
1932-4553 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JSTSP.2014.2316597, IEEE Journal of Selected Topics in Signal Processing

1

Sharing in Networks of Strategic Agents
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Abstract—In social, economic and engineering networks, con-
nected agents need to cooperate by repeatedly sharing infor-
mation and/or goods. Typically, sharing is costly and there
are no immediate benefits for agents who share. Hence, agents
who strategically aim to maximize their own individual utilities
will “free-ride” because they lack incentives to cooperate/share,
thereby leading to inefficient operation or even collapse of
networks. To incentivize the strategic agents to cooperate with
each other, we design distributed rating protocols which exploit
the ongoing nature of the agents’ interactions to assign ratings
and through them, determine future rewards and punishments:
agents that have behaved as directed enjoy high ratings – and
hence greater future access to the information/goods of others;
agents that have not behaved as directed enjoy low ratings – and
hence less future access to the information/goods of others. Unlike
existing rating protocols, the proposed protocol operates in a
distributed manner and takes into consideration the underlying
interconnectivity of agents as well as their heterogeneity. We
prove that in many networks, the price of anarchy (PoA) obtained
by adopting the proposed rating protocols is 1, that is, the optimal
social welfare is attained. In networks where PoA is larger
than 1, we show that the proposed rating protocol significantly
outperforms existing incentive mechanisms. Last but not least, the
proposed rating protocols can also operate efficiently in dynamic
networks, where new agents enter the network over time.

Index Terms—Social networks, economics networks, coopera-
tive networks, distributed protocols, incentive design, repeated
games, ratings, indirect reciprocity, social reciprocation, imper-
fect monitoring.

I. INTRODUCTION

In recent years, extensive research effort has been devoted
to studying cooperative networks where autonomous agents
interact repeatedly with each other over an exogenously given
network by sharing information (such as measurements, esti-
mates, beliefs, or opinions) or goods (such as endowments or
production). These networks require various levels of coordi-
nated behavior and cooperation among the autonomous agents.
However, in many scenarios, participating in the cooperative
process entails costs to the agents, such as the cost of pro-
ducing, processing and transferring information/goods to their
neighbors. If agents are strategic, they will choose to cooperate
with other agents in the network only if cooperation maximizes
their own long-term utilities, which take into account both
current and future benefits. Absent incentives for cooperation,
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agents will free-ride and the networks will work inefficiently or
even collapse [2]. If a central authority existed in the network,
which was omniscient about agents’ utilities and actions as
well as capable of computing and enforcing an efficient
behavior profile for all the agents, the social optimum could be
attained; but, in practice, such central authorities do not exist.
On the contrary, agents usually possess only local information,
and they act selfishly to maximize their own payoff. Hence,
incentives are needed to compel the strategic agents to act in
a socially optimal manner. Designing incentives for networks
of strategic agents is significantly more challenging than in s-
cenarios where agents are randomly matched [10][19][20][21]
or interact as independent pairs [7][8], since the incentives
of agents are complexly coupled based on the connectivity
of agents. Moreover, effective implementation of an incentive
scheme requires that it be distributed, which represents another
key challenge. In this paper we present the first scheme that
solves these problems.

To better motivate this work, we provide two concrete
application scenarios. Establishing a secure cyber environment
requires investments on security technologies (e.g. firewalls,
access control etc.) from autonomous systems (ASes). Im-
proved security can be achieved if ASes deploy proactive
protection technologies (e.g. outbound traffic control) which
are more effective because ASes have better control over
their own devices and traffic originating from their own users
[29]. However, ASes are self-interested and are reluctant
to make security investment on these proactive technologies
since doing that is not directly beneficial to themselves [29].
The similar incentive problem also exists in joint spectrum
sensing problems in cognitive radio systems [9]. To enable
dynamic spectrum access, the preliminary requirement is the
ability to accurately identify the presence of primary users
over a wide range of spectrum. With joint spectrum sensing,
each secondary user senses the spectrum individually and
then shares the raw sensing results to their neighbors at the
beginning of each transmission slot to improve the detection
probability in this slot. However, secondary users are self-
interested and lack the incentives to send their sensing raw
results to their neighbors which will cost extra resources such
as energy and transmission time.

We resolve the above incentive problem by deploying a
distributed rating protocol. The rating protocol consists of
three components: a set of ratings, recommended strategies
(for each agent) and rating update rules (for each agent).
In each period, each agent is assigned a rating, which is
maintained and updated according to the rating protocol. The
actions recommended to the agents by the system (e.g. how
much to share) depend on the ratings of their neighboring
agents (i.e. the agents with whom they are directly connected).
The recommendations can be determined in a distributed
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manner by the system. For example, each agent could be
interacting with other agents through a software client (similar
to BitTorrent). Each agent’s software is then preprogrammed
to recommend actions based on the local network structure
it observes, information that is received from the software
of neighboring agents and the current ratings of neighboring
agents. Since agents are strategic and want to maximize
their own utility, they have the freedom to decide their own
actions and they may comply or not with the recommended
actions. Based on the agent’s current rating and whether it
has followed/deviated from the recommended strategy, the
software increases/decreases an agent’s rating. We design
rating protocols (i.e. recommended strategies and rating update
rules) that are incentive-compatible (i.e. agents have incentives
to follow the recommended strategies) and maximize the social
welfare (i.e. the sum of the utility of all agents).

There are two central challenges. The first arises from the
fact that agents interact over a network. In particular, the
agents’ interactions are subject to network constraints, i.e.
agents can only interact with their neighbors. This is in stark
contrast with existing works in repeated games relying on
social reciprocation which assume that the agents are randomly
matched [10][19][20] or interact on a complete graph [9]. Due
to the network constraints, agents’ incentives are coupled in
a much more complex manner since they depend directly on
the behavior of their immediate neighbors and indirectly on
the behavior of more distant remaining agents. Because of the
different network constraints, there is not a universal rating
protocol that can work efficiently in all networks. Instead,
the rating protocol design must explicitly take into account
the specific coupling among agents arising from the specific
network.

