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Abstract
Visual representations are ubiquitous instruc-
tional tools in science, technology, engineering,
and math (STEM) domains. The goal of our on-
going research is to develop a new methodol-
ogy for cognitive modeling of perceptual learn-
ing processes so as to create adaptive technolo-
gies that support perceptual fluency. We are us-
ing metric learning methods to assess which vi-
sual features novice students and experts focus
on when presented with visual representations.
Comparing novice to expert perceptions will es-
tablish which visual features perceptual support
should help students attend to (e.g., because ex-
perts focus on them but novices do not). Hence,
metric learning will provide a skill model of stu-
dent perceptions (i.e., analogous to what verbal-
ization techniques provide in traditional cogni-
tive modeling). In this paper, we apply metric
learning to identify salient features in the visual
perception of molecular diagrams used in chem-
istry education.

1. Visual Representations in Chemistry
Instructors use the visual representations shown in Figure 1
to help students learn chemical bonding. Yet, to a novice
student, these visual representations may not be helpful be-
cause the student may not know how to interpret the repre-
sentations. First, they typically focus on one set of rep-
resentational competencies: students’ conceptual under-
standing of representations (e.g., the ability to explain how
visual features depict concepts). This focus mimics edu-
cation psychology research’s focus on conceptual learning
(Ainsworth, 2006; Seufert, 2003). However, research sug-
gests a second type of representational competency is cru-
cial for students’ learning success: perceptual knowledge
(Kellman & Massey, 2013; Massey et al., 2011), the abil-
ity to rapidly and effortlessly perceive information based
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on visual features of the representations. This ability re-
sults from implicit forms of learning. For example, expert
chemists simply ’see’ that the molecules depicted in Fig-
ure 1 have a local negative charge by the Oxygen atom,
without having to make a conceptual inference. In con-
trast, novice students may wonder: does the red color in
the ball-and-stick figure (Figure 1-b) mean the same thing
as in the electrostatic potential map (EPM; Figure 1-d)? (It
does not.) Instructors often ask students to use visual rep-
resentations that they have never seen before to make sense
of concepts that they have not yet learned about (Airey &
Linder, 2009; Wertsch & Kazak, 2011), an issue known
as the representation dilemma (Dreher & Kuntze, 2015).
Hence, to succeed in STEM, students need representation
skills that enable them to use visual representations to make
sense of and solve domain-relevant problems (Ainsworth,
2006; Gilbert, 2005).

Figure 1. Representations of water. a: Lewis structure; b: ball-
and-stick figure; c: space-filling model; d: electrostatic potential
map (EPM).

Educational technologies are suitable to support represen-
tation skills because they can provide instructional support
that adapts to individual needs. Adaptive capabilities of ed-
ucational technologies such as intelligent tutoring systems
(ITSs) rely on a cognitive model of student learning. Cog-
nitive models infer whether the student has learned target
skills through interactions with technology. Current cog-
nitive models exist only for verbally accessible, explicit
knowledge and cannot capture perceptual fluency resulting
from implicit learning processes. Hence, ITSs cannot ad-
equately adjust to students perceptual fluency, which lim-
its capabilities of ITSs to adaptively sequence perceptual
learning tasks and provide useful feedback on student in-
teractions. The proposed research is to develop a method-
ology for cognitive modeling of perceptual learning pro-
cesses so as to create adaptive support for perceptual learn-
ing tasks.
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2. Metric Learning of Perceptual Similarities
For our experiment, we selected visual representations of
chemical molecules are common in undergraduate chem-
istry instruction. Lewis structure representations are the
most commonly used type of visual representations in
undergraduate chemistry textbooks. To decide which
molecules to include, we reviewed textbooks and online
instructional materials and listed all occurring molecules.
Further, we searched online instructional materials for the
frequency of chemical names (e.g., H2O) and common
names (e.g., water) for these molecules. For our experi-
ment, we chose the 50 most common molecules.

We created feature vectors that describe which visual fea-
tures each representation contains (e.g., bond angles, the
numbers of specific atoms, or the numbers of different
atoms present). A total of 110 features were obtained for
each molecule representation. The features for molecule i
are denoted by the vector xi ∈ R110. The goal of our ex-
periment is to identify which features chemistry students
attend to while making judgments about similarities or dif-
ferences between molecule representations.

To this end, we aim to learn a similarity function that
describes student perceived similarities between molecule
representations. We model the perceptual similarity be-
tween molecules i and j by

Sij = xT
i Axj ,

where A ∈ R110×110 matrix that parameterizes the model.
The matrix A is learned by collecting perceptual judgments
from chemistry students. Specifically, students are pre-
sented with a target molecule representation i and two other
molecule representations, say j and k, and they are asked to
select which of these two is most similar to the target rep-
resentation. The metric learning problem is to find the A
that minimizes the number of disagreements between the
ranking predictions for each triple (i.e., either Sij > Sik or
vice-versa) and the comparative judgments collected from
the students.

This learning problem can be posed as follows. Suppose
that N comparative judgments are collected from students.
For each judgment, n = 1, . . . , N , let in denote the target
in judgment n, jn and kn denote the two alternatives, and
yn = {−1,+1} denote the response (+1 if jn is selected
and−1 otherwise). Then we solve the convex optimization

Â = argmin
A

N∑
n=1

(
yn − xT

inA(xjn − xkn
)
)2

.

