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Abstract

This paper develops a game-theoretic framework for the design and analysis of a new class of

incentive schemes called intervention schemes. We formulate intervention games, propose a solution

concept of intervention equilibrium, and prove its existence in a finite intervention game. We apply our

framework to resource sharing scenarios in wireless communications, whose non-cooperative outcomes

without intervention yield suboptimal performance. We derive analytical results and analyze illustrative

examples in the cases of imperfect and perfect monitoring. In the case of imperfect monitoring, in-

tervention schemes can improve the suboptimal performance of non-cooperative equilibrium when the

intervention device has a sufficiently accurate monitoring technology, although it may not be possible to

achieve the best feasible performance. In the case of perfect monitoring, the best feasible performance

can be obtained with an intervention scheme when the intervention device has a sufficiently strong

intervention capability.
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I. INTRODUCTION

When self-interested users share resources non-cooperatively, it is common that the resources

are utilized suboptimally from a global point of view [2]. Hence, overcoming the suboptimal

performance of non-cooperative outcomes poses an important challenge for successful resource

utilization. The aforementioned phenomenon is widely observed in wireless communications,

where users compete for radio resources interfering with each other. For the sake of discussion,
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consider the following abstract scenario of resource sharing in communications. First, users

determine their resource usage levels, which in turn determine the service quality they receive.

In general, as the overall usage level increases, the service quality is reduced due to interference

or congestion. The payoff of a user is determined by its own usage level as well as the service

quality. In such a scenario, users tend to choose a higher usage level than the socially optimal

one. That is, it is in the self-interest of users to choose a high usage level, although reducing their

usage levels simultaneously would benefit all of them. In game theory, such a conflict between

private and social interests is modeled as the prisoner’s dilemma game. In the literature, it

has been shown that various wireless communication scenarios exhibit a prisoner’s dilemma

phenomenon, including packet forwarding [3], distributed spectrum allocation [4], and medium

access control (CSMA/CA [5] and slotted Aloha [6]).

Incentive schemes are needed to improve the performance of non-cooperative outcomes. In this

paper, we propose a class of incentive schemes based on the idea of intervention. Implementing

an intervention scheme requires an intervention device that is able to monitor the actions of users

and to affect their resource usage. An intervention manager first chooses an intervention rule

used by the intervention device, and then users choose their actions knowing the intervention

rule chosen by the manager. After observing a signal about the actions of users, the intervention

device chooses its action according to the intervention rule. The manager chooses an intervention

rule to maximize his payoff, anticipating the rational behavior of users given the intervention rule.

The payoff of the manager can be considered as a measure of the system performance, which

can incorporate various efficiency and fairness criteria. We formulate the interaction between

users and a manager as an intervention game and propose a solution concept called intervention

equilibrium. Intervention equilibrium predicts the outcome of an intervention game in terms of

an intervention rule chosen by the manager and an operating point chosen by users.

Intervention can be classified into two types, called type 1 and type 2, depending on how the

intervention device acts in the system relative to users. In type-1 intervention, the intervention

device acts in a symmetric way as users do while having the ability to monitor the actions of

other users. An example of type-1 intervention can be found in [7] and [8], which consider a

random access network where an intervention device interferes with other users by transmitting

its packets after obtaining information about the transmission probabilities of users. In type-2

intervention, the intervention device acts as a gatekeeper which can control resource usage by
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users. An example of type-2 intervention can be found in [9] and [10]. [9] analyzes scheduling

mechanisms where a scheduler assigns different priorities to traffic flows depending on their

input rates, and [10] considers a packet dropping mechanism where the server determines the

probability of dropping packets as a function of the total arrival rate. The two types of intervention

can be applied to the aforementioned resource sharing scenario, as schematically shown in Fig. 1.

The goal of intervention schemes to improve the performance of non-cooperative outcomes is

illustrated in Fig. 2 with two users and the system performance measured by the average payoff

of the two users. Our analysis is aimed at answering the following two questions.

1) When can we construct an intervention scheme that improves the suboptimal performance

of non-cooperative equilibrium?

2) When can we construct an intervention scheme that achieves the best feasible performance?

Our analysis suggests that the answers to these questions depend on the ability of the intervention

device:

• Ability to monitor the actions of users (i.e., monitoring technology),

• Ability to affect the payoffs of users through its actions (i.e., intervention capability).

The discussion on the example in Section III-B shows that an intervention scheme can improve

the performance of non-cooperative equilibrium when the monitoring technology is sufficiently

accurate. This result is reinforced by the analytical results and the example in Section IV,

which considers the case of perfect monitoring. The analytical result in Section III-A shows

that intervention schemes may not achieve the best feasible performance when the monitoring

technology is noisy. On the other hand, the analytical results and the example in Section IV

show that intervention schemes can achieve the best feasible performance when monitoring is

perfect and the intervention device has a sufficiently strong intervention capability. When signals

are noisy, the manager can provide incentives by triggering a punishment following signals that

are more likely to occur when users deviate. When these signals occur with positive probability

even when users do not deviate, punishment happens from time to time at equilibrium, which

results in a performance loss. On the contrary, when signals are perfectly accurate, punishment

through intervention can be used only as a threat, which is never used at equilibrium. Thus, in

the case of perfect monitoring, it is possible for the manager to achieve a desired operating point

without incurring a performance loss.
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The rest of this paper is organized as follows. In Section II, we formulate intervention

games, develop a solution concept of intervention equilibrium, and show its existence in a finite

intervention game. In Sections III and IV, we derive analytical results and discuss illustrative

examples in the cases of imperfect and perfect monitoring, respectively. In Section V, we compare

intervention schemes with existing approaches in the literature. In Section VI, we conclude.

II. INTERVENTION GAMES AND INTERVENTION EQUILIBRIUM

We consider a system (e.g., a wireless network) where N users and an intervention device

interact. The set of the users is finite and denoted by N = {1, . . . , N}. The action space of user

i is denoted by Ai, and a pure action for user i is denoted by ai ∈ Ai, for all i ∈ N . A pure

action profile is represented by a vector a = (a1, . . . , aN), and the set of pure action profiles is

denoted by A ,
∏

i∈N Ai. A mixed action for user i is a probability distribution over Ai and is

denoted by αi ∈ ∆(Ai), where ∆(X) is the set of all probability distributions over a set X . A

mixed action profile is represented by a vector α = (α1, . . . , αN) ∈
∏

i∈N ∆(Ai). A mixed action

profile of the users other than user i is written as α−i = (α1, . . . , αi−1, αi+1, . . . , αN) so that α

can be expressed as α = (αi, α−i). Once a pure action profile of the users is determined, a signal

is realized from the set of all possible signals, denoted Y , and is observed by the intervention

device. We represent the probability distribution of signals by a mapping ρ : A → ∆(Y ). That is,

ρ(a) ∈ ∆(Y ) denotes the probability distribution of signals given a pure action profile a. When

Y is finite, the probability that a signal y is realized given a pure action profile a is denoted

by ρ(y|a). After observing the realized signal, the intervention device takes its action, called an

intervention action. We use a0, α0, and A0 to denote a pure action, a mixed action, and the set

of pure actions for the intervention device, respectively.