The second arises because we insist on protocols that are
distributed and informationally decentralized. We do not need
to assume the existence of any central entity that can monitor
the entire network (i.e. network topology, all agents’ utility
functions and actions) and communicate to all individual
agents about all other agents’ behavior. Decentralization rules
out protocols proposed in prior works [19][20] since they are
designed and implemented in a centralized manner, requiring
the knowledge of the entire network at a central entity. In this
paper, the rating protocol is designed and implemented in a
distributed manner, requiring only limited message exchange
(i.e. Lagrangian multipliers during configuration and agents’
ratings during interaction) among the software of neighboring
agents.

The main contributions of this paper are:
1) We develop a framework for providing incentives in

networks where heterogeneous agents interact repeatedly
over a network. This framework is very general and can
be employed for a variety of applications, including in
networks where bilateral interest may not exist between
agents and hence, existing works based on direct recip-
rocation such as Tit-for-Tat [7]-[8] do not work.

2) We rigorously analyze the incentives (Theorem 1) of
agents operating under the rating protocol framework
using a novel repeated game with imperfect monitoring
formalism, which explicitly considers the network struc-

ture, agents’ utility functions etc. With these constraints
and using the dual decomposition method, we propose
a novel and fully distributed algorithm to compute the
optimal recommended strategy of the rating protocol that
maximizes the social welfare.

3) We show how different networks may affect agents’
incentives in different ways and how to design rating
protocols that are tailored to different networks. Modified
rating protocols that apply to various dynamic networks
are also proposed and analyzed.

The remaining part of this paper is organized as follows. In
Section II, we review related works and existing solutions, and
highlight the key differences to this work. Section III outlines
the system model and formulates the protocol design problem.
In Section IV, we design the optimal rating protocol to
maximize the social welfare. The performance of the optimal
design is then analyzed in Section V. Section VI studies the
rating protocol design in a class of dynamic networks. Section
VII provides numerical results to highlight the features of the
proposed protocol. Finally, we conclude this paper in Section
VIII.

II. RELATED WORKS

Cooperation among the agents (e.g. repeated sharing) is
critical for the enhanced performance and robustness of var-
ious types of social, economic and engineering networks
[1]. The main focus of this literature is on determining the
resulting network performance if agents repeatedly share and
process information/goods. However, absent incentives and in
the presence of strategic agents, these networks will work
inefficiently or even collapse [2]. Thus, the main focus of
the current paper is how to incentivize strategic agents to
cooperate such that networks can operate efficiently.

A variety of incentive schemes has been proposed to en-
courage cooperation among agents (see e.g. [4] for a review
of different game theoretic solutions). Two popular incentive
schemes are pricing and differential service. Pricing schemes
[5][6] use payments to reward and punish individuals for their
behavior. However, they often require complex accounting
and monitoring infrastructure, which introduces substantial
communication and computation overhead. Differential service
schemes, on the other hand, reward and punish individuals
by providing differential services depending on their behavior.
Differential services can be provided by the network operator
[10][16][19]. However, in many networks of autonomous
agents, such a centralized network operator does not exist.
Alternatively, differential services can also be provided by
the other agents participating in the network since agents
in the considered applications derive their utility from their
interactions with other agents [7]-[12][19]-[21]. Such incentive
schemes are based on the principle of reciprocity and can
be classified into direct (personal) reciprocation and social
reciprocation. In direct (personal) reciprocation schemes (e.g.
the widely adopted Tit-for-Tat strategy [7]-[8]), the behavior
of an individual agent toward another is based on its personal
experience with that agent. However, they only work when
two interacting agents have bilateral interests. In social recip-
rocation schemes [9]-[12][19]-[21], individual agents obtain
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some (public) information about other individuals (e.g. their
ratings) and decide their behavior toward other agents based
on this information.

Incentive mechanisms based on social reciprocation are
often studied using the familiar framework of repeated games.
In [9], the sharing game is studied in a narrower context of
cooperative spectrum sensing and various simple strategies are
investigated. Agents are assumed to be able to communicate
and share sensing results with all other agents, effectively
forming a complete graph where the agents’ knowledge of
the network is complete and symmetric. However, such an
assumption rarely holds in distributed networks where, in-
stead, agents may interact over arbitrary topologies and have
incomplete and asymmetric knowledge of the entire network.
In such scenarios, simple strategies proposed in [9] will fail
to work and the incentives design becomes significantly more
challenging.

Contagion strategies on networks [10]-[12] are proposed as
a simple method to provide incentives for agents to cooperate.
However, such methods do not perform well if monitoring is
imperfect since any single error can lead to a network collapse.
Even if certain forms of forgiveness are introduced, contagion
strategies are shown to be effective only in very specific net-
works [11][12]. It is still extremely difficult, if not impossible,
to design efficient forgiving schemes in arbitrary distributed
networks since agents will have difficulty in conditioning their
actions on history, e.g. whether they are in the contagion phase
or the forgiving phase, due to the asymmetric and incomplete
knowledge.

Rating/reputation mechanisms are proposed as another
promising solution to implement social reciprocation. Much
of the existing work on reputation mechanism is concerned
with practical implementation details such as effective infor-
mation gathering techniques [13] or determining the impact
of reputation on a seller’s prices and sales [14][15]. The few
works providing theoretical results on rating protocol design
consider either one (or a few) long-lived agent(s) interacting
with many short-lived agents [16]-[18] or anonymous, homo-
geneous and unconnected agents selected to interact with each
other using random matching [10][19][20]. Importantly, few of
the prior works consider the design of such rating protocols for
networks where agents interact over a network, which leads
to extremely complex and coupled interactions among agents.
Moreover, the distributed nature of the considered sharing
networks imposes unique challenges for the rating protocol
design and implementation which are not addressed in prior
works [19][20].

