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Abstract

We consider the problem of optimizing stream mining applications that are constructed as tree
topologies of classifiers and deployed on a set of resource constrained and distributed processing
nodes (or sensors). The optimization involves selecting appropriate false-alarm detection trade-
offs (operating points) for each classifier to minimize an end-to-end misclassification penalty,
while satisfying resource constraints. We design distributed solutions, by defining tree configu-
ration games, where individual classifiers configure themselves to maximize an appropriate local
utility. We define the local utility functions and determine the information that needs to be ex-
changed across classifiers in order to design the distributed solutions. We analytically show that
there is a unique pure strategy Nash equilibrium in operating points, which guarantees conver-
gence of the proposed approach. We develop both myopic strategy, where the utility is purely
local to the current classifier, and foresighted strategy, where the utility includes impact of clas-
sifier’s actions on successive classifiers. We analytically show that actions determined based
on foresighted strategies improve the end-to-end performance of the classifier tree, by deriv-
ing an associated probability bound. We also investigate the impact of resource constraints on
the classifier action selections for each strategy, and the corresponding application performance.
We propose a learning-based approach, which enables each classifier to effectively adapt to the
dynamic changes of resource constraints. We evaluate the performance of our solutions on an
application for sports scene classification. We show that foresighted strategies result in better
performance than myopic strategies in both resource unconstrained and resource constrained
scenarios, and asymptotically approach the centralized optimal solution. We also show that
the proposed distributed solutions outperform the centralized solution based on the Sequential
Quadratic Programming on average in resource unconstrained scenarios.
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1. Introduction

There are an increasing number of applications that require processing and classification of
continuous, high volume data streams. These include photo and video streaming services, online
analysis of financial data streams, real-time manufacturing process control, search engines, spam
filters, security, and medical services [1, 2, 3, 4, 5], etc. These applications often consists of pro-
cessing topologies of distributed operators (or sensors) [6, 7, 8, 9, 10] deployed on large-scale
stream mining systems in an ad hoc manner [9, 11, 12, 13, 14]. Specifically, many stream min-
ing applications implement topologies (ensembles such as trees or cascades) of low-complexity
binary classifier node sensors to hierarchically filter the data streams and jointly accomplish the
task of complex classification [2, 15]. Using such tree topology of classifiers, data of disinter-
est as well as low confidence data can be filtered out (discarded), thereby potentially increasing
end-to-end accuracy, and decreasing processing load on downstream classifiers.

Stream mining applications pose several interesting research challenges. These include the
optimal construction and training of such topologies, as well as configuration and management
of individual classifiers to maximize end-to-end performance – especially under dynamically
varying resource constraints and data characteristics. In this paper, we focus on the classifier
configuration problem for tree topologies, i.e., determining an operating point from Detection
Error Tradeoff (DET) curves for each binary classifier in the tree, in order to maximize the end-
to-end classification performance [16]. In the considered tree topologies with binary classifiers,
individual classifiers can operate at different performance levels by selecting a tradeoff between
probability of detection and probability of false alarm, i.e., operating point. For example, oper-
ating points can be selected by determining decision thresholds for likelihood ratio tests or for
support vector machine (SVM) scores [3, 17], etc. Prior approaches model classifier tree config-
uration as an optimization problem and use centralized techniques such as Sequential Quadratic
Programming (SQP) [16] to solve it. Such approaches require centralized control of all the clas-
sifiers, and the corresponding information and data. Hence, they suffer disadvantages in terms
of having a single central point of control and associated failure, issues with scaling and adapta-
tion as the topology grows, and not allowing large scale applications with capabilities distributed
across multiple proprietary entities.

The main motivation of this work is to provide an analytical model to investigate the inter-
action among the classifiers in a stream mining application, and to design completely distributed
solutions that can stabilize the application by enabling each classifier to adhere its selected op-
erating point. Due to the informationally distributed nature, each classifier may not know how
many classifiers are present or connected to it, or it may have only limited information about the
operating points, objective functions (i.e., utility functions), available resources, etc., of the other
classifiers. In this case, each classifier can decide an operating point that maximizes its local
objective (i.e., local utility) determined based on limited available information. To capture this
situation, we define a game-theoretic model, which is referred to as a tree configuration game.
The tree configuration game is a class of non-cooperative sequential game [18], and it enables in-
dividual classifiers to find an equilibrium that achieves a desirable end-to-end application utility.
We design an appropriate local utility function based on the end-to-end misclassification penalty,
and minimal amount of local information exchange across classifiers. We then describe how in-
dividual classifiers can select an optimal action to maximize their local utilities. We analytically
show that there is a unique pure strategy Nash equilibrium in selected actions for this game, and
evaluate the application performance at this equilibrium.

In the case where additional information at one or more classifiers is available, we show that
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using the information also lead to another unique pure strategy Nash equilibrium, which can
further improve the end-to-end application performance. Specifically, if a classifier has access
to information about some of its successive classifiers (e.g., available actions, local utility func-
tions, etc.), it can select an action that maximizes its coalition utility. The coalition of a classifier
includes the successive classifiers for which information is available to the classifier. This ac-
tion selection strategy is referred to as foresighted. This is unlike the myopic strategy, where a
classifier selects actions to maximize its own local utility without considering the impact of its
action selections on the other classifiers. We show that a foresighted strategy can outperform the
myopic strategy, and analytically derive an associated probability bound on the performance.

We also consider the impact of resource constraints on the designed solutions, i.e., action
selections for myopic and foresighted strategies. We show analytically that the optimal myopic
actions do not change in the presence of resource constraints, although we may need to use load
shedding to satisfy the constraints1. In contrast, the optimal foresighted actions are influenced by
both the actions of other classifiers and system resource division policies. We propose a learning
based approach, where a foresighted classifier iteratively estimates the impact of its actions on
the coalition utility without requiring additional information exchange, and uses the learning to
dynamically select its optimal action.

We present simulation results on an application for hierarchical semantic concept detection
in sports images, and evaluate the performance against prior centralized approaches in [16]. We
examine the impact of varying misclassification cost coefficients as well as granularity of the
decision space (i.e., the available quantized DET curve per classifier) under both resource con-
strained and unconstrained scenarios. We demonstrate that the foresighted strategy outperforms
the myopic strategy, and also show that the foresighted strategies lead to utility that approaches
the centralized optimal solution, as the coalition size and the number of actions increase. An
actual implementation of the proposed myopic strategy based on IBM System S processing core
middleware [7] was demonstrated in [22].

This paper is organized as follows. In Section 2, we introduce the model for individual clas-
sifiers and classifier trees. In Section 3, we introduce the tree configuration game, including
the utility function definition, available actions, etc. In Section 4, we describe the myopic and
foresighted strategies for classifier configuration. We provide detailed analysis of the foresighted
strategy and provide probabilistic bounds on performance improvements over the myopic strat-
egy in Section 5. In Section 6, we study the impact of the resource constraints on the proposed
tree configuration games, and the corresponding application utilities. Simulation results are pre-
sented in Section 7. We conclude with directions for future research in Section 8. The notation
used in this paper is summarized in Table 1.

2. System Model – Hierarchical Binary Classifier Trees

We consider a stream mining system, which consists of several binary classifiers in a tree
topology. An illustrative stream mining application [16] is depicted in Fig. 1. The topology of
classifiers in this example is used to identify semantic concepts from sports image data using
hierarchical filtering. Leaf classifiers in the application (e.g., classifier 4, 8, 9, etc.) represent

1In this paper, we use a naive load shedding approach, where stream data is randomly shed at the input of each
classifier (i.e., due to buffer overflow). Advanced load-shedding approaches based on measures of burst, desired Quality
of Service (QoS) requirements, data value or delay constraints [19, 20, 21] may also be used with our approaches.
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Table 1: Summary of Notation

Notation Description Notation Description
ci (c̄i) yes (no) classification unit (CU) in classifier i πi strategy of ci

Ci classifier i, Ci = {ci, c̄i} Ui utility of ci

Gi coalition of ci (set of CUs) λF
i (λM

i ) cost coefficient for false alarm (missing) of ci

ai action of ci, ai = (pF
i , p

D
i ) ϕi a-priori probability of stream to ci

Ai action set of ci ti (gi) throughput (goodput) of input stream to Ci

Ii local information of ci I+i information about successive CUs of ci

Ii available set of information to ci a−i set of actions for precedent CUs of ci

k i ck is a preceding CU of ci i d k ck is a successive CU with distance d from ci

x̂ x for ci, or x̄ for c̄i Λi , trϕi · Φi true fraction of stream data that belongs to ci

CL(G) set of leaf CUs in coalition G

Video, ImagesKey frame and feature extraction Team Sport?yesno
yesno

yesnoyesno yesno

Binary ClassifierInput Stream OutgoingStream

Baseball?
Winter Sport?