Since the intervention device chooses its action after observing the signal, a strategy for it

can be represented by a mapping f : Y → ∆(A0), which is called an intervention rule. That is,

f(y) ∈ ∆(A0) denotes the mixed action for the intervention device when it observes a signal y.

When A0 is finite, the probability that the intervention device takes an action a0 given a signal y is

denoted by f(a0|y). The set of all possible intervention rules is denoted by F . There is a system

manager who determines the intervention rule used by the intervention device. We assume that

the manager can commit to an intervention rule, for example, by using a protocol embedded in

the intervention device. The payoffs of the users and the manager are determined by the actions
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of the intervention device and the users and the realized signal. We denote the payoff function

of user i ∈ N by ui : A0 × A × Y → R and that of the manager by u0 : A0 × A × Y → R.

We call the pair (Y, ρ) the monitoring technology of the intervention device, and call A0 its

intervention capability. An intervention device is characterized by these two, and we represent

an intervention scheme by 〈(Y, ρ), A0, f〉.
The game played by the manager and the users is formulated as an intervention game, which

is summarized by the data

Γ = 〈N0, (Ai)i∈N0 , (ui)i∈N0 , (Y, ρ)〉 ,

where N0 , N ∪{0}. The sequence of events in an intervention game can be listed as follows.

1) The manager chooses an intervention rule f ∈ F .

2) The users choose their actions α ∈ ∏
i∈N ∆(Ai) simultaneously, knowing the intervention

rule f chosen by the manager.

3) A pure action profile a is realized following the probability distribution α, and a signal

y ∈ Y is realized following the probability distribution ρ(a).

4) The intervention device chooses its action a0 ∈ A0 following the probability distribution

f(y).

Ex ante payoffs, or expected payoffs given an intervention rule and a pure action profile, can

be computed by taking expectations with respect to signals and intervention actions. The ex ante

payoff function of user i is denoted by a function vi : F ×A → R, while that of the manager is

denoted by v0 : F × A → R. We say that an intervention game is finite if Ai, for i ∈ N0, and

Y are all finite. In a finite intervention game, ex ante payoffs can be computed as

vi(f, a) =
∑
y∈Y

∑
a0∈A0

ui(a0, a, y)f(a0|y)ρ(y|a),

for all i ∈ N0. Once the manager chooses an intervention rule f , the users play a simultaneous

game, whose normal form representation is given by

Γf = 〈N , (Ai)i∈N , (vi(f, ·))i∈N 〉 .

We predict actions chosen by the users given an intervention rule f by applying the solution

concept of Nash equilibrium [11] to the induced game Γf . With an abuse of notation, we extend

the domain of vi to F ×∏
i∈N ∆(Ai) for all i ∈ N0 by taking expectation with respect to pure

action profiles.
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Definition 1: An intervention rule f ∈ F sustains an action profile α∗ ∈ ∏
i∈N ∆(Ai) if α∗

is a Nash equilibrium of the game Γf , i.e.,

vi(f, α
∗
i , α

∗
−i) ≥ vi(f, αi, α

∗
−i) for all αi ∈ ∆(Ai), for all i ∈ N .

An action profile α∗ is sustainable if there exists an intervention rule f that sustains α∗.

Let E(f) ⊆ ∏
i∈N ∆(Ai) be the set of action profiles sustained by f . We say that a pair (f, α)

is attainable if α ∈ E(f). The manager’s problem is to find an attainable pair that maximizes

his ex ante payoff among all attainable pairs, which leads to the following solution concept for

intervention games.

Definition 2: (f ∗, α∗) ∈ F ×∏
i∈N ∆(Ai) is an intervention equilibrium if α∗ ∈ E(f ∗) and

v0(f
∗, α∗) ≥ v0(f, α) for all (f, α) such that α ∈ E(f).

f ∗ ∈ F is an optimal intervention rule if there exists an action profile α∗ ∈ ∏
i∈N ∆(Ai) such

that (f ∗, α∗) is an intervention equilibrium.

An intervention equilibrium solves the following optimization problem:

max
(f,α)

v0(f, α) subject to α ∈ E(f). (1)

The constraint α ∈ E(f) represents incentive constraints for the users, which require that the users

choose the action profile α in their self-interest given the intervention rule f . The problem (1) can

be rewritten as maxf∈F maxα∈E(f) v0(f, α). Then an intervention equilibrium can be considered

as a subgame perfect equilibrium (or Stackelberg equilibrium), with an implicit assumption that

the manager can induce the users to choose the best Nash equilibrium for him in case of multiple

Nash equilibria. Our interpretation is that, in order to achieve an intervention equilibrium (f ∗, α∗),

the manager announces the intervention rule f ∗ and recommends the action profile α∗ to the

users. Since α∗ ∈ E(f ∗), the users do not have an incentive to deviate unilaterally from α∗, and

α∗ becomes a focal point [11] of the game Γf∗ . Below we show the existence of an intervention

equilibrium in a finite intervention game.

Proposition 1: Every finite intervention game has an intervention equilibrium.

We prove Proposition 1 using the following two lemmas.

Lemma 1: The correspondence E : F ⇒
∏

i∈N ∆(Ai) is nonempty, compact-valued, and

upper hemi-continuous.



7

Proof: We can show that, for any f ∈ F , the set E(f) is nonempty by applying Nash

Theorem [12] to Γf . Since
∏

i∈N ∆(Ai) is bounded, it suffices to show that E has a closed

graph to prove that E is compact-valued and upper hemi-continuous (u.h.c.) (see Theorem 3.4 of

[13]). Choose a sequence {(fn, αn)} with (fn, αn) → (f, α) and αn ∈ E(fn) for all n. Suppose

that α /∈ E(f). Then there exists i ∈ N such that αi is not a best response to α−i in Γf . Then

there exist ε > 0 and α′
i such that vi(f, α′

i, α−i) > vi(f, αi, α−i)+3ε. Since vi is continuous and

(fn, αn) → (f, α), for sufficiently large n we have

vi(f
n, α′

i, α
n
−i) > vi(f, α

′
i, α−i)− ε > vi(f, αi, α−i) + 2ε > vi(f

n, αn
i , α

n
−i) + ε,

which contradicts αn ∈ E(fn).

