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ABSTRACT
Large-scale multimedia semantic concept detection requires real-
time identification of a set of concepts in streaming video or large
image datasets. The potentially high data volumes of multimedia
content, and high complexity associated with individual concept de-
tectors, have hindered the practical deployment of many current so-
lutions. In this paper, we present a summary of our work in build-
ing systems and applications for resource adaptive semantic concept
detection in multimedia using large-scale distributed stream mining
systems. We construct such concept detection applications as a hier-
archical topology of individual concept detectors, and deploy them
on distributed processing infrastructure. We then focus on dynam-
ically configuring individual concept detectors to meet system im-
posed resource constraints while minimizing a penalty defined in
terms of the misclassification cost. We present multiple centralized
and distributed algorithms for this configuration, and describe the
implemented application and system. We also verify through simu-
lations that significant improvement in terms of accuracy of classifi-
cation can be achieved through our approach.

1. INTRODUCTION
Recently, there has been the emergence of several applications
that require processing and classification of continuous, high vol-
ume multimedia streams. These include online photo and video
streaming services, search engines, spam filters, security services,
etc. Each application may be viewed as a processing pipeline that
analyzes streaming data from a set of raw data sources to extract
valuable information in real time. In order to handle the naturally
distributed set of data sources and jobs, as well as high computa-
tional burdens for the analytics, distributed stream mining systems
have been recently developed [1]. These systems leverage compu-
tational resources from a set of distributed processing nodes and
provide the framework to deploy and run different stream mining
applications on various resource topologies. In such systems, com-
plex jobs are decomposed into a network of operators performing
feature extraction, classification, aggregation, and correlation. Such
decomposition and distributed deployment has significant merits
in terms of scalability, reliability, and performance objectives of
large-scale, real-time stream mining applications.

In this paper we focus on applications for real-time semantic
concept detection in multimedia streams, deployed on a stream min-
ing system. We construct these applications as topologies of net-
worked binary concept detectors, where the detectors are organized
into topologies based on the semantic relationships between con-
cepts of interest. A key research challenge lies in the management
of limited system resources (e.g. CPU, memory, I/O bandwidth etc.)
while providing desired application performance. Prior research in
this area relies mostly on load-shedding, where algorithms determine
a discard policy given the observed data characteristics e.g. burst,
and the desired Quality of Service (QoS) requirements [5] [2]. These
approaches are limited by their assumption that the impact of load

shedding on performance is known a-priori. They also impose sig-
nificant overheads for computing any relevant metrics, and consider
only locally available information, which may lead to sub-optimal
end-to-end performance.

Instead of deciding on what fraction of the data to process, as
in load-shedding based approaches, we determine how the available
data should be processed given the underlying resource allocation.
Hence, we allow individual classifiers in the topology to operate at
different performance levels given their resource allocation. We de-
fine application utility, as a function of these performance levels,
in terms of the end-to-end accuracy, i.e. desired tradeoff between
probability of detection and probability of false alarm. Using this
utility, our resource management problem may be formulated as a
network optimization problem (NOP). However, unlike traditional
NOPs, that determine a transmission rate per job, we configure the
performance level, in terms of the operating point, of each classi-
fier to meet system resource constraints while maximizing the end-
to-end performance. We develop solutions for this problem using
both a centralized optimization solution using Sequential Quadratic
Programming (SQP), as well as distributed solution based on game
theoretic principles. We then implement a multimedia analysis appli-
cation, for semantic concept detection in sports images, along with
our optimization algorithms on IBM’s distributed stream mining sys-
tem [1], and benchmark performance in terms of scale as well as
misclassification penalty.

The paper is organized as follows. We introduce our application
of interest in Section 2. In Section 3 we describe our models for
classifiers, classifier tree topologies, and define utility and resource
constraints for the optimization problem. In Section 4, we include a
summary of our designed centralized as well as distributed solutions.

2. SEMANTIC CONCEPT DETECTION APPLICATION
We consider an application for hierarchical semantic concept detec-
tion [3] in streaming sports images. Incoming images of several dif-
ferent types are classified into six classes of interest: Little League
Baseball, Basketball, Cricket, Skating, Skiing and Tennis, each of
which identifies a specific type of sport. By introducing a set of
additional intermediate concept detectors, we may then construct a
hierarchical topology of classifiers such that not all classifiers need
to process all the images. For instance, using a set of additional clas-
sifiers for Team Sports, Winter Sports, Ice Sports, Racquet Sports
and Baseball concept identification, we can build a classifier tree as
shown in Figure 1.