In Table I, we compare the current paper with existing
works on social learning and incentive schemes based on direct
reciprocation and social reciprocation.

III. SYSTEM MODEL

A. Network Environment

We consider a network of N agents, indexed by
{1, 2, ..., N} = N . Agents are connected subject to an
underlying topology G = {gij}i,j∈N with gij = gji = 1
(here we consider undirected connection) representing agent i

and j being connected (e.g. there is a communication channel
between them) and gij = gji = 0 otherwise. Moreover, we
set gii = 0. We say that agent i and agent j are neighbors if
they are connected. For now we assume a static network G
but dynamic networks are also allowed in our framework and
this will be discussed in detail in Section VI.

Time is infinite and divided into discrete periods. In each
time period, each agent i decides its action (e.g. informa-
tion/goods sharing) towards each of its neighbors j, denoted by
aij ∈ R+

1. For example, aij can represent the effort spent
(e.g. information/goods shared) by agent i when interacting
with agent j. We collect the actions of agent i towards
all its neighbors in the notation ai = {aij}j:gij=1. Denote
a = (a1, ...,aN ) as the action profile of all agents and
a−i = (a1, ...,ai−1,ai+1, ...,aN ) as the action profile of
agents except i. Let Ai = Rdi

+ be the action space of agent i
where di =

∑
j gij is the number of agent i’s neighbors. Let

A = ×i∈NAi be the action space of all agents.
Agents obtain benefits from the information/goods shared

by neighbors. We denote the actions of agent i’s neighbors
towards agent i by âi = {aji}j:gij=1 and let bi(âi) be the
benefit that agent i obtains from these actions. Spending effort
(e.g. sharing information/goods) is costly and the cost ci(ai)
depends on an agent i’s own actions ai. Hence, given the
action profile a of all agents, the utility of agent i is

ui(a) = bi(âi)− ci(ai) (1)

We impose some constraints on the benefit and cost func-
tions.

Assumption 1. For each i, the benefit bi(âi) is non-
decreasing in each aji, ∀j : gij = 1 and is strictly concave in
âi (in other words, jointly strictly concave in aji, ∀j : gij =
1).

Assumption 2. For each i, the cost is linear in its sum action,
i.e. ci(ai) =

∑
j:gij

aij .

The above assumptions state that (1) agents receive decreas-
ing marginal benefits of information/goods acquisition, which
captures the fact that agents become more or less “satiated”
when they possess sufficient information/goods, in the sense
that additional information/goods would only generate little
additional payoff; (2) the cost incurred by an agent is equal
(or proportional) to the sum effort spent to cooperate with
all its neighbors. We note that the utility model is general
enough to account for the heterogeneity of the value of
information/goods to different users since bi(âi) is agent-
specific and depends on the action vector of all agent i’s
neighbors. For a concrete example, the benefit function can be
the widely-adopted Dixit-Stiglitz utility function [26] which
captures the information/goods heterogeneity and diversity
produced by different agents, i.e.

bi(âi) = f


∑

j∈Ni

(wjiaji)
γi

 1
γi

 (2)

1More general action space is also allowed, e.g. aij is upper bounded.
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Social Learning 

[1] 
Direct Reciprocation 

[7[8] 
Social Reciprocation 

[10][19][20] 
This paper 

Information/goods 
exchange Costless Costly Costly Costly 

Asymmetric interests No No Yes Yes 

Objective of study 
Convergence of 

agents’ beliefs and 
actions 

Incentives for agents 
to cooperate 

Incentives for agents to 
cooperate 

Incentives for agents to 
cooperate 

Game type One-shot game/ 
Bayesian game 

Repeated game Repeated game Repeated game 

Robust to monitoring 
errors 

No Yes & No Yes & No Yes 

Equilibrium concept Bayesian equilibrium 
Subgame perfect 

equilibrium 
Public perfect 
equilibrium 

Perfect local 
equilibrium 

Network topology Arbitrary Arbitrary 
 Fully connected/ 
Random matching 

Arbitrary  

Agents actions Belief update Cooperation level Cooperation level Cooperation level 

Agents’ utility depends on Self belief/action 
Own actions and 

others actions  
Own actions and  

others actions  
Own actions and  

others (joint) actions 

Utility function Homogeneous & 
Heterogeneous 

Homogeneous Homogenous Heterogeneous 

Distributed design Yes Yes No Yes � TABLE I
COMPARISON WITH EXISTING WORKS.

where wji ≥ 0 describes the relative importance of agent
j’s information/goods to agent i, γi ∈ (0, 1) measures agent
i’ appreciation for information/goods diversity and f(·) is a
concave and increasing function.

B. Rating Protocol

Each agent i is associated with a rating θi(t) ∈ Θ =
{1, 2, ...,K} in each period t which is maintained and updated
according to the rating protocol. The rating of agent i is
maintained by the software client of agent i. We collect
agent i’s neighbors’ ratings in θ̂i = {θj}j:gij=1 ∈ Θdi . The
rating protocol recommends actions to an agent depending
on neighbors’ ratings σi : Θdi → Ai. We refer to this
recommendation as the recommended strategy. For agent i,
σi={σij}j∈Ni consists of di elements with σij(θj) represent-
ing the recommended sharing action of agent i towards agent
j if agent j’s rating is θj . We collect the strategies of agent
i’s neighbors towards agent i in σ̂i(θi) = {σji(θi)}j:gij=1.
These recommendations are done in a distributed manner by
the system, through the software clients of the agents.