Define a function v̌0 : F → R by v̌0(f) = maxα∈E(f) v0(f, α). For each f , E(f) is nonempty

and compact by Lemma 1 and v0(f, ·) is continuous. Hence, the function v̌0 is well-defined.

Lemma 2: The function v̌0 is upper semi-continuous.

Proof: Let E(f) = {α ∈ E(f) : v0(f, α) = v̌0(f)}. Note that E(f) is nonempty for all

f . Fix f , and let {fn} be any sequence converging to f . Choose αn ∈ E(fn), for all n. Let

vs0 = lim supn→∞ v̌0(f
n). Then there exists a subsequence {fnk} such that vs0 = lim v0(f

nk , αnk).

Since αn ∈ E(fn) and E is u.h.c., there exists a convergent subsequence of {αnk}, called {αj},

whose limit point α is in E(f). Hence, vs0 = lim v0(f
j, αj) = v0(f, α) ≤ v̌0(f) since α ∈ E(f).

Note that the space of intervention rules, F , is equivalent to (∆(A0))
|Y |, which is compact.

Therefore, a solution to maxf∈F v̌0(f) exists, which establishes the existence of an intervention

equilibrium. This completes the proof of Proposition 1.

There can be multiple intervention equilibria, all of which yield the same payoff for the

manager. We can propose different selection criteria for the manager to choose an intervention

equilibrium out of multiple ones. For example, the discussion on affine intervention rules in

Section IV-A is motivated by the robustness of performance to mistakes by the users as well as

simplicity.

Recall that an intervention device is characterized by (Y, ρ) and A0. In this paper, we focus on

the problem of finding an optimal intervention rule when the manager has a particular intervention

device. However, we can think of a scenario where the manager can select an intervention

device from multiple ones given the operating cost of each available intervention device. Our
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analysis in this paper allows the manager to evaluate the optimal performance achieved with

each intervention device. He can then select the best intervention device taking into account

both performance and cost.

III. PERFORMANCE WITH INTERVENTION UNDER IMPERFECT MONITORING

A. Analytical Results

In this section, we maintain the following assumption.

Assumption 1: There exists an action for the intervention device ã0 ∈ A0 that satisfies

u0(ã0, a, y) > u0(a0, a, y) for all a0 6= ã0,

for all a ∈ A and y ∈ Y .

Assumption 1 asserts the existence of an intervention action that is most preferred by the

manager regardless of the action profile of the users and the signal. We can interpret the most

preferred intervention action, ã0, as the intervention action that corresponds to no intervention.

Then Assumption 1 states that exerting intervention is costly for the manager, reflecting that

intervention typically degrades the overall performance. Moreover, there is some operational

cost (e.g., energy consumption) needed to exert intervention.

Define an intervention rule f̃ by f̃(y) = ã0 for all y. It can be considered that the man-

ager decides not to intervene at all when he chooses f̃ . Let v0 = sup(f,α) v0(f, α), v∗0 =

supf supα∈E(f) v0(f, α), and ṽ0 = supα∈E(f̃) v0(f̃ , α). v0 is the best performance that the manager

can obtain when the users are not subject to the incentive constraints (e.g., when the actions

of the users can be completely controlled by the manager). v∗0 is the best performance when

the manager is required to satisfy the incentive constraints for the users. Lastly, ṽ0 is the best

performance when the manager does not engage in active intervention. It is straightforward to see

that ṽ0 ≤ v∗0 ≤ v0. The following proposition provides a sufficient condition on the intervention

game for a gap between v0 and v∗0 to exist.

Proposition 2: Suppose that the intervention game is finite, ρ has full support (i.e., ρ(y|a) > 0

for all y and a), and there is no α such that α ∈ E(f̃) and v0(f̃ , α) = v0. Then v∗0 < v0.

Proof: Suppose that the conclusion does not hold, i.e., v∗0 = v0. Since the intervention

game is finite, v∗0 is attained by Proposition 1. Thus, there exists (f, α) such that α ∈ E(f) and

v0(f, α) = v0. Note that v0 = v0(f, α) ≤ v0(f̃ , α) ≤ v0. Hence, v0(f, α) = v0(f̃ , α). Since ρ has
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full support, we have f(y) = f̃(y) for all y. This contradicts the hypothesis that there is no α

such that α ∈ E(f̃) and v0(f̃ , α) = v0.

When the intervention game is finite, v0 is attained since v0 is continuous and (F×∏
i∈N ∆(Ai))

is compact. Since v0(f̃ , α) ≥ v0(f, α) for all α, for all f , we have v0 = maxα v0(f̃ , α). In fact,

when the intervention game is finite and ρ has full support, f̃ is the only intervention rule that

can attain the best feasible performance, v0. When f̃ sustains no action profile that attains v0, the

manager needs to trigger a punishment following some signals in order to provide appropriate

incentives for the users to follow an action profile such that v0(f̃ , α) = v0. However, since ρ

has full support, the punishment results in a performance loss, which prevents the manager from

achieving v0.

B. Illustrative Example (Type-2 Intervention)

We consider a wireless network where two users interfere with each other. Each user has two

pure actions, aL and aH , which represent low and high resource usage levels, respectively, and

satisfy 0 < aL < aH . The service quality is determined randomly given an action profile, and

there are two possible quality levels, y and y, with 0 < y < y. The service quality is realized

following the distribution

ρ(y|a) =





p, if a = (aL, aL),

q, if a = (aH , aL) or (aL, aH),

r, if a = (aH , aH),

where 0 < r < q < p < 1. The intervention device in this example acts as a gatekeeper (i.e.,

type-2 intervention) after observing the service quality, having two pure actions: intervene (â0)

and not intervene (ã0). When the intervention device does not intervene, a user receives a payoff

given by the product of the quality level and its own usage level, i.e., ui(ã0, a, y) = yai for all

a and y, for i = 1, 2. When the intervention device does intervene, the service stops completely

and a user receives zero payoff regardless of its usage level, i.e., ui(â0, a, y) = 0 for all a

and y, for i = 1, 2. The payoff of the manager is set as the average payoff of the users, i.e.,

u0(a0, a, y) = [u1(a0, a, y) + u2(a0, a, y)]/2. Note that denoting the action of not intervening

by ã0 is consistent with Assumption 1. A communication scenario that fits into this example is

presented in Fig. 3.
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Since there are only two pure actions for the intervention device, we can represent F = [0, 1]

and use f(y) as the probability of not intervening given the signal y. The ex ante payoff function

of user i is given by

vi(f, a) = [ρ(y|a)f(y)y + (1− ρ(y|a))f(y)y]ai.

