Oi is the auction
result computed by the CSM for SU i at stage t. We will
give the specific form of the output in Section III.

6) qi is the state transition probability for SU i. Thus,
qi(s

t+1
i , yt+1|st

i, y
t, ϑt

i, b
t
i) is the probability that the state

of SU i transits from st
i to st+1

i and TxOp transits from
yt to yt+1 if the competition output is ϑt

i and the internal
action is bt

i. The reason that the transition probability
includes the common TxOp yt is because the channel
condition transition of SU i depends on the available
TxOp.

7) ri is the stage reward (immediate reward) received by SU
i, where ri : (Si, Oi, Bi) &→ R. It should be noted that
the reward function ri depends on the competition output

Fig. 3 Illustration of strategy-proof resource allocation mechanism based on auctions.

We refer interested readers to [4][5] for detailed descriptions and theoretical re-
sults of the auction-based mechanisms.

7 Conclusion

In this chapter, we introduce the optimal foresighted resource allocation and packet
scheduling for multi-user wireless video transmission over cognitive radio networks.
The introduced solution achieves the optimal long-term video quality subject to
each user’s minimum video quality guarantee, by dynamically allocating resources
among the users and dynamically scheduling the users’ packets while taking into
account the dynamics of the video traffic and channel states. We develop a low-
complexity algorithm that can be implemented by the network manager and the
users in an informationally-decentralized manner and converges to the optimal solu-
tion. We also introduce strategy-proof variations of our solutions for self-interested
users.
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