Little League?Basket Ball?
Racquet Sport?
Ice Sport?

Tennis?
Skiing?Skating?

yesno

Cricket?
1

2

3

4

5

6

7

8

9

10

11{ , }i i iC c c=
yesno yesno

yesno
yesnoyesnoyesno

Figure 1: An illustrative stream mining application.

the actual classes of interest, while intermediate classifiers (e.g., classifier 2, 3, 6, etc.) assist in
hierarchical filtering of data based on a semantic hierarchy of concepts. We now describe our
model for classifiers, classifier trees, and end-to-end application utility.

2.1. Configuration of Binary Classifier
A binary classifier filters input data into two classes, a “yes” class (denoted by Hy) and a

“no” class (denoted byHn). Each classifier Ci may be modeled as two independent classification
units (CUs)2, corresponding to the “yes” CU ci and “no” CU c̄i, i.e., Ci = {ci, c̄i}. An illustration
for Ci is depicted in Fig. 2(a). We use notation i  k to denote that ci (or c̄i) is a preceding CU
for ck (or c̄k). Equivalently, ck (or c̄k) is a successive CU of ci (or c̄i). The information about
distance d, in number of hops, between two CUs is denoted by i  d k. For example, in Fig. 1,
c1 is a preceding CU of c2, which is denoted by c1  c2 (or c1  1 c2). Note that the topology
allows disambiguation between the two CUs per classifier.

2Independent CUs allow data to be labeled as both “yes” and “no”, or neither.
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Figure 2: Classifier configuration.

2.2. Stream Characteristics

The input stream for classifier Ci is characterized by throughput ti and goodput gi, which
represent total data rate and correctly labeled data rate, respectively. The average fraction of the
input stream data that represents true positive for “yes” CU ci is denoted by ϕi (see Fig. 2(b)).
Note that ϕi is pre-determined based on the classifier topology and stream data characteristics.
ϕ̄i is similarly defined for “no” CU c̄i. Note that ϕ̄i = 1 − ϕi.

2.3. Performance Measure of Classifier

For a “yes” CU ci, we label the probability of detection as pD
i , the probability of miss as pM

i
(pM

i = 1 − pD
i ), and the probability of false alarm as pF

i . Similarly, for a “no” CU c̄i, we label
the probability of detection as p̄D

i , the probability of miss as p̄M
i , and the probability of false as

p̄F
i . As in [16], performance of ci (c̄i) is controlled by its tradeoff between probability of false

alarm pF
i ( p̄F

i ) and probability of detection pD
i ( p̄D

i ). The two CUs are independent and may
have decoupled operating points, e.g., through the use of independent thresholds (one for “yes”
and one for “no”) for score-based classifiers. The set of operating points (pF

i , p
D
i ) (or ( p̄F

i , p̄
D
i ))

represents the DET curve for ci (or c̄i). The DET curve is a non-decreasing concave function that
lies between (0, 0) and (1, 1).

2.4. Cost Coefficients for Misclassification

Misclassification cost coefficients λF
i (λ̄F

i ) and λM
i (λ̄M

i ) represent the cost/penalty per unit
data rate of false alarm and miss for CU ci (c̄i). These coefficients are specified by the appli-
cation for leaf classifiers, since they represent the classes of interest. As will be discussed in
Section 2.5 and Section 2.6, these coefficients are used to specify the end-to-end application
utility (or equivalently, application cost). For the proposed approaches, we define the misclas-
sification cost coefficients at intermediate classifiers, by decomposing the end-to-end utility into
local utilities. We determine cost coefficients at intermediate classifiers, by explicitly considering
the tree topology as well as the stream characteristics, and using backward propagation from the
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leaf coefficients. Specifically, as shown in Fig. 2(b), misclassification cost coefficients λF
i and

λM
i of an intermediate CU ci can be obtained by

λF
i = ϕkλ

F
k + (1 − ϕk)λ̄F

k , and λM
i = ϕkλ

M
k + (1 − ϕk)λ̄M

k , (1)

where Ck is an immediately successive classifier of ci, i.e., i 1 k.

2.5. Input and Output Rates
A CU’s operating point controls output stream rates. For a stream with throughput ti and

goodput gi entering ci (and c̄i), the output rates t′i and g′i (correspondingly t̄′i and ḡ′i) may be
derived as [16] [

t′i
g′i

]
= Ti

[
ti
gi

]
, and

[
t̄′i
ḡ′i

]
= T̄i

[
ti
gi

]
, (2)

where Ti and T̄i are given by

Ti =

[
pF

i ϕi(pD
i − pF

i )
0 ϕi pD

i

]
, and T̄i =

[
p̄D

i ϕi(p̄F
i − p̄D

i )
0 ϕ̄i p̄D

i ,

]
.

2.6. End-to-End Application Utility
Let S represent the set of all classifiers and CL(S) be the set of leaf CUs in the application.

Then, the end-to-end cost/penalty for misclassification incurred by leaf classifier cl (∈ CL(S))
may be expressed as

(t′l − g′l)λ
F
l +
(
Λl − g′l

)
λM

l ,

where Λl represents a true fraction of stream data that belongs to cl for input stream rate tr to the
tree, defined as Λl , trϕl ·

∏
∀k∈{ j| j l} ϕ̂k = trϕl · Φl, with ϕ̂k = ϕk for ck and ϕ̂k = ϕ̄k for c̄k. We

define the utility achieved by cl as the negative end-to-end cost, or

Ul = −
[
(t′l − g′l)λ

F
l +
(
Λl − g′l

)
λM

l

]
. (3)

Similarly, Ūl achieved by c̄l can be expressed in terms of coefficients λ̄F
l and λ̄M

l , i.e.,

Ūl = −
[
(t̄′l − ḡ′l)λ̄

F
l +
(
Λ̄l − ḡ′l

)
λ̄M

l

]
, (4)

where Λ̄l may be defined similarly. Thus, the end-to-end application utility US may be expressed
as

US =
∑

cl∈CL(S)
Ul +

∑
c̄l∈CL(S)

Ūl. (5)

3. Tree Configuration Games

The goal of this paper is the optimized selection of operating points for individual CUs in
order to maximize the end-to-end application utility (or equivalently, minimizing the end-to-end
application cost). In this section, we define a tree configuration game, which is a class of non-
cooperative sequential game [18]. The game is played by each classifier that selects an operating
point to maximize its own local utility based on the available information. The game is assumed
to progress from the root to the leaf, i.e., the root classifier configures itself before its children,
and so on. We formally define the tree configuration game in the following sections.
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3.1. Definition of Tree Configuration Games
For a stream mining application S with N classifiers, the tree configuration game consists of:

• a finite set of CUs (players): {Ci = (ci, c̄i)|1 ≤ i ≤ N},

• for each CU ĉi, a nonempty set of actions: Âi,

• for each CU ĉi, a utility function: Ûi(·), and

• for each CU ĉi, a strategy: π̂i(·).

We use x̂ to represent x and x̄ as appropriate. For example, ĉi represents ci for “yes” CU and c̄i

for “no” CU, respectively. This notation is used in the rest of the paper. Each element of the tree
configuration games is described in more detail.

3.1.1. Action Set Âi

The action set Âi for CU ĉi is defined as

Âi = {âi,k |1 ≤ k ≤ Âi}, (6)

where âi,k = ( p̂F
ik, p̂

D
ik) is an action that involves selecting the kth operating point among Âi = |Âi|

available operating points. This assumes a discrete set of operating points, which are typically
obtained by empirical measurement. These operating points may be viewed as quantized versions
of an underlying continuous DET curve – a differentiable concave function f̂ : [0, 1] → [0, 1],
defined as [16]:

p̂D = f̂ ( p̂F),

for 0 ≤ p̂F ≤ 1. In this paper, we assume uniformly distributed (result of uniform quantization)
operating points; alternative quantization schemes can also be used. Hence, action âi,k corre-
sponds to selecting operating point

(
k−1
Âi−1
, f̂i
(

k−1
Âi−1

))
, which is illustrated in Fig. 2(a).