The payoff matrix of the game Γf̃ , i.e., the game when the intervention device does not intervene

at all, is displayed in Table I, where we define yk = ky + (1− k)y, for k = p, q, r. We assume

that the game Γf̃ is the prisoner’s dilemma game, i.e., yqaH > ypaL > yraH > yqaL and

2ypaL > yq(aH + aL). Then without any intervention, it is the dominant strategy of each user to

choose the high usage level, which results in the inefficient Nash equilibrium. The manager aims

to improve the inefficiency of the Nash equilibrium by providing appropriate incentives through

intervention.1 We restrict attention to symmetric action profile, assuming that the manager desires

to sustain a symmetric action profile.

Let w0(α) = supf{v0(f, α) : α ∈ E(f)}. That is, w0(α) is the maximum payoff that the

manager can obtain while sustaining a given action profile α. Since we focus on symmetric

action profiles and there are only two pure actions for each user, let α ∈ [0, 1] denote the

probability of each user playing aL. Then we can show that w0(0) = yraH and, for α ∈ (0, 1],

w0(α) =





{(q−r)+α[(p−q)−(q−r)]}aHaL
[(1−r)aH−(1−q)aL]+α[(paL−qaH)−(qaL−raH)]

y,

if α(paL − qaH) + (1− α)(qaL − raH) ≥ 0,

0, otherwise.

(2)

The intervention rule that attains w0(0) is given by f̃ (i.e., no intervention), while the intervention

rule that attains w0(α), for α ∈ (0, 1], is given by

f(y) = 1 and f(y) =
(qaL − raH) + α[(paL − qaH)− (qaL − raH)]

[(1− r)aH − (1− q)aL] + α[(paL − qaH)− (qaL − raH)]

y

y

if α(paL − qaH) + (1− α)(qaL − raH) ≥ 0, and by f(y) = f(y) = 0 otherwise. We can think

of α(paL − qaH) + (1 − α)(qaL − raH) as a measure of the sensitivity of signals between the

1In this paper, we focus on the role of intervention schemes to improve the prospect of cooperation by applying intervention

to prisoner’s dilemma situations. Intervention schemes can also be used to help users achieve coordination by eliminating the

multiplicity of Nash equilibria in coordination games such as the battle of the sexes and the stag hunt [11]. For example, in the

stag-hunt game, an intervention scheme may induce players to choose the payoff dominant (but not risk dominant) “all stag”

equilibrium by intervening in the hare hunt.
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two pure actions when the other user plays α. When signals are sufficiently sensitive at α, an

intervention rule can sustain α with a positive payoff by degrading the low quality only. On the

contrary, when signals are not sensitive, destroying all the payoffs is the only method to sustain

α, which yields zero payoff for the users. Note that, when paL − qaH < 0 and qaL − raH > 0,

the pure action profile (aL, aL) cannot be sustained with a positive payoff while a completely

mixed action profile can be. In this case, signals are more sensitive to the action of a user when

the other user plays aH . Hence, by inducing the users to play aH with positive probability,

the manager can make the signal a more informative indicator of a deviation. This allows the

possibility that an intervention rule improves the performance of non-cooperative equilibrium by

sustaining a completely mixed action profile even when the social optimum (aL, aL) cannot be

sustained non-trivially. A similar discussion about the advantage of using mixed actions can be

found in [14] in the context of the repeated prisoner’s dilemma game.

In this example, we have ṽ0 = w0(0) = yraH , v0 = ypaL, and v∗0 = maxα∈[0,1] w0(α). We

summarize the results about the performance with intervention, v∗0 , in the following proposition.

Proposition 3: (i) Suppose that (a) paL − qaH < 0 and qaL − raH < 0, or (b) paL − qaH <

qaL − raH and (p− q)(1− r)− (q − r)(1− q) ≤ 0. Then v∗0 = ṽ0.

(ii) Suppose that (c) paL − qaH ≥ qaL − raH ≥ 0, (d) paL − qaH ≥ 0 > qaL − raH , or (e)

0 ≤ paL−qaH < qaL−raH and (p−q)(1−r)− (q−r)(1−q) > 0. Then v∗0 = max{ṽ0, w0(1)}.

(iii) Suppose that (f) paL− qaH < 0 ≤ qaL− raH and (p− q)(1− r)− (q− r)(1− q) > 0. Then

v∗0 = max{ṽ0, w0(α)}, where

α =
qaL − raH

(qaL − raH)− (paL − qaH)
.

Proof: See Appendix A of Technical Report [15].

Fig. 4 shows that each of the three cases of v∗0 = ṽ0, v∗0 = w0(α), and v∗0 = w0(1) can arise

depending on the parameter values. To obtain the results, we set aL = 1, aH = 1.19, y = 5,

y = 1, q = 0.8, and r = 0.65 while varying p = 0.9, 0.94, 0.96. We can see that, as p increases,

the performance with intervention improves, getting closer to its upper bound v0. In fact, when

v∗0 = w0(1), we have

v0 − v∗0 =
(1− p)aL(yqaH − ypaL)

(1− q)aH − (1− p)aL
> 0,

which is consistent with Proposition 2. The gap between v∗0 and v0 vanishes as p approaches

1, while it increases with the deviation gain (yqaH − ypaL). This result is intuitive because
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punishment rarely occurs when p is close to 1 while a stronger punishment is needed as the

deviation gain is larger.

We can consider pricing schemes applied to this example, by having the manager charge

different payments depending on the realized service quality. In order to find a pricing scheme

that sustains a certain action profile, the manager needs to know how payments affect the payoffs

of the users (i.e., the function ui(a0, a, y), where a0 is now interpreted as the charged payments).

Suppose, for example, that the payoff of each user is given by its data rates. Since intervention

influences data rates directly, it is relatively easy to find out how intervention actions affect

payoffs. In contrast, finding out how payments affect payoffs requires the manager to know how

the users value payments relative to data rates. This information is difficult to obtain since the

users’ valuations are subjective and thus not easily measurable. This discussion points out the

informational advantage of intervention over pricing.

IV. PERFORMANCE WITH INTERVENTION UNDER PERFECT MONITORING

A. Analytical Results

In this section, we consider the case where the intervention device can observe the pure action

profile without errors (i.e., perfect monitoring), as stated formally in the following assumption.