Depending on whether or not agent i followed the recom-
mended strategy, its software client updates agent i’s rating at
the end of each period. Let yi ∈ Y = {0, 1} be the public
monitoring signal of agent i with yi = 1 if ai = σi and
yi = 0 if ai ̸= σi which is generated by the software of
agent i. However, monitoring may not be perfect and hence
it is possible that even if ai = σi, it can still be yi = 0 (and
if ai ̸= σi, yi = 1). The rating update rule for agent i is a
function τi : Θ × Y → ∆(Θ) where ∆(Θ) is the probability
simplex of the rating set and τi(θ

+
i ; θi, yi) is the probability

that the updated rating is θ+i if agent i’s current rating is θi and
the public signal is yi. In particular, we consider the following
parameterized rating update rule, for agent i,

τi(θ
+
i ; θi, yip)=


αi,k, if θ+i = max{1, k − 1}, yi = 0
1− αi,k, if θ+i = k, yi = 0
βi,k, if θ+i = min{K, k + 1}, yi = 1
1− βi,k, if θ+i = k, yi = 1

(3)

In words, compliant agents are rewarded with a higher rating
with some probability while deviating agents are punished
with a lower rating with some (other) probability. These
probabilities αi,k, βi,k are in the range of [0, 1]. Note that
when αi,k = 0, the rating set of agent i effectively reduces to
a subset {k, k+1, ...,K} since its rating will never drop below
k (if its initial rating is higher than k). Note also that agents
remain at the highest rating θ = K if they always follow the
recommended strategy regardless of the choice of βi,K .

To sum up, the rating protocol is uniquely determined by
the recommended (public) strategies σi(θ̂i), ∀i,∀θ̂i and the
rating update probabilities αi,k, βi,k for every i and k. These
will be our design parameters. We denote the rating protocol
by π = (Θ,σ,α,β). The rating protocol is configured
(i.e. the values of the design parameters are determined) at
the beginning of the system by the software clients of the
agents. The configuration is carried out in a distributed way,
requiring the software clients to exchange with neighbors
limited messages (i.e. Lagrangian multipliers etc.). When the
network is static, the rating protocol is configured only once
at the beginning. When the network is dynamic, the rating
protocol is reconfigured once in a while, to adapt to the
varying network. We assume that all agents are synchronized
and enter the reconfiguration period simultaneously. This syn-
chronization can be coordinated by an exogenous stochastic
process (not controlled by any central planner), for instance a
random sequence generator with the same seed for each agent.
Alternatively, the reconfiguration can also be initiated by a
particular agent and then this signal is spread over the entire
network. We also note that agents will not have incentives not
to perform reconfiguration since the protocol is designed in
such a way that participation in this period produces a higher
utility for the agent than not participating. Table II summarizes
the operation of the rating protocol.

C. Problem Formulation

The objective of the protocol designer is to maximize the
social welfare of the network, which is defined as the time-
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 Agent (Strategic) Software client (Non-strategic) 

Configuration 
Information --- 

Own agents’ utility function and 
local connectivity 

Action/ 
Functionality 

--- 
Determine the rating protocol in a 

distributed manner 

Interaction 
Periods 

Information 
The instantiated rating protocol; 

Neighbors’ ratings.  
Whether or not the agent followed 

the recommended strategy 

Action/ 
Functionality 

Choose sharing actions aiming to 
maximize own utility 

Update the agent’s rating;  
Broadcast it in the neighborhood � TABLE II

OPERATION OF THE RATING PROTOCOL.

average sum utility of all agents, i.e.

V = lim
T→∞

1

T

T∑
t=0

∑
i

ui(a(t)) (4)

If agents are obedient, then the system designer can assign
socially optimal actions, denoted by aopt(t), ∀t, to agents
and then agents will simply take the actions prescribed by
the system designer. Determining the socially optimal actions
involves solving the following utility maximization problem:

maximize
a

V

subject to aij(t) ≥ 0, ∀i, j : gij = 1,∀t
(5)

This problem can be easily solved and any action profile aopt

that satisfies

âopt
i (t) ∈ argmax

â
bi(âi(t))− ci(âi(t))p (6)

is a solution. We denote the optimal social welfare by V opt.
The network cooperation (e.g. information/goods sharing)

problem becomes much more difficult in the presence of
strategic agents: strategic agents may not want to take the
prescribed actions because these actions do not maximize their
own utilities.

Definition 1. A (one-shot) network sharing game is a tuple
G = ⟨N ,A, {ui(·)}i∈N ;G⟩ where N is the set of players, A
is the action space of all players, ui(·) is the utility function
of player i (defined by (1)) and G is the underlying network.

Consider the utility of an agent i in (1). In order to maximize
its own utility, agent i will take the action ai = 0 regardless
of other agents’ actions a−i. Therefore, there exists a unique
Nash equilibrium (NE) aNE = 0 in the network sharing game
in any period.

In this paper, we exploit the repeated interactions among
agents to provide agents with incentives to cooperate. In the
following, we introduce the equilibrium concept used in this
paper.

At the end of each interaction period, each agent i observes
the (imperfect) monitoring signal yj ∈ Y = {0, 1} of the ac-
tion of each of its neighbor j. Write Yi for the space of signals
observed by agent i and Y = ×i∈NYi for the space of signal
profiles. A profile of actions a ∈ A determines a distribution
of signals µa ∈ ∆(Y); agents observe a realization drawn
at random from this distribution. In our network setting, the
signal distribution is local in the sense that agent i’s observed

1 2
54

3 6
71y

2y

3y

4y

5y

6y

7y

1 1yAgent Public signal
Agent 1 only observes its local public signals Agent 2 only observes its local public signals 

12a

21a

26a

62a

27a

72a

12a Information sharing action

13a

31a

41a

14a

51a 15a

Fig. 1. Illustration of local public signals.

signal depends only on the actions of i’ neighbors. Figure 1
illustrates the local signals observed by agents. A signal history
of length T is an element y = (y1, ...,yT ) ∈ YT ; yt is the
signal profile at time t and yt

i is the signal profile observed by
agent i at time t. In addition to signals, agents know their own
actions and their realized own utilities, so a private history of
length T for agent i is an element h ∈ (Ai×R×Yi)