The Team Sports classifier filters data relevant to the Little
League, Cricket and Basketball classifiers, the Winter Sports classi-
fier filters data relevant to Skating and Skiing and the Racquet Sports
classifier filters data relevant to Tennis. The mutually exclusive
nature of concepts Team Sports, Winter Sports and Racquet Sports
allows identifying these in series, i.e. passing only data that does not
belong to a class to the next class. Using this hierarchy, the amount
of data each classifier needs to process is significantly lower than the



Fig. 1. Hierarchical Classification Tree.

total data volume - depending on the a-priori probability of concept
occurrence, leading to savings in resource consumption.

3. RESOURCE-ADAPTIVE CONCEPT DETECTION
Consider a binary classifier (concept detector) Ci in the topology
shown in Figure 1. The total data rate or throughput entering Ci is
labeled ti−1. Since classifiers make mistakes, the throughput con-
sists both of correctly labeled as well as incorrectly labeled data. The
total goodput entering Ci is labeled gi−1, where the goodput con-
sists only of that portion of the throughput that is correctly classified.
Classifier Ci labels data as belonging to the yes class or the no class,
and forwards data appropriately. The apriori conditional probability
of the data belonging to the yes class for Ci (given the processing
the data has already undergone) is labeled φi. Correspondingly, the
probability for the no class is 1− φi.

The operation of Ci is characterized by its Receiver Operating
Characteristic (ROC) curve, a curve that represents a tradeoff be-
tween probability of detection pD and probability of false alarm
pF . Note that a binary classifier may have two such curves, one
corresponding to the yes class and the other to the no class. These
are coupled together when the classifier uses for instance one score
threshold, i.e. if the classification score for a data object falls above
a threshold it is labeled yes otherwise it is labeled no. In the most
general case though, the classifier may use two separate thresholds,
i.e. when the score falls above the first threshold, the data is labeled
yes, if the data falls below the second threshold the data is labeled
no. The use of two independent thresholds allows the classifier to
both replicate data across its output branches (i.e. say both yes and
no), as well as discard data (i.e. say neither yes nor no) as required.
Hence the performance of the classifier is represented by two curves(
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Given these definitions, the output of Ci, i.e. ti and gi on the
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Given this recursive relationship, we can then determine the through-
puts and goodputs at each terminal (leaf) classifier to determine the
end-to-end throughput and goodput. The misclassification penalty
may be defined in terms of the two types of errors - a penalty cM per
unit rate of missed detection, and a penalty cF per unit rate of false
alarm. For the yes output of Ck, we can compute this as:

Uk = cM
k (t0πk − gk) + cF

k (tk − gk) , (3)

where πk represents the apriori probability of data actually belong-
ing to the yes class of Ck and t0 represents the input data rate into the

tree. We can similarly define the penalty for the no class. The end to
end misclassification penalty may thus be defined as a sum of these
penalties for all the leaf classifiers. Note that this misclassification
penalty function is non-concave in nature.

In addition to the misclassification penalty, we also need to
model the resource consumption of each classifier. Given an under-
lying model, e.g. SVM, Bayes, Decision Tree etc., the computational
requirements of a classifier Ci may be modeled as being directly pro-
portional to the rate of data entering it. Hence we use a linear model:
ρi = ti−1αi, where αi represents the per-unit rate computations for
the classifier. Finally, given a set of N classifiers, organized into a
tree topology, placed on M resource-constrained nodes, the configu-
ration problem involves determining the right set of operating points
for each classifier such that the end to end misclassification penalty
is minimized, while the M resource constraints are satisfied.

4. SUMMARY OF SOLUTIONS
In [6] we solve the topology configuration optimization problem us-
ing a centralized approach based on Sequential Quadratic Program-
ming. In this case, the central optimizer has access to all the ROC
curves, apriori probabilities as well as resource placements and con-
straints. The gradient descent based approach guarantees conver-
gence to local minima for the utility, however, the non-concavity of
the utility as well as the constraints do not allow analytical bounds
on performance. The approach clearly outperforms load-shedding
approaches - leading to savings of a factor 1.5-2 times the mis-
classification penalty. This factor increases with increasing cost for
false alarms, and with tightening resource constraints. Alternately,
in [4] we propose a distributed solution to this problem, using game-
theoretic principles. In this solution, individual classifiers select their
operating points to maximize a local utility function. The utility may
be purely local to the current classifier, corresponding to a myopic
strategy, or may include the impact of the classifier actions on suc-
cessive classifiers in the tree, corresponding to a foresighted strategy.
We analytically show that foresighted actions of any classifier im-
prove end-to-end performance over myopic strategies, and derive an
associated probability bound. We then evaluate our algorithms on an
application for hierarchical sports scene classification. We compare
centralized, myopic and foresighted solutions and show that fore-
sighted strategies outperform myopic strategies, and also asymptot-
ically approach the centralized optimal solution as the number of
actions available to each classifier increase. In this presentation,
we will describe the application, the system, and these two differ-
ent approaches in detail. We will include simulation results with
comparisons against load-shedding approaches, and conclude with a
summary of interesting directions for future research.
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