Assumption 2: Y = A, and only signal a can arise in the distribution ρ(a) for all a ∈ A.

With Assumption 2, we always have y = a, and thus we write the payoff functions more

compactly as ui(a0, a) instead of ui(a0, a, a), for all i ∈ N0. We also maintain the following two

assumptions in this section.

Assumption 3: There exists an action for the intervention device a0 ∈ A0 that satisfies, for all

i ∈ N0,

ui(a0, a) ≥ ui(a0, a) for all a0 ∈ A0, for all a ∈ A. (3)

Assumption 4: A0 is compact, and ui : A0 × A → R is continuous for all i ∈ N0.

Assumption 3 states that there exists an intervention action that is most preferred by the users

and the manager regardless of the action profile of the users. We can interpret a0 in Assumption 3

as the intervention action corresponding to no intervention, similarly to ã0 in Assumption 1. Then

Assumption 3 implies that intervention can only reduce the payoffs of the users and the manager.
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In this section, we restrict attention to pure actions (both for the users and for the intervention

device) while allowing the action spaces to be continuous spaces. Thus, an intervention rule is

represented by a mapping f : A → A0, while user i chooses a pure action ai ∈ Ai given an

intervention rule. Then the ex ante payoff function is given by vi(f, a) = ui(f(a), a), for all

i ∈ N0. We define a class of intervention rules.

Definition 3: fã : A → A0 is an extreme intervention rule with target action profile ã ∈ A if

fã satisfies

• fã(a) ∈ argmina0∈A0 ui(a0, a) if ∃ i ∈ N such that ai 6= ãi and aj = ãj ∀j 6= i, and

• fã(a) = a0 otherwise.

By Assumption 4, argmina0∈A0 ui(a0, a) is non-empty for all a ∈ A and i ∈ N . Thus, for

every ã ∈ A, there exists an extreme intervention rule with target action profile ã. An extreme

intervention rule prescribes an intervention action that minimizes the payoff of the deviator if

there is a unilateral deviation from the target action profile while prescribing no intervention

if there is no unilateral deviation. Hence, an extreme intervention rule provides the strongest

incentive for the users to follow a given target action profile. Let E(F) = ∪f∈FE(f). That is,

E(F) is the set of all sustainable action profiles.

Lemma 3: If a∗ ∈ E(F), then a∗ ∈ E(fa∗).
Proof: Suppose that a∗ ∈ E(F). Then there exists an intervention rule f such that vi(f, a∗) ≥

vi(f, ai, a
∗
−i) for all ai ∈ Ai, for all i ∈ N . Then we obtain vi(fa∗ , a

∗) = ui(a0, a
∗) ≥

ui(f(a
∗), a∗) ≥ ui(f(ai, a

∗
−i), ai, a

∗
−i) ≥ ui(fa∗(ai, a

∗
−i), ai, a

∗
−i) = vi(fa∗ , ai, a

∗
−i) for all ai 6= a∗i ,

for all i ∈ N , where the first inequality follows from (3) and the third from the definition of

extreme intervention rules.

Let E∗ = {a ∈ A : a ∈ E(fa)}. The following results are the consequences of Lemma 3.

Proposition 4: (i) E(F) = E∗.

(ii) If (f ∗, a∗) is an intervention equilibrium, then (fa∗ , a
∗) is also an intervention equilibrium.

Proof: (i) Let a∗ ∈ E∗. Then a∗ ∈ E(fa∗) ⊂ E(F). Hence, E∗ ⊂ E(F). The other inclusion

E(F) ⊂ E∗ follows from Lemma 3.

(ii) Suppose that (f ∗, a∗) is an intervention equilibrium. Then by Definition 2, a∗ ∈ E(f ∗) and

v0(f
∗, a∗) ≥ v0(f, a) for all (f, a) ∈ F × A such that a ∈ E(f). Since a∗ ∈ E(F), a∗ ∈ E(fa∗)

by Lemma 3. Hence, v0(f
∗, a∗) ≥ v0(fa∗ , a

∗). On the other hand, since fa∗(a
∗) = a0, we

have v0(f
∗, a∗) ≤ v0(fa∗ , a

∗) by (3). Therefore, v0(f ∗, a∗) = v0(fa∗ , a
∗), and thus v0(fa∗ , a

∗) ≥
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v0(f, a) for all (f, a) ∈ F × A such that a ∈ E(f). This proves that (fa∗ , a∗) is an intervention

equilibrium.

Proposition 4 shows that it is without loss of generality to restrict attention to pairs of the form

(fa, a) when we ask whether a given action profile is sustainable and whether there exists an

intervention equilibrium. The basic idea is that, in order to sustain an action profile, it suffices

to consider an intervention rule that punishes a deviator most severely. The role of extreme

intervention rules is analogous to that of optimal penal codes [16] in repeated games with

perfect monitoring. The following proposition characterizes intervention equilibria among pairs

of the form (fa, a).

Proposition 5: (fa∗ , a
∗) is an intervention equilibrium if and only if a∗ ∈ E∗ and u0(a0, a

∗) ≥
u0(a0, a) for all a ∈ E∗.

Proof: Suppose that (fa∗ , a
∗) is an intervention equilibrium. Then a∗ ∈ E(fa∗), and thus

a∗ ∈ E∗. Also, v0(fa∗ , a∗) ≥ v0(f, a) for all (f, a) such that a ∈ E(f). Choose any a ∈ E∗. Then

a ∈ E(fa), and thus u0(a0, a
∗) = v0(fa∗ , a

∗) ≥ v0(fa, a) = u0(a0, a).

Suppose that a∗ ∈ E∗ and u0(a0, a
∗) ≥ u0(a0, a) for all a ∈ E∗. To prove that (fa∗ , a∗) is an

intervention equilibrium, we need to show that (i) a∗ ∈ E(fa∗), and (ii) v0(fa∗ , a∗) ≥ v0(f, a) for

all (f, a) such that a ∈ E(f). (i) follows from a∗ ∈ E∗. To prove (ii), choose any (f, a) such that

a ∈ E(f). By Lemma 3, we have a ∈ E∗. Then v0(fa∗ , a
∗) = u0(a0, a

∗) ≥ u0(a0, a) ≥ v0(f, a),

where the first inequality follows from a ∈ E∗.

Proposition 5 shows that the pair (fa, a) constitutes an intervention equilibrium if a solves

max
a∈E∗

u0(a0, a). (4)

The next proposition provides a sufficient condition under which an intervention equilibrium

exists.

