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APPENDIX A 
 

(1) Proof of the existence of NE 

It should be noted that the strategy space for each agent in the IDG is compact and convex. Meanwhile, 

an agent’s utility is quasi-concave over its link formation strategy. Hence, it has been shown in [1] that 

pure Nash equilibrium always exists in such a game. � 

(2) Proof of Corollary 1 

This can be proved using the same idea as Proposition 3. We first prove the following claim. 

Claim 1. Given a strict NE *
g  and when , ,

ij
k k i j N= ∀ ∈ , if * 1

ij
g =  for some ,i j N∈ , then 

* 0
jj
g ′ =  for any j i′ ≠  and j j′ ≠ . 

Proof of Claim 1: Suppose, in contrast, * 1
ij
g =  and * 1

jj
g ′ =  for some j i′ ≠  and j j′ ≠ . Then by 

deleting its link with j  and forming a new link with j ′ , i  receives the same payoff as what it receives in 

*
g , which contradicts the fact that *

g  is an (strict) equilibrium and hence this lemma follows. � 

Then we are able to show that for each non-singleton component always has a star topology in a strict 

NE. 

Without loss of generality, we select two agents ,i j C∈   where C  is a component in 
*( )cl g , such that 

* 1
ij
g = , then according to Claim 1, we have that * 0

jj
g ′ =  for any j C′ ∈  and { , }j i j′ ∉ . According to 

Proposition 1, we should also have * 0
ji
g =  since otherwise agent j  can strictly increase its utility by 

removing the link it forms to agent i .  

Now suppose that * 1
j i
g ′ =  for some j C′ ∈  and { , }j i j′ ∉ . Then it is obvious that agent j ′  can 

switch its link from agent i  to agent j  without decreasing its utility, which gives a contradiction. 

Therefore, we can conclude that * 1,   and 
ij
g j C j i= ∀ ∈ ≠ . Meanwhile, 

* 0,  ,  and ,
jj
g j j C j j i′

′ ′= ∀ ∈ ≠ . In other words, C  has a star topology where agent i  stays in the center 

and forms links with all other agents who stay in the periphery, while all the other agents do not form links 

mutually. This corollary thus follows. � 

(3) Proof of Theorem 2 
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(i) When ( )f x k< , suppose there is an equilibrium *
g  which contains a non-singleton component C . 

Let i  and j  be two agents in C  such that * 1
ij
g = , it is obvious that agent i  can strictly increase its utility 

by setting 0
ij
g = . Hence there is a contradiction and this statement follows.  

(ii) When ( ) ( , )f x k k∈ , consider a component C  (which is minimal according to Proposition 1) and 

one of its periphery agent i  such that  * 1,
ji
g j= ∃  and * 0,

j i
g j j′ ∀ ′= ≠ .  

Suppose * 1
ij
g = : If 

ij
k k=  and | | 2C > , agent i  can always switch its link to some other agent 

Cj ′ ∈  without decreasing its utility, If 
ij
k k=  and | | 2C = , agent i  can always increase its utility by 

switching its link to some other agent Cj ′ ∉ . In both cases contradict the fact that *
g  is a strict NE. 

Hence, we have 
ij
k k= . Hence, we have * 0, / { , }

i j
g i C i j′

′= ∀ ∈  (otherwise i ′  can switch its link from 

j  to i  without decreasing its utility). Since i  is a periphery agent, we thus have * 1, / { , }
ji
g i C i j′

′= ∃ ∈ . 

If | | 3C = , then 
ji
k k′ =  and agent i  can switch its link from j  to i ′  without decreasing its utility. 

Therefore, we have | | 3C >  and * 1, / { , , }
i i
g i C i j i′ ′′

′′ ′= ∃ ∈ . If 
ji
k k′ = , agent j  can switch its link 

from i ′  to i ′′  without decreasing its utility, whereas if 
ji
k k′ = , agent i  can switch its link from j  to i ′  

without decreasing its utility. Both cases contradict the fact that *
g  is a strict NE. It can be thus concluded 

that * 1
ij
g =  cannot hold in *

g  and we have * 1
ji
g = . As a result, j  should belong to the same group as i  

with 
ij
k k= . 

Now consider any other agent / { , }j C i j′ ∈ . If * 1
j j
g ′ = , then j ′  can switch its link from j  to i  

without decreasing its utility, which leads to a contradiction. Therefore, we have * 1, / { }
jj
g j C j′

′= ∀ ∈  

and the component forms a star topology. Also, if there is an agent j C′′ ∈  who is not from the same 

group as j , then j  can always increase its utility by removing the link to j ′′  since ( )f x k< . Hence, this 

statement follows. 

(iii) When ( )f x k> , it is still true that agents from the same group belong to the same component. 

Also, the network should be connected with a unique component under *
g . It is always true that we can 
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find two agents i  and i ′  from one group 
z
N  such that * 1

ii
g ′ = . Using the same argument as in statement 

(ii), it is easy to show that * 1, / { }
ii z
g i N i′′

′′= ∀ ∈ . Now consider an agent 
z

j N∉ . We have 

* 0,
ji z
g i N′

′= ∀ ∈  (otherwise the condition of a strict NE is violated). Now consider a path 

1 1 2
(( , ),( , ), ...,( , ))

i j m
path i j j j j j′

′=  with 
1
,..., ,

m z
j j j N∉  and 

z
i N′ ∈ . Obviously, we have 

1

* 1
i j
g ′ = . 