3.1.2. Local Utility Function Ûi(·)
Similar to (3), the local utility function for an intermediate CU ci (ci < CL(S)) can be ex-

pressed as

Ûi(âi) = −
[
(t̂′i − ĝ′i)λ̂

F
i +
(
Λ̂i − ĝ′i

)
λ̂M

i

]
, (7)

where λ̂F
i and λ̂M

i are derived by the backward propagation scheme shown in (1). We assume
that the backward propagation is performed at initialization, before the classifier configuration.
Note that each CU needs to exchange information in order to identify cost coefficients and the
local utility function in (7). The minimum information that needs to be exchanged across CUs is
discussed in Section 4.

3.1.3. Strategy π̂i of CU ĉi

A strategy of a CU determines its optimal action in the action set. This is determined as a
function of the available information. Hence, the strategy may be expressed as

â∗i = π̂i(Îi) ∈ Âi, (8)

where Îi represents the available information to ĉi. Various types of available information will be
discussed in Section 3.2, and their impact on the strategies will be studied in Section 4.

7



3.2. Available Information for CUs

In the tree configuration games, CU ĉi can have various types of available information:

• local information Îi: information specific to ĉi such as observed throughput, available
actions, misclassification cost coefficients, etc. Hence,

Îi = {t̂i, ϕ̂i, λ̂
F
i , λ̂

M
i , Âi}. (9)

The information about the available resources R̂i can also be included. We assume that the
local information is always available to each CU.

• information about successive classifiers Î+i: Î+i includes local information of successive
classifiers. Hence,

Î+i = {Îk |i k,∀k}. (10)

Note that Î+i excludes Îi.

• information about preceding CU actions â−i: The set of actions â−i taken by preceding
CUs of ĉi is expressed as

â−i = {âk |k i,∀k}. (11)

The impact of what information and how much information on the performance of the appli-
cation is investigated in the next section. For simplicity, we only consider a “yes” CU ci in the
analysis, which also holds for a “no” CU c̄i. We explicitly discuss any differences for the two
types of CUs.

4. Information Availability and Action Selection Strategies

In this section, we investigate the impact of the available information on the strategies, and
the corresponding application utility. We assume first that there are unlimited resources, i.e. no
resource constraints.

4.1. Myopic Strategy

A strategy πi for CU ci can determine an optimal action a∗i , such that

a∗i = πi(Ii) = arg max
ai∈Ai

Ui(ai) = arg min
ai∈Ai

[
(t′i − g′i)λ

F
i +
(
Λi − g′i

)
λM

i

]
. (12)

The strategy πi in (12) determines an action that maximizes ci’s own local utility. However, it
does not consider the impact of the selected action on the utilities of its successive classifiers,
and the corresponding end-to-end application utility. Hence, πi is referred to as myopic strategy.

Note that local information Ii is insufficient to solve the optimization problem shown in (12).
Thus, information exchange across multiple classifiers is needed to determine Ii that enables ci to
find its optimal action. Proposition 1 identifies the minimum information needs to be additionally
exchanged across CUs for the myopic strategies.

Proposition 1. For a CU ci, gi and Φi =
∏
∀k∈{ j| j i} ϕ̂k is the minimum additional information

required to correctly determine an optimal action based on the myopic strategy.
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Algorithm 1 Determining an Optimal Action of ci based on Myopic Strategy

Given: Information Ii = {Ii = {ti, ϕi, λ
F
i , λ

M
i ,Ai}, gi,Φi}, and DET characteristic function fi.

1: Compute an operating point x∗i = pF
i ∈ Ai

Compute x∗i such that
∂ fi(x∗i )
∂xi
=

(ti−giϕi)λF
i

giϕiλ
M
i

// or equivalently,
∂Ui(xi)
∂xi

= 0

2: Find the best action in Ai

If x∗i > 1 or x∗i < 0, then
a∗i = arg max

ai∈{ai,1 ,ai,Ai }
[Ui(ai)] // only need to consider two extreme actions

else
a∗i = arg max

ai∈{ai,(lR−1) ,ai,lR }
[Ui(ai)] // only need to consider two nearest actions

Note ai,lR (includes pF
ilR

) is determined such that pF
i(lR−1) < x∗i ≤ pF

ilR
.

Proof. Without loss of generality, we consider a “yes” CU ci, which has its local information
Ii = {ti, ϕi, λ

F
i , λ

M
i ,Ai}. As shown in the input-output relationship of ci in (2), t′i and g′i can be

expressed as [
t′i
g′i

]
=

[
pF

i ϕi(pD
i − pF

i )
0 ϕi pD

i

] [
ti
gi

]
. (13)

Thus, information gi, in addition to Ii, is sufficient to specify t′i and g′i . Moreover, since Λi is
defined as Λi = trϕi ·

∏
∀k∈{ j| j i} ϕ̂k, Φi is sufficient to specify Λi.

Based on Proposition 1, we can conclude that the information Ii required for myopic strategy
in (12) is Ii = {Ii, gi,Φi}. Hence, we require that information gi and Φi are always forwarded
with outgoing stream data. Note that Proposition 1 implies that both the size of messages and
the number of messages that needs to be exchanged are constant.

Since the number of available actions is finite (i.e., Ai < ∞), a CU ci can always determine a
unique action based on strategy πi(Ii) by comparing utilities achieved by different actions. This
may require a high search complexity when the number of available actions is large. However,
if the underlying continuous DET curve of the CU can be estimated (i.e., function fi), then using
the concavity of the local utility function (see Appendix), the optimal action can be efficiently
determined with fixed computational complexity independent of the action set size3. An algo-
rithm for finding the optimal action for ci, assuming the underlying DET curve is available or
can be estimated, is presented in Algorithm 1. This algorithm requires the comparison of only
two candidate actions to determine the optimal action. Similarly, an optimal action of a “no” CU
c̄i can also be efficiently and uniquely determined.

We now show that the myopic strategy leads to a unique pure strategy Nash equilibrium.

Proposition 2. If each CU determines its action based on the myopic strategy, then there exists
a unique pure strategy Nash equilibrium in operating points.

Proof. Let ci ∈ Ci be a “yes” CU, and it deploys the myopic strategy πi given in (12) with
available information Ii = {Ii, gi,Φi}. Since the local utility of ci is determined based on its own

3Note that the underlying continuous DET curve can be estimated as the convex hull of available actions [23] and the
optimal solution can be found using Lagrangian optimization technique [24]. This approach is commonly used in several
optimization problems such as rate-distortion optimization in video compression [25].
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action ai ∈ Ai as well as the set of actions a−i of its preceding CUs, the local utility function
defined in (7) can be explicitly expressed as Ui(ai, a−i). Since a−i is already determined and
fixed, we have

Ui(a∗i , a−i) ≥ Ui(ai, a−i), (14)

for all actions ai(, a∗i ) ∈ Ai. Similarly, the same argument holds for a “no” CU c̄i, i.e.,

Ūi(ā∗i , ā−i) ≥ Ūi(āi, ā−i), (15)

for all actions āi(, ā∗i ) ∈ Āi. Since each CU can uniquely determine its optimal action based on
the myopic strategy, there exists one pure strategy Nash equilibrium in operating points.

The result drawn from Proposition 2 is consistent with the fact that a pure strategy Nash equilib-
rium always exists in finite extensive form games [26, 27]. Proposition 2 implies that the myopic
strategy guarantees convergence. Importantly, the convergence time increases only linearly with
the tree depth. Note that the performance achieved at this Nash equilibrium can be improved by
utilizing additional information, as discussed next.

4.2. Foresighted Strategy for Coalitions
If ci has information I+i about its successive classifiers, then it can select an action while

explicitly considering its impact on the utility of the successive classifiers. Specifically, CU ci

with I+i can form a coalition with its successive classifiers, defined as follows.

Definition 1 (Coalition of a CU). A coalition Gi of a CU ci is a set of successive classifiers for
which the information is available to ci

4.