Proposition 6: If Ai is a bounded set in Euclidean space for all i ∈ N , then there exists an

intervention equilibrium.

Proof: By Proposition 4(ii) and Proposition 5, an intervention equilibrium exists if and only

if there exists a solution to the problem (4). Since u0(a0, a) is continuous in a, the result follows

if we show that the constraint set E∗ is compact. Since E∗ ⊂ A and A is bounded, E∗ is also

bounded. Let Gi(a) , argmina0∈A0 ui(a0, a) for all a ∈ A, for all i ∈ N . By the Theorem of the

Maximum [13], Gi(a) is compact-valued and u.h.c. To show that E∗ is closed, choose a sequence
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{an} with an → a∗ and an ∈ E∗ for all n. Choose any i ∈ N and a′i ∈ Ai. Let {an0} be a sequence

such that an0 ∈ Gi(a
′
i, a

n
−i) for all n. Since an ∈ E(fan), we have ui(a0, a

n) ≥ ui(a
n
0 , a

′
i, a

n
−i).

Also, since Gi(a) is u.h.c., there exists a convergent subsequence of {an0} whose limit point a∗0
is in Gi(a

′
i, a

∗
−i). Since ui is continuous, we obtain ui(a0, a

∗) ≥ ui(a
∗
0, a

′
i, a

∗
−i) by taking limits.

This proves a∗ ∈ E(fa∗) and thus a∗ ∈ E∗.

Now we turn to the question of whether the best feasible performance, v0, can be achieved with

intervention. At an intervention equilibrium of the form (fa∗ , a
∗), intervention exists only as a

threat to deter deviation, and no intervention is exerted as long as the users follow the target action

profile. This contrasts with the imperfect monitoring scenario considered in Proposition 2, where

providing incentives requires that intervention be used sometimes even when the users follow

the target action profile, which results in a performance loss. Thus, with perfect monitoring,

it is possible for an intervention scheme to achieve the best feasible performance as long as

the intervention capability is sufficiently strong. This discussion is formally stated below as a

corollary of Proposition 5. Note that v0 = supa∈A u0(a0, a), which is attained when A is compact.

Corollary 1: If ao ∈ argmaxa∈A u0(a0, a) and ui(a0, a
o) ≥ ui(fao(ai, a

o
−i), ai, a

o
−i) for all

ai ∈ Ai, for all i ∈ N , then v∗0 = v0.

Extreme intervention rules are useful to characterize sustainable action profiles and intervention

equilibria. However, they may not be desirable in practice. For example, when a user chooses an

action different from the target action by mistake (i.e., trembling hands), an extreme intervention

rule triggers the most severe punishment for the user, which may result in a large performance

loss. Thus, it is of interest to investigate intervention rules that use weaker punishments than

extreme intervention rules do. To obtain concrete results, we assume that Ai = [ai, ai] ⊂ R with

ai < ai for all i ∈ N0 in the remainder of this subsection. Below we define another class of

intervention rules.

Definition 4: fã,c : A → A0 is a (truncated) affine intervention rule with target action profile

ã ∈ A and intervention rate profile c ∈ RN if

fã,c(a) = [c · (a− ã) + a0]
a0
a0
,

where [x]βα = min{max{x, α}, β}.

The following proposition constructs an affine intervention rule to sustain an interior target

action profile in the differentiable payoff case.
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Proposition 7: Let a∗ ∈ A be an action profile such that a∗i ∈ (ai, ai) for all i ∈ N . Suppose

that, for all i ∈ N , ui is twice continuously differentiable and ui(a0, a
∗) is strictly decreasing in

a0 on [a0, a0]. Let

c∗i = − ∂ui(a0, a
∗)/∂ai

∂ui(a0, a
∗)/∂a0

(5)

for all i ∈ N .2 Suppose that

∂2ui

∂a2i
(a0, ai, a

∗
−i) ≤ 0 for all ai ∈ (ai, ai)

for all i ∈ N such that c∗i = 0,

∂2ui

∂a2i
(a0, ai, a

∗
−i) ≤ 0 for all ai ∈ (ai, a

∗
i ),

(
(c∗i )

2∂
2ui

∂a20
+ 2c∗i

∂2ui

∂ai∂a0
+

∂2ui

∂a2i

) ∣∣∣∣
(a0,ai,a−i)=(c∗i (ai−a∗i )+a0,ai,a

∗
−i)

≤ 0

for all ai ∈ (a∗i ,min{ai, a∗i + (a0 − a0)/c
∗
i }), and

∂ui

∂ai
(a0, ai, a

∗
−i) ≤ 0 for all ai ∈ (a∗i + (a0 − a0)/c

∗
i , ai)

for all i ∈ N such that c∗i > 0, and

∂ui

∂ai
(a0, ai, a

∗
−i) ≥ 0 for all ai ∈ (ai, a

∗
i + (a0 − a0)/c

∗
i ),

(
(c∗i )

2∂
2ui

∂a20
+ 2c∗i

∂2ui

∂ai∂a0
+

∂2ui

∂a2i

) ∣∣∣∣
(a0,ai,a−i)=(c∗i (ai−a∗i )+a0,ai,a

∗
−i)

≤ 0

for all ai ∈ (max{ai, a∗i + (a0 − a0)/c
∗
i }, a∗i ), and

∂2ui

∂a2i
(a0, ai, a

∗
−i) ≤ 0 for all ai ∈ (a∗i , ai)

for all i ∈ N such that c∗i < 0.3 Then fa∗,c∗ sustains a∗.

Proof: See the Appendix of [1].

Note that ∂ui(a0, a
∗)/∂a0 < 0 for all i ∈ N since ui(a0, a

∗) is strictly decreasing in a0. Thus,

c∗i , defined in (5), has the same sign as ∂ui(a0, a
∗)/∂ai. With A0 = [a0, a0], the intervention

2We define ∂ui(a0, a
∗)/∂a0 as the right partial derivative of ui with respect to a0 at (a0, a

∗).
3We define (α, β) = ∅ if α ≥ β.
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action can be interpreted as the intervention level, and at the target action profile a∗ the users

receive higher payoffs as the intervention level is smaller. The affine intervention rule fa∗,c∗ ,

constructed in Proposition 7, has the properties that the intervention device uses the minimum

intervention level a0 when the users choose the target action profile a∗, i.e., fa∗,c∗(a∗) = a0, and

that the intervention level increases in the rate of |c∗i | as user i deviates to the direction in which

its payoff increases at (a0, a
∗). The expression of c∗i in (5) has an intuitive explanation. Since c∗i

is proportional to ∂ui(a0, a
∗)/∂ai and inversely proportional to −∂ui(a0, a

∗)/∂a0, a user faces

a higher intervention rate as its incentive to deviate from (a0, a
∗) is stronger and as a change in

the intervention level has a smaller impact on its payoff. The intervention level does not react

to the action of user i when c∗i = 0, because user i chooses a∗i in its self-interest even when the

intervention level is fixed at a0, provided that the other users choose a∗−i. Finally, we note that

if (f ∗, a∗) is an intervention equilibrium and fa∗,c sustains a∗ for some c, then (fa∗,c, a
∗) is also

an intervention equilibrium, since fa∗,c(a
∗) = a0.