The relative importance of different features to the percep-
tual judgments can be quantified in terms of the norm of
each row/column in Â. Alternatively, sparse regression

Figure 2. Top ten features predictive of similarity judgments of
novice chemistry students.

techniques, such as the Lasso, can be employed to auto-
matically select an predictive subset of the features.

Another way to analyze and interpret the comparative judg-
ment data is to create a metric embedding using non-
metric multidimensional scaling techniques. The idea
here is to create a two-dimensional image where each
molecule representation is located such that distances be-
tween molecules in the image agree as well as possible with
the judgment data. The results presented here are part of a
larger study we conducted, detailed in (Rau et al., 2016).

Figure 3. Two-dimensional similarity embedding of molecule
representations. Distances between molecule representations cor-
respond to student perceptions of dissimilarity (i.e., molecule rep-
resentations that are depicted close to one another are perceived
to be similar).

2.1. Collecting Perceptual Judgments from Students

Using NEXT, described further in Section 3, we collected
perceptual judgments from students in an undergraduate
chemistry course regarding the similarity between different
Lewis structure representations of molecules in our corpus.
We uploaded the images in our corpus to NEXT and used
random sampling to generate the queries in this experiment.

Students completed similarity judgment tasks in the form
of triplet comparisons (see Figure 4). Given a represen-
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tation of a molecule (the“target-molecule”), students were
asked to choose which of two other molecule represen-
tations (the “choice-molecules”) was most similar to the
given one. For each task, the student chose between one
of the two choice-molecules that he/she perceived to be
more similar to the target-molecule. After each task, an-
other triplet was generated uniformly at random from our
corpus of molecule representations.

In NEXT, students first received a brief description of the
study and then worked through a sequence of 50 similarity
judgment tasks. In total, we were able to collect 26,180 re-
sponses from 563 possibly non-unique participants through
NEXT.

Figure 4. A sample query from NEXT of the type presented to stu-
dents in the similarity judgment task. Students clicked on which
of the two choice molecules they deemed most similar to the tar-
get.

3. NEXT: A Open-Source Software System
for Machine Learning

As mentioned, the research study above was carried out
using the cloud-based NEXT software system (http://
nextml.org). The goal of NEXT is to provide exper-
imenters with an accessible, user-friendly interface to run
reproducible, large scale experiments, with a suite of po-
tential algorithms for adaptive data collection in addition
to being a platform for machine learning researchers to im-
plement and test new algorithms.

Adaptive data collection can lead to learning an embedding
with much fewer questions by asking the most informative
triplet query at any given time. This can potentially pro-
vide huge gains over over random collection (Jamieson &
Nowak, 2011; Tamuz et al., 2011). Crowdsourcing plat-
forms such as Amazon’s Mechanical Turk provide access
to potentially thousands of users, and tapping into these re-
sources combined with adaptive learning can lead to studies
with thousands of responses being completed in a matter of
hours.

NEXT is a cloud-based tool that allows researchers to uti-
lize adaptive data collection for their own experiments.
Note that NEXT is not just a tool for the triplet embedding
problem. It can be used for ranking, classification, clus-
tering and various other machine learning tasks that need
to be distributed to a large group of participants and rely
on adaptive methods. In addition to providing algorithms
that ask adaptive questions and serving questions to partici-
pants, NEXT provides extensive dashboards on experiment
performance, model specific data, and the ability to run val-
idation studies. Most large scale experiments require a high
overhead to reproduce, especially in the educationally psy-
chology realm. NEXT alleviates this issue by providing a
way to duplicate an adaptive data collection process simply
by using the recycling experiment parameters.

Finally NEXT is general purpose and extensible. This en-
ables researchers to implement their own experiment types
and test various algorithms for data analysis. Note that
this extensibility differentiates NEXT from other machine
learning libraries such as MLib (Meng et al., 2015) and
GraphLab (Low et al., 2012) that work on fixed data sets
rather than providing a data collection tool. NEXT is built
to be deployed on Amazon’s EC2 service and experiments
can be launched Currently NEXT is being used by our
team, other researchers at the University of Wisconsin-
Madison, and the Air Force Research Laboratory for adap-
tive data collection needs.

4. Initial Results
The initial results of the experiment with Lewis Structures
are part of a larger effort of ours to understand and lever-
age student and expert perception (Rau et al., 2016). By
characterizing the difference between student and expert
perceptual judgments, we aim to build an ITS capable of
providing adaptive support for perceptual learning tasks.

By solving the minimization shown in section 2 and us-
ing the resulting matrix Â, we were able to predict the
outcomes of held out triplets with 69% accuracy. Further-
more, from Â we can also compute the importance of each
feature and rank them accordingly, as shown in figure 2
(Rau et al., 2016). These results show that the most highly
ranked feature is the number of distinct letters. Specific
visual features that are relevant to organic molecules were
also ranked highly (e.g., the number of single bonds be-
tween Oxygen and Hydrogen atoms, the number of bonds
between Carbon and Oxygen, the number of Nitrogen and
Oxygen atoms). These features indicate the presence of
chemical functional groups that are relevant to predicting
molecule’s reactive behavior. This ranking agrees visually
with the embedding generated by NEXT, which has been
labelled to show that clusters form around specific classes
of hydrocarbon and organic molecules.
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