Then, the CU can select an action that maximizes the coalition utility based on a foresighted
strategy. Note that the classifiers in a coalition do not simultaneously determine their actions.
Rather, the foresighted CU decides its action, while considering the actions that will be sequen-
tially determined by its successive classifiers in its coalition, such that the jointly determined
actions lead to the maximum coalition utility. Therefore, this is still a non-cooperative sequential
game, where a local utility of a foresighted CU is its coalition utility. Specifically, the foresighted
strategy πi(Ii) of ci with information Ii = {Ii, I+i} determines an action:

a∗i = πi(Ii) = arg max
ai∈Ai

UGi (ai, {(ak, āk)|Ck ∈ Gi}), (16)

where UGi denotes the utility achieved by Gi, i.e., the sum of utilities derived by the leaf CUs in
coalition Gi. A CU ĉk ∈ Gi is a leaf CU of coalition Gi, if{

ĉh|k 1 h for all ĉh ∈ S
}
< Gi,

i.e., none of its children are part of Gi. We denote the set of leaf CUs in coalition Gi by CL (Gi).
For example, in Fig. 3(b), leaf CUs in coalition Gr are ci and c̄i, and thus, CL(Gr) = {ci, c̄i}. The
coalition utility of Gr is given by UGr = U f

i + Ū f
i . As an extreme case, if C1 = {c1, c̄1} is the

root classifier of an application and it has the information about all of its successive classifiers,
then the coalition utility represents the application utility defined in (5), i.e., UG1 + UḠ1

= US.
By definition, if information about more successive classifiers is available to a CU, it can form a
larger coalition. Note that UGi depends on the action ai of ci as well as the actions of coalition

4Similarly, a coalition of c̄i is denoted by Ḡi.
10
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Figure 3: Illustrative myopic and foresighted CUs.

members (i.e., {(ak, āk)|Ck ∈ Gi}). However, ci decides its action ai, based on the assumption that
{(ak, āk)|Ck ∈ Gi} are myopically determined. This keeps the solution completely distributed,
and allows the action ai to be uniquely determined with low complexity. Hence, a foresighted
action of a CU only indirectly controls the action selections of successive classifiers. Since
the foresighted action can be uniquely determined by (16), and the corresponding actions of
successive CUs are also uniquely determined, an application that consists of several foresighted
CUs will also converge to a unique pure strategy Nash equilibrium.

5. Foresighted Strategies for Coalitions and Performance Improvement

In this section, we analytically show that foresighted strategies for coalitions formed by in-
termediate CUs may result in improved end-to-end application utility. As before, we focus on
a scenario with no resource constraints. In the following analysis, we consider an elementary
sub-tree shown in Fig. 3. In this example, the end-to-end application utility is determined by
Um + Ūm for the myopic case in Fig. 3(a) and U f + Ū f for the foresighted case in Fig. 3(b).

Our approach is as follows. We first analytically express the utilities achieved by the myopic
strategy Um + Ūm and the foresighted strategy U f + Ū f in terms of known parameters. Then, we
derive a lower bound for the probability that U f + Ū f ≥ Um+ Ūm, i.e., when foresighted strategy
outperforms myopic strategies. Finally, we show that the lower bound increases as the coalition
utility based on the foresighted strategy improves.

Proposition 3. Foresighted strategies can improve the application utility with a higher proba-
bility bound.

Proof. Consider the elementary sub-tree shown in Fig. 3. In Fig. 3(a), cm
r determines its action

based on the myopic strategy, while c f
r decides its action based on the foresighted strategy for its

coalition Gr = {c f
r ,Ci} = {c f

r , ci, c̄i} in Fig. 3(b).
A foresighted action selected by c f

r guarantees U f
i + Ū f

i ≥ Um
i + Ūm

i , because the myopic
strategy is a special case of the foresighted strategy. This may be decomposed as

U f
i − Um

i ≥ ∆ui, and Ū f
i − Ūm

i ≥ −∆ūi, (17)

11



where ∆ui − ∆ūi ≥ 0 for ∆ui ≥ 0. Based on the input-output relationship given in (2), the
conditions in (17) can be expressed as

∆t/∆g ≤ (λF
i + λ

M
i )/λF

i − ∆ui/(λF
i ∆g) , RA, (18)

∆t̄/∆ḡ ≤ (λ̄F
i + λ̄

M
i )/λ̄F

i + ∆ūi/(λ̄F
i ∆ḡ) , RB, (19)

where ∆t , t f
j − tm

j , ∆g , g f
j − gm

j , ∆t̄ , t f
k − tm

k , and ∆ḡ , g f
k − gm

k , respectively. Without loss
of generality, we assume that ∆g > 0 and ∆ḡ > 05.

Now, we derive conditions on when the foresighted strategy of c f
r leads to a higher end-to-

end utility, i.e., when we have U f + Ū f > Um + Ūm. Consider the contradictory case, i.e.,
Um + Ūm ≥ U f + Ū f . This condition can be decomposed as,

Um − U f ≥ ∆u, (20)

Ūm − Ū f ≥ −∆u. (21)

Based on the input-output relationship in (2), the condition in (20) becomes[
{x∗j(t

f
j − g f

jϕ j)λF
j − g f

jϕ j f j(x∗j)λ
M
j } + {( f̄ j(x̂ j)(t

f
j − g f

j ) + ϕ j x̂ jg
f
j )λ̄

F
j − g f

j ϕ̄ j f̄ j(x̂ j)λ̄M
j }
]

(22)

−
[
{y∗j(tm

j − gm
j ϕ j)λF

j − gm
j ϕ j f j(y∗j)λ

M
j } + {( f̄ j(ŷ j)(tm

j − gm
j ) + ϕ jŷ jgm

j )λ̄F
j − gm

j ϕ̄ j f̄ j(ŷ j)λ̄M
j }
]
≥ ∆u.

Since action y∗j (or ŷ j) instead of x∗j (or x̂ j) incurs higher costs for c j (or c̄ j), the condition in (22)
can be expressed as

y∗j(∆t − ∆gϕ j)λF
j − f j(y∗j)∆gϕ jλ

M
j + ( f̄ j(ŷ j)(∆t − ∆g) + ϕ jŷ j∆g)λ̄F

j − ∆gϕ̄ j f̄ j(ŷ j)λ̄M
j ≥ ∆u,

which leads to:

∆t/∆g ≥ QN
j /Q

D
j + ∆u/(∆gQD

j ) , RC , (23)

where QN
j = y∗jϕ jλ

F
j + f j(y∗j)ϕ jλ

M
j + f̄ j(ŷ j)(λ̄F

j + ϕ̄ jλ̄
M
j ) − ϕ jŷ jλ̄

F
j and QD

j = y∗jλ
F
j + f̄ j(ŷ j)λ̄F

j .
Similarly, the condition in (21) can be expressed as

∆t̄/∆ḡ ≥ QN
k /Q

D
k − ∆u/(∆ḡQD

k ) , RD, (24)

where QN
k = y∗kϕkλ

F
k + fk(y∗k)ϕkλ

M
k + f̄k(ŷk)(λ̄F

k + ϕ̄kλ̄
M
k )−ϕkŷkλ̄

F
k and QD

k = y∗kλ
F
k + f̄k(ŷk)λ̄F

k . Based
on (18), (19), (23) and (24), we can conclude that:

Um + Ūm ≥ U f + Ū f ⇒ RC ≤ ∆t/∆g ≤ RA, and RD ≤ ∆t̄/∆ḡ ≤ RB. (25)

Finally, (25) leads to a lower bound for the probability that Um + Ūm < U f + Ū f , i.e.,

Pr
{
Um + Ūm < U f + Ū f

}
≥ 1 − Pr

{
RC ≤

∆t
∆g
≤ RA

}
· Pr
{

RD ≤
∆t̄
∆ḡ
≤ RB

}
. (26)

Thus, as the difference in coalition utilities achieved by the foresighted and myopic strategies
increases, i.e., ∆ui becomes large or ∆ūi becomes small (thus, RA or RB have smaller values), the
lower bound for Pr

{
Um + Ūm < U f + Ū f

}
increases.