T=HT
i and

a private history of length T is a profile of private histories for
each agent. A strategy for agent i is a function σi : Hi → Ai,
prescribing an action following each history. The strategy σi

is a local strategy (or a local signal strategy) if it depends only
on the history of local signals observed by i (and not on the
history of i’s actions or realized utilities.) An infinite history
for agent i is an element of (Ai ×R×Yi)

∞=H∞
i . Note that

a strategy profile σ defines, for each agent i, a probability
distribution ζi(σ) on the infinite histories H∞

i and hence a
probability distribution νi(σ) on infinite utility streams R∞.
Agents discount future utilities, so the utility agent i derives
from the infinite utility stream ui = (u1

i , u
2
i , ...) is

Wi(ui) =
∞∑
t=0

δtut
i (7)

where δ ∈ (0, 1) is the discount factor. Hence the (expected)
utility agent i derives if agents follow the strategy profile σ is

Ui(σ) = EWi(ui) =

∫
ui

Wi(ui)dνi(σ)(ui) (8)

A strategy profile σ is a Nash equilibrium if for each agent
i, the strategy σi is a best response to other agents’ strategy



1932-4553 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JSTSP.2014.2316597, IEEE Journal of Selected Topics in Signal Processing

6

profile σ−i; that is

Ui(σi,σ−i) ≥ Ui(σ̂i,σ−i) (9)

for every strategy σ̂i. The profile σ is a local equilibrium if it
is a Nash equilibrium and every agent uses a local strategy; it
is a perfect local equilibrium (PLE) if in addition it is a Nash
equilibrium following every history.

The proposed rating protocol assigns each agent a rating
that summarizes the public signal history of the action of that
agent. Hence, σi : Hi → Ai is reduced to σi : Θ

di → Ai .
This significantly reduces the implementation complexity since
agents need to keep only the current ratings of their neighbors
instead of the entire signal history of their neighbors. If a rec-
ommended strategy profile constitutes a PLE, then agents have
incentives to follow their recommended strategies. Denote the
achievable social welfare by adopting the rating protocol by
V (π). The rating protocol design problem thus is

maximize
π=(Θ,σ,α,β)

V (π)

subject to σ constitutes a PLE
(10)

D. Illustrative Example: Cooperative Estimation

We illustrate the generality of our formalism by showing
how well-studied joint estimation problems [9][28] can be cast
into it. Our proposed framework can also be used to solve
problems such as distributed cybersecurity investment [29] and
cooperation in economics networks [30] etc.

Suppose that each agent observes in each period a noisy
version of a time-varying underlying system parameter s(t)
of interest. Denote the observation of agent i by oi(t). We
assume that oi(t) = s(t) + ϵi(t), where the observation error
ϵi(t) is i.i.d. Gaussian across agents and time with mean zero
and variance r2. Agents can exchange observations with their
neighbors to obtain better estimations of the system parameter.
Let aij(t) be the transmission power spent by agent i. The
higher the transmission power the larger probability that agent
j receives this additional observation from agent i. Agents can
use various combination rules [9] to obtain the final estima-
tions. The expected mean square error (MSE) of agent i’s final
estimation will depend on the actions of its neighbors, denoted
by MSEi(âi(t)). If we define the MSE improvement as the
benefit of agents, i.e. bi(âi(t)) = r2 −MSE(âi(t)), then the
utility of agent i in period t given the received benefit and its
incurred cost is ui(a(t)) = r2 −MSEi(âi(t))− ∥ai(t)∥1.

IV. DISTRIBUTED OPTIMAL RATING PROTOCOL DESIGN

If a rating protocol constitutes a PLE, then all agents will
find it in their self-interest to follow the recommended strate-
gies. If the rating update rule updates the ratings of compliant
agents upward with positive probabilities, then eventually all
agents will have the highest ratings forever (assuming no
update errors). Therefore, the social welfare, which is the time-
average sum utility, is asymptotically the same as the sum
utility of all agents when they have the highest ratings and
follow the recommended strategy, i.e.

V =
∑
i

(bi(σ̂i(K))− ci(σi(K))) (11)

This means that the recommended strategy profile σ(K) for
the highest ratings determines the social welfare that can be
achieved by the rating protocol. If this strategy profile can
be arbitrarily chosen, then we can solve a similar problem
as (5) for the obedient agent case. However, in the presence
of self-interested agents, this strategy profile, together with
the other components of a rating protocol, need to satisfy
the equilibrium constraint such that self-interested agents have
incentives to follow the recommended strategies. In Theorem
1, we identify a sufficient and necessary condition on σ(K)
such that an equilibrium rating protocol can be constructed.
With this, we are able to determine the optimal rating protocol
in a distributed way in order to maximize the social welfare.
We denote the social welfare that can be achieved by the
optimal rating protocol as V ∗ and use the price of anarchy
(PoA), defined as PoA = V opt/V ∗, as the performance
measure of the rating protocol.

A. Sufficient and Necessary Condition

To see whether a rating protocol can constitute a PLE,
it suffices to check whether agents can improve their long-
term utilities by one-shot unilateral deviation from the recom-
mended strategy after any history (according to the one-shot
deviation principle in repeated game theory [24]). Since in the
rating protocol, the history is summarized by the ratings, this
reduces to checking the long-term utility in any state (i.e. any
rating profile θ of agents). Agent i’s long-term utility when
agents choose the action profile a is

Ui(θ;a) = ui(θ;a) + δ
∑
θ′

p(θ′|θ;a)U∗
i (θ

′), (12)

where p(θ′|θ;a) is the rating profile transition probability
which can be fully determined by the rating update rule
based on agents’ actions and U∗

i (θ
′) is the optimal value of

agent i at the rating profile θ′, i.e. U∗
i (θ

′)=max
a

Ui(θ;a).
PLE requires that the recommended actions for any rating
profile are the optimal actions that maximize agents’ long-
term utilities. Before we proceed to the proof of Theorem 1,
we prove the following Lemma, whose proof is deferred to
the appendix.