B. Illustrative Example (Type-1 Intervention)

As an illustrative example, we consider another resource sharing scenario in a wireless network

where N ≥ 2 users and an intervention device interfere with each other. In this example, the

intervention device engages in type-1 intervention, affecting the service quality through its usage

level. The actions of the users and the intervention device are their usage levels, and the action

space is given by Ai = [0, ai] for all i ∈ N0. ai denotes the maximum usage level of user i, and

a0 denotes that of the intervention device, which can be considered as its intervention capability.

We assume that ai ≥ q/2b for all i ∈ N , while imposing no restriction on a0. The service quality

is determined by the total usage level, a0 +
∑N

i=1 ai, following the relationship

Q(a0, a) =

[
q − b

(
a0 +

N∑
i=1

ai

)]+

,

where q, b > 0 and [x]+ = max{x, 0}. The payoff of user i ∈ N is given by the product of the

service quality and its own usage level,

ui(a0, a) = Q(a0, a)ai. (6)

The payoff of the manager is given by the average payoff of the users,

u0(a0, a) =
1

N

N∑
i=1

ui(a0, a).
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ui(a0, a) is weakly decreasing in a0 for all a, and thus we can consider an extreme intervention

rule that takes the value a0 whenever a unilateral deviation occurs.

In this example, we have v0 = q2/4Nb, which is achieved when a0 = 0 and
∑N

i=1 ai = q/2b.

The symmetric action profile that attains v0 is thus (al, . . . , al), where al , q/2Nb. On the other

hand, the best performance at the non-cooperative equilibrium without intervention (i.e., when

a0 is held fixed at 0) is given by ṽ0 = q2/(N + 1)2b, which is attained at (ah, . . . , ah), where

ah , q/(N +1)b. Note that ah > al. Hence, the goal of the manager is to limit the usage levels

of the users by using intervention as a threat. In the following proposition, we investigate the

best performance with intervention, v∗0 , as we vary a0.

Proposition 8: (i) v∗0 = ṽ0 if and only if a0 = 0.

(ii) v∗0 = v0 if and only if a0 ≥ amin
0 , (

√
N − 1)2q/2Nb.

(iii) v∗0 is strictly increasing with a0 on [0, amin
0 ].

Proof: See Appendix B of [15].

Since ui is weakly decreasing in a0, the set E∗ is weakly expanding as the intervention

capability a0 is larger. This implies that the performance with intervention v∗0 is weakly increasing

with a0. Proposition 8 shows that the performance with intervention improves as a0 increases,

eventually reaching the best feasible performance when a0 ≥ amin
0 . Thus, amin

0 can be interpreted

as the minimum intervention capability for an intervention scheme to achieve the best feasible

performance. We can show that amin
0 is increasing and concave in N . Fig. 5 plots the set

E∗ = E(F) as dark regions for the different values of a0 with parameters N = 2, q = 12,

b = 1, and a1 = a2 = 12. We can see that E∗ expands as a0 increases. When a0 = 0, E∗ has

only two elements, (ah, ah) = (4, 4) and (12, 12). When a0 = 0.1, there are more action profiles

in E∗. However, the symmetric social optimum (al, al) = (3, 3) does not belong to E∗, and

Proposition 5 implies that the action profile (a1, a2) that minimizes a1 + a2 among those in E∗

constitutes an intervention equilibrium. When a0 ≥ (
√
2− 1)2q/4b ≈ 0.51, the action profiles in

E∗ that satisfy a1 + a2 = 2al = 6 constitute an intervention equilibrium, as all of them yield the

best feasible performance v0. When a0 ≥ q/b = 12, the punishment from a0 is strong enough

to make any action profile sustainable, i.e., E∗ = A.

Applying Proposition 7, we can construct an affine intervention rule that sustains an action

profile a∗ such that a∗i ∈ (0, ai) for all i ∈ N and
∑N

i=1 a
∗
i < q/b, provided that the maximum

intervention level a0 is sufficiently large. With the payoff functions in (6), the expression of c∗i



19

in (5) is given by

c∗i (a
∗) =

q

ba∗i
−

∑
j 6=i a

∗
j

a∗i
− 2,

for all i ∈ N . For example, the affine intervention rule with target action profile (al, . . . , al) and

the corresponding intervention rate profile c∗(al, . . . , al) is expressed as

f(a) =

[
(N − 1)

(
N∑
i=1

ai − q

2b

)]a0

0

. (7)

Fig. 6 considers N = 2 and plots the payoff of user i against its action ai, provided that the

manager chooses the intervention rule in (7) and the other user chooses al. It also assumes that

a0 is sufficiently large. Without intervention, the best response of user i to al is 3q/8b, which

shows the instability of the symmetric social optimum (al, al). However, when the intervention

rule (7) is used, the intervention device begins to intervene as user i increases its usage level

from al. An increase in payoff due to the increased usage level is more than offset by a decrease

in payoff due to the quality degradation from intervention. As a result, users do not gain by a

unilateral deviation from (al, al) under the intervention rule (7).

V. COMPARISON WITH EXISTING APPROACHES

The literature has studied various methods to improve non-cooperative outcomes. One such

method is to use contractual agreements. Contract theory is a field of economics that studies how

economic actors form contractual agreements, covering the topics of incentives, information, and

institutions [17]. Since intervention schemes aim to motivate users to take appropriate actions,

our work shares a theme as well as a formal framework with contract theory. However, most

works in contract theory deal with the principal-agent problem using monetary payment as

the incentive device (see, for example, [18]). In contrast, our work focuses on the problem of

regulating selfish behavior in resource sharing by using intervention within the system as the

incentive device.