5If ∆g < 0, only the lower bound and the upper bound of the term {RC ≤ ∆t/∆g ≤ RA} in (26) are switched (i.e., it
becomes {RA ≤ ∆t/∆g ≤ RC}). Hence, the conclusions drawn from this proposition still hold. Similarly, if ∆ḡ < 0, the
term {RD ≤ ∆t̄/∆ḡ ≤ RB} in (26) becomes {RB ≤ ∆t̄/∆ḡ ≤ RD}.
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Since a general tree topology can be formed by concatenating such elementary sub-trees,
Proposition 3 applies to any general tree topologies. Hence, if a foresighted strategy leads to
significant improvements in local coalition utilities, it is also more likely to increase the end-to-
end application utility.

Note that since the impact of a CU’s foresighted decision propagates across its successive
classifiers and the application utility is determined by the leaf classifiers, the actions of a fore-
sighted CU near a root classifier with a large coalition may lead to higher improvements in utility.
However, there are overheads associated with building large coalitions, specifically in terms of
information exchange etc. In general, the size of a coalition may be determined by measuring
the marginal contribution [27] of each classifier to the coalition utility. The marginal contribu-
tion for a classifier represents the coalition utility improvement when the classifier is added to
the coalition. The coalition can then be formed by selecting only those classifiers with a high
marginal contribution. This will be quantified using simulation results in Section 7.

6. Tree Configuration Games with Resource Constraints

In this section, we investigate the impact of resource constraints on the CU action selections
for both myopic as well as foresighted strategies, and the corresponding application utilities.

6.1. Assumptions

6.1.1. Resource Constraints
A processing node with a finite amount of resources can be shared by several classifiers, and

the resources need to be divided and allocated to each classifier6. The allocated resource to a
classifier Ci is denoted by Ri(< ∞). We model the computational resource requirements Rreq

i
for each individual classifier as being directly proportional to the total rate (throughput) of data
entering it. Classifier Ci (i.e., ci or c̄i) has a resource consumption factor αi, which is the amount
of resource required per unit throughput rate. Hence, Rreq

i = αi · ti. The local information Ii of
CU ci thus also includes Ri and αi, i.e., Ii = {ti, ϕi, λ

F
i , λ

D
i ,Ai,Ri, αi}.

6.1.2. Effective DET Curve
We assume that each CU uses random load-shedding if input stream data requires more re-

sources than available resources, i.e. Rreq
i >Ri. Random shedding leads to degradation in per-

formance directly proportional to the amount of discarded data. Specifically, for a DET curve
pD

i = fi(pF
i ), (0 ≤ pF

i ≤ 1) for CU ci, the effective DET curve with load shedding can be
characterized by function Γ : [0, 1]2 → [0, 1]2, defined as

Γ(x, fi(x)) = (γix, γi fi(x)), (27)

where 0 ≤ x = pF
i ≤ 1 and scaling factor γi, corresponding to the load shed fraction, is deter-

mined by

γi = min
{

1,
Ri

Rreq
i

}
. (28)

6Note that the node can use any resource division policy to achieve desired fairness criteria.
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6.1.3. Resource Division Policy
In this paper, we consider two policies that nodes use to distribute resources among classifiers

– equal resource division and proportional resource division.

6.2. Resource Constraints and Myopic Strategy

Under resource constraints, the myopic strategy needs to consider the effective DET curve to
determine an action. For a “yes” CU ci with its available information Ii = {Ii = {ti, ϕi, λ

F
i , λ

D
i ,Ai,Ri, αi}, gi,Φi},

an action can be determined based on a strategy πi such that the action maximizes its local utility.
Thus,

a∗i = πi(Ii) = arg max
ai∈Ai

Ui(ai)

= arg min
ai=(pF

i ,p
D
i )∈Ai

[
(ti − giϕi)(γi pF

i )λF
i + (Λi − (γi pD

i )giϕi)λM
i

]
,

(29)

where γi denotes a scale factor that specifies the effective DET curve of ci, as shown in (27).
Since a non-negative constant does not change the convexity/concavity, a solution a∗i ∈ Ai that
maximizes Ui(ai) in (29) can be uniquely determined. In the following analysis, we show that
the action a∗i is the same as the optimal action determined by the myopic strategy in Section 4.1,
which does not consider the resource constraints.

Lemma 4. Input throughput and goodput scaled by a non-negative constant do not change the
optimal action of a myopic CU.

Proof. Let ti and gi be incoming throughput and goodput into a “yes” myopic CU ci. An action
ai = (xi, fi(xi)) = (pF

i , p
D
i ) of ci results in outgoing t′i and g′i , expressed as[

t′i
g′i

]
= Ti

[
ti
gi

]
=

[
xi ϕi( fi(xi) − xi)
0 ϕi fi(xi)

] [
ti
gi

]
.

The local utility derived by the action ai can be expressed as a function of xi, i.e.,

Ui(ai) = −
{
(t′i − g′i)λ

F
i + (Λi − g′i)λ

M
i

}
= −
{
xi(ti − giϕi)λF

i + (Λi − ϕi fi(xi)gi)λM
i

}
= −
[
xi(ti − giϕi)λF

i − ϕi fi(xi)giλ
M
i

]
− Λiλ

i
M

= UE
i (xi) − Λiλ

M
i ,

where
UE

i (xi) , −
[
xi(ti − giϕi)λF

i − ϕi fi(xi)giλ
M
i

]
. (30)

Since Ui(ai) is concave function of xi, a unique optimal solution x∗i can be determined, such that

∂Ui(a∗i )
∂xi

= 0⇔
∂ fi(x∗i )
∂xi

=
(ti − giϕi)λF

i

ϕigiλ
M
i

, (31)

if 0 ≤ x∗i ≤ 1. If x∗i < 0, x∗i = 0, and if x∗i > 1, x∗i = 1. The corresponding maximum utility is
thus UE

i (x∗i ) − Λiλ
M
i . Note that UE

i (x∗i ) ≥ 0, since UE
i (·) is a concave function with UE

i (0) = 0.
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Consider a throughput βti and a goodput βgi, which are ti and gi scaled by a non-negative
constant β. Then, an action ai = (xi, fi(xi)) of ci results in outgoing t′i and g′i , expressed as[

t′i
g′i

]
= Ti

[
βti
βgi

]
=

[
xi ϕi( fi(xi) − xi)
0 ϕi fi(xi)

] [
βti
βgi

]
.

The local utility derived by the action ai is expressed as

Ũi(ai) = −
{
(t′i − g′i)λ

F
i + (Λi − g′i)λ

M
i

}
= −
{
βxi(ti − giϕi)λF

i + (Λi − βϕi fi(xi)gi)λM
i

}
= −β

[
xi(ti − giϕiλ

F
i − ϕi fi(xi)gi)λM

i

]
− Λiλ

M
i

= βUE
i (xi) − Λiλ

M
i .

Since Ũi(ai) is concave function of xi, a unique optimal solution x̃i is determined, such that

∂Ui(x̃i)
∂xi

= 0⇔ ∂ fi(x̃i)
∂xi

=
(ti − giϕi)λF

i

ϕigiλ
M
i

. (32)

Since x∗i and x̃i are unique and they are determined by (31) and (32), we conclude that x∗i = x̃i.
The corresponding maximum utility thus becomes βUE

i (x∗i ) − Λiλ
M
i .

Since this property holds for a “no” CU (this can be shown using T̄i with the same argu-
ment), we conclude that an action determined based on the myopic strategy does not change by
a throughput and a goodput scaled by a non-negative constant.

We can deduce the following corollary.

Corollary 5. If the optimal myopic action of CU ci achieves a maximum local utility UE
i (x∗i ) −

Λiλ
M
i for incoming throughput ti and goodput gi, then CU ci can achieve its maximum local

utility βUE
i (x∗i ) − Λiλ

M
i for β-scaled (β ≥ 0) throughput βti and goodput βgi using the same

optimal action.

Based on the above two observations, we can state the impact of resource constraints on the
myopic strategy as follows.

Proposition 6. An action determined by the myopic strategy is not altered by a random load-
shedding scheme.