Lemma 1. 1) ∀θ, the optimal action of agent i is either
a∗
i (θ) = 0 or a∗

i (θ) = σi(θ̂i).
2) ∀θi, if for θ̂i = K, a∗

i (θ) = σi(θ̂i), then for any other
θ̂i, a∗

i (θ) = σi(θ̂i).
3) Let θ̂i = K, suppose ∀θi, a∗

i (θ) = σi(θ̂i), then θi <
θ′i ⇔ U∗

i (θi, θ̂i) ≤ U∗
i (θ

′
i, θ̂i)

Lemma 1.1 characterizes the set of possible optimal actions.
That is, self-interested agents choose to either share nothing
or the recommended amount of information/goods with their
neighbors. Lemma 1.2 states that if an agent has an incentive
to follow the recommended strategy when all its neighbors
have the highest ratings, then it will also have an incentive to
follow the recommended strategy in all other cases. Lemma
1.3 shows that the optimal long-term utility of an agent is
monotonic in its rating when all its neighbors have the highest
ratings – the higher the rating the larger the long-term utility
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the agent obtains. With these results in hand, we are ready to
present and prove Theorem 1.

Theorem 1. Given the rating protocol structure and the net-
work structure, at least one rating protocol can be constructed
to be a PLE if and only if δbi(σ̂i(K)) ≥ ci(σi(K)), ∀i.

Proof: (Sketch): For the sake of conciseness, we provide
only the proof sketch of Theorem 1. The complete proof can
be found in appendix. According to Lemma 1.2, it suffices to
ensure that agent i has an incentive to take the recommended
strategy when it neighbors’ ratings are θ̂i = K. However,
we need to prove that this holds for all ratings of agent i. To
prove the “only if” part, we show that if δbi(σ̂i) < ci(σi), ∀i,
then no rating protocol can constitute a PLE by showing a
contradiction. To prove the “if” part, we construct a binary
rating protocol that can constitute a PLE when δbi(σ̂i) ≥
ci(σi) is satisfied. In particular, we choose αi,2 = βi,1 = 1, ∀i
as the rating update probabilities in such a rating protocol.

B. Computing the Recommended Strategy

Theorem 1 provides a sufficient and necessary condition
for the existence of a PLE with respect to the recommended
strategies when agents have the highest ratings. From (11) we
already know that these strategies fully determine the social
welfare that can be achieved by the rating protocol. Therefore,
the optimal values of σ(K) can be determined by solving the
following optimal recommended strategy design problem:

maximize
σ

∑
i(bi(σ̂i(K))− ci(σi(K)))

subject to ci(σi(K)) ≤ δbi(σ̂i(K)), ∀i
σ ≥ 0

(13)

where the constraint ensures that an equilibrium rating pro-
tocol can be constructed. Note that this problem implicitly
depends on the network since both σ̂i(K) and σi(K), ∀i are
network-dependent (since for each agent i, the strategy is only
towards its neighbors). In this subsection, we will write σi(K)
as σi and σ̂i(K) as σ̂i to keep the notation simple.

Firstly, we show the strong duality holds for the problem
(13) under mild conditions.

Proposition 1. Strong duality holds for (13) if the following
condition on the benefit function holds: ∀i ∈ N

max
j

∂bi(x̂i)

∂xji

∣∣∣∣
x̂i=0

>
di
δ

(14)

Proof: It is easy to see that the problem in (13) is a convex
optimization problem. According to the Slater’s condition [25],
strong duality holds if there exists a strictly feasible solution
σ such that

ci(σi(K)) < δbi(σ̂i), ∀i
σ ≥ 0

(15)

i.e. a solution such that the non-linear constraints are strictly
satisfied.

Consider agent i, we find its neighbor j∗ such that j∗ =

argmax
j

∂bi(x̂i)
∂xji

∣∣∣
x̂i=0

. We construct a strategy σ̂i such that

σj∗i = ϵ and σji = 0, ∀j ̸= j∗. Because ∂bi(x̂i)
∂xj∗i

∣∣∣
x̂i=0

>

di

δ and the bi(x̂i) is concave, we can always find an ϵ̄ > 0

such that ∂bi(x̂i)
∂xj∗i

∣∣∣
x̂i=σ̂i

= di

δ . Hence, for any ϵ ∈ (0, ϵ̄),

bi(σ̂i) >
di

δ ≥ c(σi)
δ . The last inequality is because the cost

of agent i is at most ci(σi) ≤ di. If we do this for all agents,
then we find a strategy profile σ that is a strictly feasible
solution.

The condition in the above proposition requires that each
agent can obtain a sufficiently large marginal benefit at 0 from
at least one of its neighbors. This is a mild condition and holds
for numerous benefit functions such as the Dixit-Stiglitz utility
function in (2). Moreover, (15) is rather conservative: in many
problems, the right-hand side of (15) can be much smaller.

Now, we propose a distributed algorithm to compute these
recommended strategies using the dual decomposition method
[23][25]. The idea is that we decompose the Optimal Recom-
mended Strategy Design problem (13) into N sub-problems
each of which is locally solved for each agent. Note that
unlike the case with obedient agents, these sub-problems have
coupled constraints. Therefore, the software of agents will
need to go through an iterative process to exchange messages
(i.e. the Lagrangian multipliers) with their neighbors such that
their local solutions converge to the global optimal solution.
We describe the algorithm in detail below.