Then i ′  can switch its link from 
1
j  to j  without decreasing its utility, which again violates the fact that 

*
g  is a strict NE. It can be thus concluded that for each 

z
j N∉ , * 1,

i j z
g i N′

′= ∃ ∈  and * 0,
jj z
g j N′

′= ∀ ∉ . 

Hence, this statement follows. � 

(4) Proof of Proposition 3 

This can be proven using the same idea as Proposition 1.  � 

(5) Proof of Theorem 3 

Let 
0

min
i i

Ni
k k

∈
=  and consider a periphery-sponsored star g  with 

0
0

/ { }1,
ji

j N ig ∀ ∈=  and 

0
, / { }0,

jj
jg j N i′
′∀ ∈= . It is obvious that g  is both social optimal and an NE. Hence, this theorem is 

proven. � 

 (7) Proof of Proposition 4 

We consider an arbitrary NE *
g . Let 

0
min

i i
Ni

k k
∈

=  and consider a component 
1
C  that contains 

0
i . Now 

consider another component 
2
C . If 

2
C  is a singleton component which contains a unique agent j , then j  

can always increase its utility by forming a link with 
0
i . If 

2
C  is a non-singleton component, then there is 

always an agent 
2

j C′ ∈  such that *
2

1,
j l

Cg l′ = ∃ ∈  with * 0, / { }
ll
g ll N′ ∀ ∈′= . In this case, j ′  can also 

increase its utility by switching its link from l  to 
0
i . Therefore, it can be concluded that *

g  forms a 

connected network. From Proposition 3, we know that the network formed by *
g  is also minimal which 

contains | | 1N −  links and hence, # *
,

/ ( ) max /
i j N i j

U U k k
∈

≤g  . Since this conclusion applies to any 

NE *
g , Proposition 4 thus follows. �  

(8) Proof of Corollary 2 

This can be proved straightforwardly using Proposition 1 and 3. � 
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APPENDIX B 

(9) Proof of Proposition 5 

(i) Consider an agent i  with 
* 0, /{ }
ij
g j N i∀ ∈= . Suppose 

* 0
i
x > , then agent i ’s utility is 

*(0)
i

f cx− . By setting 0
i
x = , agent i  receives a utility 

*(0) (0)
i

f f cx> − , which contradicts the fact 

that 
*
s  is an equilibrium. Hence, we have  

* 0
i
x =  for any agent i  with 

* 0, / { }
ij
g j N i∀ ∈= .  

Now consider an agent j  with 
* 1, /{ }
jj
g j N j′

′∃ ∈= . Suppose agent 
* 0
j
x = , agent j ’s utility is 

( )
(0)

j
jjj N

f k ′′∈
−∑

g
. Given (0)f c′ > , there is always an value ε  such that ( | ( ) |) (0)

j
f N c fε ε− >g . 

Therefore, agent j ’s utility increases with 
j
x ε= , which contradicts the fact that 

*
s  is an equilibrium. 

Hence we have 
* 0
j
x >  for any agent j  with 

* 1, /{ }
jj
g j N j′

′∃ ∈= . 

(ii) This can be proven using the same argument as in statement (i). � 

(10) Proof of Theorem 4 

To prove Statement (i), it is sufficient to see that each agent i  will connect to at least one other agent in 

any NE and thus have * 0
i
x >  when max

ij ij
k cx< , which is independent to the population size | |N .  

By taking the first order derivative of the utility function (4) over 
i
x , we have that 

* * *| ( ) | (| ( ) | )
i i i
N f N x c′ =g g  and thus * *| ( ) |

ii
N x x≥g . Also, for any two agents ,i j  within a same 

component, we have * *
i j
x x= . Therefore, for any component C , the total amount of information produced 

by agents within this component at equilibrium is *
i

i C

x
∈

∑  which satisfies *( ) / | |
i

i C

f x c C
∈

′ =∑  and 

*
i

i C

x x
∈

>∑ . Suppose that there is a sufficiently large constant W  such that for any N  we have 

* *

*inf { }
N

i
S i N

x W
∈ ∈

<∑
s

. Select 
* *

* *arg inf { }
N

N i
S i N

x
∈ ∈

= ∑
s

s . Due to the concavity of ()f ⋅ , we have that 

*( ) / | | ( )
i

i C

f x c C f W
∈

′ ′= ≥∑  for any component C  under *
N
s . Hence, | | / ( )C c f W′≤ . Then we have 

* | | ( ) /
i

i N

x N f W x c
∈

′≥∑ . This shows that there is always a sufficiently large | |N  such that 
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| | ( ) /N f W x c W′ >  which contradicts the assumption that 
* *

*inf { }
N

i
S i N

x W
∈ ∈

<∑
s

 for any N . Therefore, 

we have a contradiction and Statement (ii) follows. � 

(11) Proof of the convergence under the best response dynamic (7) 

Given the best response dynamic introduced by (7), the strategy profile g  evolves following a 

Markovian process over a finite state space. Also, each strict equilibrium represents a steady state (i.e. an 
attractor in this Markov chain). Therefore, there are two possible scenarios after sufficient long time. In the 
first scenario, g  converges to a strict equilibrium. In the second scenario, g  enters a loop of states and 

never exits the loop again. With positive inertia probabilities 
1

{ }
i

n

i
r
=

, it has been shown in [2] that the 

second scenario never takes place and hence g  converges to a strict equilibrium with probability 1 in the 

long run. � 
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