Proof. Let ti and gi be incoming throughput and goodput into a classifier Ci = {ci, c̄i}. Let
a∗i = (x∗i , fi(x∗i )) be an optimal action of ci determined by the myopic strategy, and the corre-
sponding utility be denoted by UE

i (x∗i ) − Λiλ
M
i . A random load shedding scheme of ci with

allocated resources Ri results in an effective DET curve, determined by a mapping Γ(xi, fi(xi)) =
(γixi, γi fi(xi)), where γi = min{1,Ri/R

req
i }. Then, an action ai = (xi, fi(xi)) leads to output stream

rates t′i and g′i , expressed as[
t′i
g′i

]
=

[
γixi ϕi(γi fi(xi) − γixi)

0 ϕiγi fi(xi)

] [
ti
gi

]
=

[
xi ϕi( fi(xi) − xi)
0 ϕi fi(xi)

] [
γiti
γigi

]
. (33)

Note that (33) is equivalent to the case, where ti and gi are scaled by a constant γi. As shown in
Lemma 4, constant-scaled throughput and goodput do not change an optimal action determined
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by the myopic strategy. Thus, we conclude that the random load-shedding scheme does not
change the action determined by the myopic strategy, and thus, the optimal action under resource
constraints is still a∗i = (x∗i , fi(x∗i )). Note that the corresponding local utility of ci is γiUE

i (x∗i ) −
Λiλ

M
i as shown in Corollary 5. The same argument holds for c̄i.

Therefore, Algorithm 1 can also be used to efficiently find the optimal action under resource
constraints. Finally, since each CU can always determine its own actions, Proposition 2 still
holds, implying that there is an equilibrium in operating points among the CUs.

6.3. Resource Constraints and Foresighted Strategy

Foresighted CUs need to determine their actions while considering the impact on resource
allocations for successive classifiers in the coalition, as well as the corresponding coalition util-
ities. This is because the action of a classifier modifies resource requirements for all successive
classifiers, thereby potentially modifying their available resources. We summarize the effect of
resource constraints on the coalition utility in Lemma 7.

Lemma 7. If an action ai of a foresighted CU ci results in a coalition utility UE
k (x∗k) − Λkλ

M
k at

a leaf CU ck in its coalition under no resource constraint, then the same action ai results in the
coalition utility

Uk(x∗k) =

 ∏
∀ j,i j, j k

γ j

UE
k (x∗k) − Λkλ

M
k , (34)

under resource constraints, where γ j represents the load shed fraction in CU ĉ j defined in (28).

Proof. As shown in Proposition 6, random load-shedding does not change the actions deter-
mined by the myopic strategy. However, due to the resource constraints, the outgoing stream
rates of CU j are scaled by γ j for all j, i  j and j  k. Since a branch consists of cascaded
CUs ĉ j, the coalition utility becomes ∏

∀ j,i j, j k

γ j

UE
k (x∗k) − Λkλ

M
k ,

using Corollary 5.

Lemma 7 clearly shows that the derived utility from each leaf CU ĉk in coalition Ci depends on
all γ j such that i j and j k. Since γ j is determined based on CU ĉ j’s resource requirements
and the allocated resources from a node, it depends on the actions taken by other CUs sharing the
same node as well as the resource division policy of the node. Thus, each action of the foresighted
CU ci may result in different distributions for γ j. Note that in distributed systems, information
about the resource division policy (which may be different per node) or classifier placement may
not be available to each classifier. Hence, foresighted CUs need to observe the outcomes of their
actions and iteratively learn the mapping between γ j and their actions. This learning involves
determining the probability mass function (pmf) of γ j for each action. In this paper, we use a
simple learning strategy that estimates the pmf of γ j based on empirical frequency measurement.
Different learning strategies [28, 29] may be used for this task, and may easily be incorporated
into our designed foresighted strategy.
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Based on the estimated pmf of γ j for each action, a foresighted strategy πi of ci for its coali-
tion Gi determines an action a∗i that maximizes expected coalition utility, defined as

a∗i = πi(Ii) = arg max
ai∈Ai

E
[
UGi (ai)

]
= arg min

ai∈Ai

∑
ĉk∈CL(Gi)

E
[
Uk(x∗k)

]
= arg min

ai∈Ai

∑
ĉk∈CL(Gi)


 ∏
∀ j,i j, j k

E{γ j}
UE

k (x∗k) − Λkλ
M
k

 ,
(35)

where utility Uk(x∗k) of leaf CU ĉk in Gi is defined in (34). Our proposed algorithm is shown in
Algorithm 2.

Algorithm 2 Foresighted Decision Process based on γ j Estimation using Empirical Frequency

Given: granularity level ni, UE
k (x∗k) for all leaf CUs ĉi in Gi; ĉk ∈ CL(Gi), Λk, λM

k .
1: Initialization

Hai
j = [Hai

j (1), . . . ,Hai
j (ni)]←

1×ni︷        ︸︸        ︷
[1, 0, . . . , 0] for all ĉ j ∈ Gi and for all ai ∈ Ai.

Pr
{
γ j = (2r − 1)/2ni

}
← Hai

j (r)/
∑n j

h=1 Hai
j (h) for r = 1, . . . , ni.

while stream data ingested do
2: Find and take a foresighted action a∗i

Find a∗i using (35).

3: Update H
a∗i
j

Observe γ j that corresponds to a∗i for all ĉ j ∈ Gi

if (r − 1)/ni ≤ γ j < r/ni, then
H

a∗i
j (r)← H

a∗i
j (r) + 1

4: Update Probability Mass Function
Pr
{
γ j = (2r − 1)/2ni

}
← Hai

j (r)/
∑n j

h=1 Hai
j (h) for r = 1, . . . , ni.

7. Simulation Results

7.1. Simulation Set-up

To evaluate the performance of the proposed approaches, we consider a semantic concept
detection application [16] for sports image in Fig. 1. This application is built using IBM’s Mul-
timedia Analysis and Retrieval Searching (IMARS) [30] classifiers. Incoming images of sev-
eral different types are classified into six classes of interest: Little League Baseball, Basketball,
Cricket, Skating, Skiing and Tennis, each of which corresponds to a specific type of sport. By
introducing a set of additional intermediate concept detectors, we then construct a hierarchi-
cal topology of classifiers. The Team Sports classifier filters data relevant to the Little League,
Cricket and Basketball classifiers. The Winter Sports classifier filters data relevant to the Skating
and Skiing classifiers. Finally, the Racquet Sports classifier filters data relevant to the Tennis clas-
sifier. The mutually exclusive nature of concepts Team Sports, Winter Sports and Racquet Sports
allows identifying them in series, i.e., passing only data that does not belong to a class to the next
class. For simplicity of notation, each classifier is enumerated as shown in Fig. 1, and thus, our
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Table 2: A-priori Probabilities in Application

Classifier Team Sports Baseball Little League Basketball Cricket Winter Sports
ϕi 0.2371 0.2071 0.2132 0.2370 0.0358 0.3674

Classifier Ice Sports Skating Skiing Racquet Sports Tennis -
ϕi 0.0392 0.0358 0.6951 0.6374 0.4056 -

application is denoted by S = {C1,C2, . . . ,C11}. Misclassification cost coefficients are assigned to
leaf CUs, CL(S) = {c4, c̄4, c5, c̄7, c8, c̄8, c9, c̄9, c10, c̄10, c11, c̄11}. Misclassification cost coefficients
for intermediate classifiers are assigned based on the proposed backward propagation scheme
given in (1). Each classifier operates on low level image features such as color histograms, color
correlograms, etc. and uses an SVM based classification strategy [31]. The DET curves, a-priori
probabilities as well as computational requirements for individual classifiers were experimentally
measured on a set of 20000 test images. The measured a-priori probabilities ϕi for each classifier
in our application are shown in Table 2. We evaluate the myopic and foresighted strategies, and
compare them against a centralized approach (based on SQP) previously proposed in [16]. In
this section results are presented in terms of the application cost – negative of the utility defined
in (3) and (4). By definition, maximizing the application utilities is equivalent to minimizing the
application costs.

7.2. Impact of Action Granularity and Backward Propagation Scheme for Cost Coefficients

To highlight the impact of the number of available actions, the proposed backward propa-
gation scheme for cost coefficients, and the foresighted strategies on the application cost, we
consider an elementary sub-tree of our application with classifiers 1, 2, and 3, shown in Fig. 4(a).
In this sub-tree, C2 and C3 are leaf classifiers, and we set λF

l (λ̄F
l ) = λM

l (λ̄M
l ) = 1 for l = 2, 3.

Based on this, we derive λF
1 (λ̄F

1 ) and λM
1 (λ̄M

1 ) using the backward propagation scheme in (1). We
consider different levels of quantization granularity, i.e., increased numbers of available actions
Ai = 20, 40, 80, 160 for i = 1, 2, 3. We set the incoming stream rate tr = 1. The resulting mis-
classification costs for different numbers of actions and different degrees of foresightedness (i.e.,
different coalitions) are shown in Fig. 4(b).