We perform dual decomposition on (13) and form the partial
Lagrangian,

L(σ,λ) =
∑

i(bi(σ̂i)− ci(σi)) +
∑

i λi(ci(σi)− δbi(σ̂i))

=
∑

i

[
(1 + λiδ)bi(σ̂i)−

∑
j:gij=1(1 + λj)σji

]
,

∑
i Li(σ̂i,λ)

(16)
where λi ≥ 0 is the Lagrange multiplier associated with the
incentive constraint of agent i. The second equality is due to
the linearity of the cost function. The master dual problem is,

minimize
λ

g(λ) =
∑

i gi(λ)

subject to λi ≥ 0,∀i
(17)

where g(λ) = max
λ

L(σ,λ). When strong duality holds,

the optimal value g∗(λ) equals the optimal value of the
original primal problem (13). Next, we solve g∗(λ) using the
subgradient method. A subgradient of −g is as follows: for λi,
the subgradient is ci(σ∗

i (λ))−δbi(σ̂
∗
i (λ)). Therefore, we need

to solve the optimal σ∗(λ) for a given λ to get the subgradient.
Notice that the Lagragian L(σ,λ) can be separated into N
sub-Lagrangians Li(σ̂i,λi), we can obtain σ̂∗

i , ∀i by solving
each subproblem individually,

maximize
σ̂i

[1 + λiδ]bi(σ̂i)−
∑

j:gij=1

(1 + λj)σji (18)

The above problem is a convex optimization problem and
hence is easy to solve. Now we have found the subgradient,
that master algorithm updates the dual varible λ based on this
subgradient,

λi(q+1) = [λi(q) + w(ci(σ
∗
i (λ(q)))− δbi(σ̂

∗
i (λ(q))))]

+
,∀i

(19)
where q is the iteration index, w > 0 is a sufficiently small
positive step-size. Because (13) is a convex optimization, it is
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well known [25] that such an iterative algorithm will converge
to the dual optimal λ∗ as q → ∞ and the primal variable
σ∗(λ(q)) will also converge to the primal optimal σ∗.

This iterative process can be made fully distributed which
requires only limited message exchange between the software
clients of neighboring agents. We present the Distributed Com-
putation of the Recommended Strategy (DCRS) Algorithm
below which is run locally by the software client of each agent.

Algorithm: Distributed Computation of the Recommended
Strategy (DCRS)
(Run by the software client of agent i)
Input: Connectivity and utility function of agent i.
Output: σi(K) = {σij(K)}j:gij=1 (denoted by σi =
{σij}j:gij=1 for simplification)
Initialization:, q = 0; λi(q) = 0
Repeat:
Send λi(q) to neighbor j, ∀j : gij = 1.

(Obtain λj(q) from j, ∀j)
Solve (18) using λi(q), {λj(q)}j:gij=1 to obtain σ̂i(λ(q)).
Send σji(λ(q)) to neighbor j, ∀j : gij = 1.

(Obtain σij(λ(q)) from j, ∀j)
Update λi(q + 1) according to (19).
Stop until ∥λji(q + 1)− λji(q)∥2 < ελ

The above DCRS algorithm has the following interpretation.
In each configuration slot, the software client of each agent
computes the sharing actions of the agent’s neighbors that
maximize the social surplus with respect to its own agent (i.e.
the benefit obtained by its own agent minus the cost incurred
by its neighbors). However, this computation has to take into
account whether neighboring agents’ incentive constraints are
satisfied, which are reflected by the Lagrangian multipliers.
The larger λi is, the more likely it is that agent i’s incentive
constraint is violated. Hence, the neighbors of agent i should
acquire less information/goods from it. We note that the DCRS
algorithm needs to be run to compute the optimal strategy only
once at the beginning if the network is static.

C. Computing the Remaining Components of the Rating Pro-
tocol

Even though the DCRS algorithm provides a distributed
way to compute the recommended strategy when agents have
the highest ratings, the other elements of the rating protocol
remain to be determined. There are many possible rating proto-
cols that can constitute a PLE given the obtained recommended
strategies. In fact, we already provided one way to compute
these remaining elements when we determined the sufficient
condition in Theorem 1 by using a constructive method.
However, this is not the most efficient design in the imperfect
monitoring scenario where ratings will occasionally drop due
to monitoring errors. Therefore, the remaining components
of the rating protocol should still be smartly chosen in the
presence of monitoring errors. In this subsection, we consider
a rating protocol with a binary rating set Θ = {1, 2} and
σij(θ = 1) = 0, ∀i, j : gij = 1. We design the rating update
probabilities αi,2, βi,1, ∀i to maximize the social welfare when
monitoring error exists.

1 2

(1 )β− ε

αε

1 α− ε1 (1 )β− − ε

Fig. 2. Markov chain of the rating transition.

Proposition 2. Given a binary rating protocol Θ = {1, 2},
σij(2), ∀i, j : gij = 1 determined by the DCRS algorithmp
and σij(1) = 0, ∀i, j : gij = 1, when the monitoring error
> 0, the optimal rating update probability that maximize the

social welfare is, ∀i, β∗
i,1 = 1, α∗

i,2 = ci(σi(2))

δbi(σ̂i(2))

Proof: The social welfare is the time-average sum utility
of all agents. Therefore, we need to maximize the expected
utility for each individual agent. Since we consider a binary
rating protocol, let η1i , η

2
i be the probability that agent i has

rating 1 and rating 2, respectively. Note that η1i + η2i = 1.
The expected time-average utility of agent i can be written
as EVi = η1i ui(1) + η2i ui(2). Since the utility of having a
higher rating is larger than that of having a lower rating,
ui(2) ≥ ui(1). Therefore, in order to maximize EVi , we need
to maximize π2

i . Given αi,2, βi,1, we can determine η2i by solv-
ing the stationary distribution of a two-state Markov chain. In
this Markov chain, the states are the ratings and the transition
probabilities are depicted in Figure 2. A simple calculation of
this Markov chain yields the solution of η2i =

(1−)βi,1

αi,2+(1−)βi,1
.