In game theory, correlated equilibrium is a solution concept that extends Nash equilibrium and

thus has the potential to improve Nash equilibrium. A correlated equilibrium can be implemented

by having a mediator who determines an action profile following a correlated distribution and

makes a confidential recommendation to each player [19]. In an intervention game, the manager

recommends a pure or mixed action profile to users but does not use a correlated distribution
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to determine the target action profile. Another difference is that an intervention scheme uses

an external punishment device to prevent deviation, which is not present in the concept of

correlated equilibrium. We also note that, for the prisoner’s dilemma game where there is a

dominant strategy for each player, the set of correlated equilibria coincides with that of Nash

equilibria. This suggests that correlated equilibrium is more useful for inducing coordination (see,

for example, [20], which considers a multiple access network) than for achieving cooperation in

a prisoner’s dilemma scenario, as considered in this paper.

Another method used in game theory to expand the set of Nash equilibria is repeated games.

In a repeated game, players monitor their behavior and choose their actions based on past

observations (see, for example, [5] and [21] for works that apply the idea of repeated games

to wireless communications). Implementing an incentive scheme based on a repeated game

strategy requires long-term relationship among interacting users, which may not exist especially

in mobile, cognitive, and vehicular networks. Moreover, a repeated game strategy should be

designed in accord with the self-interest of players in order to ensure that they execute monitoring

and punishment or reward in a planned way. On the contrary, an intervention scheme uses an

external device for monitoring and executing punishment. Hence, it can provide incentives for a

dynamically changing population, and the manager can prescribe any feasible intervention rule

according to his objective.

In the communications literature, Stackelberg games have been used to improve Nash equilib-

rium (see, for example, [6] and [22]). Stackelberg games divide users into two groups, a leader

and followers, and the leader takes an action before the followers do. In intervention games, the

manager is the leader while users are followers, and the manager chooses an intervention rule,

which is a contingent plan, instead of an action. Thus, intervention games are more suitable than

Stackelberg games when the leader is not a resource user but a manager who regulates resource

sharing by users.

Pricing schemes or taxation can also be used to induce individuals to take socially desirable

actions. Intervention affects the payoffs of users by directly influencing their resource usage,

whereas pricing does so by using an outside instrument, money. Thus, intervention schemes

can be implemented more robustly in that users cannot avoid intervention as long as they use

resources. In order to achieve a desired outcome through an incentive scheme, the manager needs

to know the impact of the incentive device on the payoffs of users. Since intervention affects
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the payoffs of users through physical quantities associated with resource usage (e.g., throughput,

delay), which are easily measurable, this information is easier to obtain when the manager uses

an intervention scheme than a pricing scheme, as discussed at the end of Section III-B.

Lastly, we discuss the difference between intervention and mechanism design in the sense of

[23, Ch. 23]. In a mechanism design problem, the designer aims to obtain the private information

of agents while he can control the social choice (e.g., a resource allocation). On the contrary, in

an intervention game, the manager aims to motivate users to take appropriate actions while he

has complete information about users (i.e., no private information).

VI. CONCLUSION AND FUTURE RESEARCH

In this paper, we have developed a game-theoretic framework for the design and analysis of

intervention schemes, which are aimed to drive self-interested users towards a system objective.

Our results suggest that the manager can construct an effective intervention scheme when he

has an intervention device with an accurate monitoring technology and a strong intervention

capability. We have illustrated our framework and results with simple resource sharing scenarios

in wireless communications. However, the application of intervention schemes is not limited

to the problems considered in this paper; our framework can be applied to a much broader

set of problems in communications, including power control and flow control, as well as to

various types of networks such as cognitive radio, vehicular networks, peer-to-peer networks,

and crowdsourcing websites. Exploring the role of intervention in various specific scenarios is

left for future research. Another direction of future research is to combine intervention with other

game-theoretic concepts. First, we can introduce intervention in repeated games, where users and

the intervention device choose their actions depending on their past observations. We can also

allow the intervention manager to use a correlated distribution, as in correlated equilibrium, when

he determines the target action profile. Intervention can then be exerted when a user deviates

from the recommended action. We can use the idea of mechanism design to deal with a scenario

where the intervention manager has incomplete information about users. In such a scenario, the

manager first obtains reports from users and then chooses an intervention rule depending on the

reports. Finally, intervention can be used in the context of bargaining games, where the set of

feasible payoffs in a bargaining game is obtained from sustainable action profiles.
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TABLE I

PAYOFF MATRIX OF THE GAME Γf̃ IN THE ILLUSTRATIVE EXAMPLE IN SECTION III-B.

aL aH

aL ypaL, ypaL yqaL, yqaH

aH yqaH , yqaL yraH , yraH

Users choose their resource usage levels.

The service quality is determined based on 

the usage levels of users.

The payoff of a user is determined 

depending on its own usage level and the 

service quality.

Type-1 intervention: The 

intervention device affects the 

service quality through its own 

usage level.

Type-2 intervention: The 

intervention device controls the 

service quality delivered to users.

Fig. 1. Two types of intervention in a resource sharing scenario.
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Payoff of
user 2

Payoff of
user 1

Non-cooperative equilibrium 
(Both users use the resource 

excessively.)

Increasing direction of 
system performance

Social optimum 
(Both users use the 

resource moderately.)

System 
performance

0
v

0
v�

(best feasible 
performance)

(best performance at          
non-cooperative equilibrium 
without intervention)

Intervention 
equilibrium

*

0
v

(best performance 
with intervention)Incentive 

provision by 
intervention

Fig. 2. Performance improvement through an intervention scheme. (The system performance is given by the average payoff,

and a dotted line represents the set of payoff profiles that yield the same system performance.)

Transmitter 1
(User 1)

Transmitter 2
(User 2)

packets
packets Processor Gatekeeper Receiver

(Intervention device) No intervention: Packets are delivered.Intervention: Packets are dropped.
Usage level of a user: the number of packets it places to the queue per second.
Service quality: the service rate, i.e., the ratio of the number of packets 
processed to the total placed. (The service rate is affected by the congestion level 
as well as random factors such as channel conditions.)
Payoff of a user: its data rate, i.e., the number of its packets transmitted to the 
receiver per second.

Fig. 3. A communication scenario that fits into the example in Section III-B.
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Fig. 4. The graph of the function w0(α) defined in (2): (a) v∗0 = ṽ0 (p = 0.9), (b) v∗0 = w0(α) (p = 0.94), and (c) v∗0 = w0(1)

(p = 0.96). (The dotted lines display v0 = ypaL.)



26

 
(a) a0 = 0.1

 
(b) a0 = 0.51

 
(c) a0 = 5

Fig. 5. Plot of E∗ as dark regions for the different values of a0 in the example in Section IV-B.
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Fig. 6. Plot of ui against ai when the manager chooses the affine intervention rule (7) and the other user chooses al.