Fig. 4(b) shows that increasing the number of available actions leads to a lower application
cost for the proposed approaches. On the graph, we also show the cost associated with the cen-
tralized optimal solution. We observe a slight performance gap between the myopic and the
centralized optimal solution, as CUs with the myopic strategy determine their actions individu-
ally with no consideration of the impact on the end-to-end application cost. Moreover, unlike
in the centralized approach, only finite number of (quantized) actions are available to each CU.
However, the foresighted strategies lead the application costs to approach the centralized optimal
solution, while always outperforming myopic strategies. This is because any actions selected
by the myopic strategies are always included in the candidate actions for the foresighted strate-
gies. The results also show that increasing the coalition size can lead to a lower application cost.
Specifically, coalition {C1,C2,C3} achieves a lower cost than coalitions {c1,C2} and {c̄1,C3}, both
of which outperform the myopic strategy. We also observe that the achieved costs (or utilities)
from the same size coalitions, i.e., {c1,C2} and {c̄1,C3}, are different. This is because the derived
application costs depend on not only the foresighted actions (a∗1 and ā∗1) but also their DET curves
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Figure 4: (a) elementary sub-tree from our application, and (b) application costs for the elementary sub-tree.

Table 3: Achieved Application Costs (80 actions, Myopic Strategy)

Experiment Cases λF = λM λF = 4λM 4λF = λM

Centralized (average) 0.587 (0 %) 0.963 (0 %) 1.373 (0 %)
Distributed 0.536 (68.0 %) 0.806 (86.3 %) 1.187 (88.6 %)

Centralized (best) 0.512 (100 %) 0.781 (100 %) 1.163 (100 %)

and ϕ̂l, l = 2, 3. Hence, forming coalition with CUs having better DET performance or higher ϕ̂l

can result in lower coalition cost (i.e., higher coalition utility).
Finally, instead of the backward propagation scheme, if misclassification cost coefficients of

C1 are determined randomly or based on a heuristic average approach (e.g., λF
1 = (λF

2 + λ̄
F
2 )/2

and λM
1 = (λM

2 + λ̄
M
2 )/2), the resulting misclassification costs are 1.0108 and 0.8167 (for Ai =

80), respectively. These are 139.5% and 112.7% of the cost (0.7245) achieved by the proposed
approach. The performance degradation for these schemes is caused because they do not consider
stream characteristics.

7.3. Application Performance under No Resource Constraints

In this section, we quantify the performance of the entire application shown in Fig 1 achieved
by the proposed tree configuration games. In this simulation, we use Ai = 80, 1 ≤ i ≤ 11, and
each CU deploys the myopic strategy. We compare against the centralized solution using SQP
in [16]. As discussed in [16], since the gradient descent based SQP does not guarantee a global
optimal solution, we use several different randomized starting points, and provide the minimum
(best) as well as the average cost (average). The results are shown in Table 3.

It is clear that the proposed distributed approach based on myopic strategy always outper-
forms the average performance of centralized approach for different misclassification cost sce-
narios i.e., (λF = λM = 1), (λF = 4, λM = 1), and (λF = 1, λM = 4). These correspond to
equal cost for false alarms and misses, high costs for false alarms, and high costs for misses
respectively. Additionally, as the costs become unbalanced, the distributed algorithm perfor-
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Table 4: Experimental Setup

Experiment Case Coalitions in “yes” (c1) branch Coalitions in “no” (c̄1) branch
1 {c1} (self coalition) {c̄1} (self coalition)
2 G1 = {c1,C2} Ḡ1 = {c̄1,C3}
3 G1 = {c1,C2,C4} Ḡ1 = {c̄1,C3,C6}
4 G1 = {c1,C2,C5} Ḡ1 = {c̄1,C3,C7}
5 G1 = {c1,C2,C5}, Ḡ2 = {c̄2,C5, } Ḡ1 = {c̄1,C3,C6,C7}
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Figure 5: Application costs.

mance increasingly approaches the optimal performance of the centralized algorithms. These
are reflected in the percentages in the table, computed as

(Cost−Costcent
avg )

(Costcent
best−Costcent

avg )×100%.
In order to investigate the impact of the foresighted strategies on application costs, we con-

sider various coalition settings shown in Table 4. Again, we use Ai = 80, 1 ≤ i ≤ 11, and set
λF

l (λ̄F
l ) = λM

l (λ̄M
l ) = 1 for leaf CUs. The resulting application costs for various coalition settings

are shown in Fig. 5.
These results show that the foresighted decisions can lead to a lower application cost (or

equivalently, a higher application utility). In Fig. 5, the largest application cost (i.e., the mini-
mum application utility) is incurred when CUs select their actions based on the myopic strategies
(i.e., in Experiment Case 1, where no coalition is formed). Moreover, we observe that the ap-
plication cost reduces (utility improves) as the coalition size increases. Interestingly, the cost
reduction becomes significant when classifier 1 (i.e., the first classifier of this tree) starts to form
its coalitions. For example, in both branches in Fig. 5, the largest cost reduction is achieved
when classifier 1 forms coalitions with classifier 2 or classifier 3. However, the improvement
gained for enlarging coalitions diminishes rapidly. These observations can be clearly quantified
using marginal contribution [27] to the application utility. The marginal contribution ∆Vĉk (Gi)
of ĉk(< Gi) to coalition utility UGi is defined as

∆Vĉk (Gi) = UG+i − UGi ,
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Table 5: Achieved Application Costs (80 actions)

Experiment Cases Application Cost
Centralized (Average) 0.587 (0 %)

Myopic 0.536 (68.0 %)
Foresighted (c1,C2) 0.535 (69.3 %)
Foresighted (c̄1,C3) 0.535 (69.3 %)

Foresighted (C1,C2,C3) 0.533 (72.0 %)
Centralized (Best) 0.512 (100 %)

where UG+i and UGi denote the application utilities achieved by coalition G+i and Gi, respectively,
and G+i denotes a enlarged coalition of Gi with additional CU ĉk, i.e., G+i = Gi ∪ {ĉk}. For
example, the marginal contribution of C3 to the application utility achieved by {c̄1} (self coalition)
is computed as

∆VC3 ({c̄1}) = U{c̄1,C3} − U{c̄1} = (−0.5345) − (−0.5361) = 0.0016.

However, the marginal contribution of C6 to the application utility achieved by coalition {c̄1,C3}
is given by

∆VC6 ({c̄1,C3}) = U{c̄1,C3,C6} − U{c̄1,C3} = (−0.5342) − (−0.5345) = 0.0003,

which is approximately 20% of application utility improvement compared to ∆VC3 ({c̄1}). This
confirms the observed application utility result trends. The marginal contribution can be used by
foresighted CUs to determine their coalition size. For example, a foresighted CU ci can include
additional CU ĉk in its coalition Gi, only if its marginal contribution is more than a certain
threshold θi, i.e., ∆V{ĉk}(Gi) > θi.

We also compare against the centralized solution in [16], and present results in Table 5. The
percentages in the table are computed as

(Cost−Costcent
avg )

(Costcent
best−Costcent

avg )×100%. In the considered coalitions,
the foresighted strategies for coalitions {c1,C2} or {c̄1,C3} enable the application to achieve ap-
proximately 69% of centralized best solution. However, the application can achieve 72% of
centralized best solution with the foresighted decisions for a larger coalition {C1,C2,C3}, which
is consistent to the result from Proposition 3. Note that a higher performance improvement can
be obtained by enlarging the coalitions, as discussed in Section 7.2.

7.4. Performance of Application with Resource Constraints

We consider two different resource division policies at the nodes i) equal allocation, and ii)
proportional allocation (proportional to each classifier’s processing requirements). The process-
ing complexity for our different classifiers (measured experimentally) is shown in Table 6. P is
a normalization constant that normalizes the processor power (speed). The processing require-
ments for Ci are determined as Rreq

i = αi · ti and the corresponding γ is determined by (28).

7.4.1. One Foresighted CU with Other Myopic CUs
In this section, we consider two different cases, each with only one foresighted CU in the

application. In the first case, we have foresighted CU c1 that forms coalition {c1,C2}, while in
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Table 6: Processing Complexity Per Image

Classifier Team Sports Baseball Little League Basketball Cricket Winter Sports
Complexity 0.3884 × P 0.1761 × P 0.1307 × P 0.0772 × P 0.2006 × P 0.3199 × P
Classifier Ice Sports Skating Skiing Racquet Sports Tennis -

Complexity 0.2223 × P 0.2403 × P 0.2608 × P 0.1276 × P 0.1720 × P -
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Figure 6: Application placement and available resources in each node.

the second case, we have foresighted CU c̄1 that forms coalition {c̄1,C3}. Foresighted classifiers
use empirical frequency based learning (Algorithm 2) to estimate the pmf of γ. The 11 classifiers
in the considered application are distributed over 4 nodes as shown in Fig. 6: classifier 1 is located
in node 1, classifiers 2 and 3 are located in node 2, classifiers 4, 5, 6, and 7 are located in node
3, and classifiers 8, 9, 10, and 11 are located in node 4. The available resources for node N
(N = 1, 2, 3, 4) are RA

N = 0.4P, 0.2P, 0.1P, 0.1P, respectively. We assume that each Ai = 80,
1 ≤ i ≤ 11, and each node allocates its resources based on proportional resource division policy,
which determines resource allocation Ri of Ci in a node N such that

Ri =
Rreq

i∑
h∈N Rreq

h

× RA
N , (36)

where Ri and Rreq
i denote the allocated and requested resources. The resulting application cost is

presented in Fig. 7. We also compare against a completely myopic solution, where all classifiers
use myopic strategies.

Fig. 7(a) and Fig. 7(b) show the selected actions and the corresponding application costs for
foresighted CUs c1 and c̄1, respectively. Action index â1,k (1 ≤ k ≤ A1 = 80) of CU ĉ1 represents
kth operating point

(
p̂F

ik, p̂
D
ik

)
=
(

k−1
Âi−1
, f̂i
(

k−1
Âi−1

))
, as defined in (6). As discussed in Section 6.2, the

actions determined by the completely myopic solution are not affected by resource constraints.
Hence, in both Fig. 7(a) and Fig. 7(b), the selected actions based on the myopic strategy do not
change over time, and the resulting application costs are constant. However, the actions selected
by the foresighted CUs vary over time until the γ estimation based on Algorithm 2 is completed.
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Figure 7: Selected foresighted actions (over time) and the corresponding application costs.

In this case, the algorithm shown in Algorithm 2 guarantees a convergence of the foresighted
action. The maximum number of iterations required for convergence is bounded by the number
of available actions, i.e., A1 = 80 in this example7. Note that γ for each CU sharing a node
that deploys the proportional resource divisions scheme is the same, because γi for ci (or c̄i) is
determined by γi = min{1,Ri/R

req
i }, and

Ri

Rreq
i

=

Rreq
i∑

h∈N Rreq
h

Rreq
i

=
1∑

h∈N Rreq
h

, (37)

for all CUs that share node N .

7.4.2. Foresighted CUs Competing for Resources
We now consider the case where two foresighted CUs compete for resources on a shared

node. In this experiment, we assume that both c1 and c̄1 are foresighted, with coalitions {c1,C2}
and {c̄1,C3}, and both use empirical frequency based learning (Algorithm 2) to estimate the pmf
of γ. Other simulation settings are the same as in Section 7.4.1, and the results are shown in
Fig. 8.

Since both c1 and c̄1 are foresighted, their actions jointly affect the resource allocations for
classifiers C2 and C3, which leads to different resulting application costs, numbers of iterations
for the convergence, and the converged optimal actions. Compared to the results in Fig. 7, we can
observe that the numbers of iterations required to converge to their optimal actions are different:
c1 requires more iterations while c̄1 requires less iterations. Moreover, the converged optimal
actions are also different. Specifically, the converged foresighted action index of c1 in Fig. 7 is
a∗1 = a1,4, while a∗1 = a1,2 in Fig. 8. Moreover, the converged foresighted action index of c̄1 in
Fig. 7 is ā∗1 = a1,8, while ā∗1 = a1,10 in Fig. 8. Note that with increased number of foresighted
CUs, the resulting cost decreases over the results in Fig. 7(b).

7In practice, the actual number of iterations before convergence depends on the DET curves and the first determined
action.
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Figure 8: Selected actions and application costs.

Table 7: Achieved Application Costs (80 actions, Different Resource Division Policies)

Equal Resource Division Policy Proportional Resource Division Policy
Myopic Strategy 0.8243 0.6828

Coalition G1 = {c1,C2} 0.8175 0.6779
Coalition Ḡ1 = {c̄1,C3} 0.7885 0.6133

Coalitions {G1, Ḡ1} 0.7817 0.6015

7.4.3. Impact of Resource Division Policies
Finally, we investigate the impact of different resource division policies on the convergence.

We use the same settings as for previous experiments, however we allow node 2 (where classifiers
2 and 3 are placed) to use the two different policies – equal and proportional division. The equal
resource division policy allocates resources equally to all classifiers placed on it, i.e.,

Ri = RA
N/|N|, for all Ci placed on N , (38)

where |N| denotes the number of classifiers in nodeN . The resulting application costs are shown
in Table 7.

The results in Table 7 show that the proportional resource division policy always leads to bet-
ter performance (lower application cost) than the equal resource division policy. This is because
the equal resource division policy does not consider the resource requirements of the different
classifiers (that depend on input data stream characteristics, processing costs etc.), while the
proportional resource division policy does.

8. Conclusions

In this paper, we focus on the optimization of stream mining applications constructed as tree
topologies of classifiers. We model the optimized configuration of these classifier tree topologies
as a tree configuration game. We develop distributed approaches, where individual classifiers
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configure themselves by selecting actions (from a set of discrete available actions) that maximize
their local utilities. We determine the minimum information that needs to be exchanged across
classifiers and propose a novel scheme for determining the local utilities for intermediate CUs,
which are required to successfully design the tree configuration games. We analytically show
that the proposed approach guarantees a convergence to a unique pure strategy Nash equilibrium
in operating points of each CU. If information about successive classifiers is available to a CU,
then the CU can form a coalition for the successive classifiers, and select a foresighted action that
maximizes the coalition utility. We analytically show that the foresighted strategies can eventu-
ally improve the application utility. Our simulation results, performed on a semantic concept
detection application for sports image analysis, show that the performance of the proposed my-
opic approach is comparable to a centralized solution – outperforming the average performance.
Specifically, the myopic solution improves 68% ∼ 88.6% (depending on the misclassification
costs) of the application utility compared to the centralized SQP-based approach on average,
and a higher improvement can be achieved by deploying the foresighted solutions. Moreover,
if more actions become available, a higher application utility is achieved. Foresighted strategies
that maximize coalition utilities lead to a higher application utility than the myopic strategy. In
addition, the performance incrementally improves as the coalition size increases. Future inter-
esting research topics may include how to configure the topology of classifiers (or sensors) in
tree or chain structures in an ad hoc manner (i.e., ordering classifiers) and what are the impact
of the other resource division policies and load-shedding schemes on the system performance in
the resource constrained scenarios.

Appendix A.

We show that the local utility function defined in (7) is concave if a DET curve is differen-
tiable and non-decreasing concave. A function Ui(x) is concave with respect to x if and only if
∂2Ui(x)
∂x2 ≤ 0.

Let fi be a differentiable and non-decreasing concave function that characterizes the DET
curve of CU ci, i.e., pD

i = fi(pF
i ) for 0 ≤ pF

i ≤ 1. Since function fi is concave, we have

∂2 fi(xi)
∂x2

i

≤ 0, (A.1)

for 0 ≤ xi = pF
i ≤ 1. Since pD

i can be completely parameterized by pF
i and fi, the local utility

function Ui(ai) for ai = (xi, fi(xi)) can be expressed as a function of xi, i.e.,

Ui(xi) = −[(ti − giϕi)xiλ
F
i + (Λi − giϕi f (xi))λM

i ].

The second derivative of Ui(xi) is given by

∂2Ui(xi)
∂x2

i

= giϕi
∂2 fi(xi)
∂x2

i

λM
i ≤ 0,

since parameters of gi, ϕi, and λM
i are non-negative constants and ∂

2 fi(xi)
∂x2

i
≤ 0 as shown in (A.1).
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