Now, in order to maximize η2i , it is equivalent to max-
imize βi,1/αi,2. However, αi,2 and βi,1 are subject to the
incentive constraints and we can derive the feasible values
of αi,2, βi,1, ∀i as follows,

βi,1 ≥ 1−δ
δ

ci(σi(2))

bi(σ̂i(2))−ci(σi(2))
,

αi,2 ≥ 1−δ(1−βi,1)
δ

ci(σi(2))

bi(σ̂i(2))

(20)

For any βi,1, the optimal value of αi,2 is the binding value
of second inequality in (20) and hence, we need minimize [1−
δ(1− βi,1)]/βi,1. Because [1− δ(1− βi,1)]/βi,1 is decreasing
in βi,1, the optimal value of βi,1 is β∗

i,1 = 1. Using (20) again,

the optimal value of α∗
i,2 = ci(σi(2))

δbi(σ̂i(2))
.

It is worth noting that these probabilities can be computed
locally by the software of the agents which do not require any
information from other agents.

D. Illustrative Rating Protocols

In this section we show how the rating protocol can be
determined in a distributed manner given the network struc-
ture. Specifically, we consider a set of 4 agents performing
cooperative estimation (as in Section III. D) over two fixed
networks – a ring and a star. A possible approximation of the
utility function of each agent i when the uniform combination
rule is used is ui(a(t)) = [r2− r2

1+
∑

j:gij
aji

]−
∑

j:gij
aij . We

assume that the noise variance r2 = 4. Figure 3 illustrates the
optimal actions in different networks by solving (5). In both
networks, the optimal social welfare is V opt = 4. Figure 4
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1
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3

2

4

13 1opta =

14 1opta =

21 0.33opta =

41 0.33opta =
31 0.33opta =

1 2

4 3

23 0.5opta =

32 0.5opta =

34 0.5opta =

34 0.5opta =

41 0.5opta =
14 0.5opta =

12 0.5opta =

21 0.5opta =

Fig. 3. Optimal strategies for obedient agents.
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*
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*
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*
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31 0.43σ =

1 2

4 3

*
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*
32 0.5σ =

*
34 0.5σ =

*
34 0.5σ =

*
41 0.5σ =

*
14 0.5σ =

*
12 0.5σ =

*
21 0.5σ =

Fig. 4. Optimal strategies for strategic agents.

illustrates the optimal recommended strategies computed using
the method developed in this section for these two topologies
(assuming ϵi → 0, ∀i).

In the ring network, agents are homogeneous and links are
symmetric. As we can see, the optimal recommended strategy
σ∗ is exactly the same as the socially optimal action profile
aopt for obedient agent case because aopt already provides
sufficient incentive for strategic agents to follow. Therefore,
we can easily determine that PoA = 1. However, the strategic
behavior of agents indeed degrades the social welfare in other
cases, especially when the network becomes more heteroge-
neous and asymmetric, e.g. the star network. Even though
taking aopt maximizes the social welfare V opt = 4 in the
star network, these actions are not incentive-compatible for
all agents. In particular, the maximum welfare V opt = 4 is
achieved by sacrificing the individual utility of the center agent
(i.e. agent 1 needs to contribute much more than it obtains).
However, when agents are strategic, the center agent will not
follow these actions aopt and hence, V opt = 4 cannot be
achieved. More problematically, since the center agent will
choose not to participate in the sharing process, the periphery
agents do not obtain benefits and hence, they will also choose
not to participate in the sharing process. This leads to a
network collapse. In the proposed rating protocol, the rec-
ommended strategies satisfy all agents’ incentive constraints,
namely δbi(σ̂i(K)) ≥ ci(σi(K)), ∀i. By comparing aopt and
σ∗, we can see that the rating protocol recommends more
sharing from the periphery agents to the center agent and less
sharing from the center agent to the periphery agents than the
obedient agent case. In this way, the center agent will obtain
sufficient benefits from participating in the sharing. However,
due to this compensation for the center agent, the PoA is
increased to PoA = 1.036.

V. PERFORMANCE ANALYSIS

In this section, we analyze the performance of the rating
protocol and try to answer two important questions: (1) What
is the performance loss induced by the strategic behavior of
agents? (2) What is the performance improvement compared
to other (simple) incentive mechanisms?

A. Price of Anarchy

Consider the social welfare maximization problems (5) and
(13) for obedient agents and strategic agents (by using rating
protocols), respectively. It is clear that the social welfare
achieved by the rating system is always no larger than that
obtained when agents are obedient due to the equilibrium
constraint; hence, i.e. PoA ≥ 1. The exact value of PoA
will, in general, depend on the specific network structure
(topology and individual utility functions). In this subsection,
we identify a sufficient condition for the connectivity degree
of the network such that PoA is one. To simplify the analysis,
we assume that agents’ benefit functions are homogeneous
and depend only on the sum sharing action of the neighboring
agents, i.e. bi(âi) = b(

∑
j:gij=1 aji). Recall that di =

∑
j gij

is the number of neighbors of agent i. The degree of network
G is defined as d = max

i
di.

Proposition 3. If the benefit function satisfies bi(âi) =
b(
∑

j:gij=1 aji), ∀i and the sharing action is upper-bounded
aij ≤ 1,∀i, j, then there exists a d̄ such that if d ≤ d̄,
PoA = 1.

Proof: Due to the concavity of the benefit function
(Assumption 1), there exists d∗ such that if d > d∗, b(d)− d
is increasing and if d ≤ d∗, b(d) − d is decreasing. If the
connectivity degree satisfies d < d∗, then the optimal solution
of (5) is aij = 1,∀i, j : gij = 1. That is, optimality is
achieved when all agents share the maximal amount of in-
formation/goods with all their neighbors. Therefore, ∀d < d∗,
the agent i’s benefit is b(di) and its cost is di in the optimal
solution. Moreover due to the concavity of the benefit function,
there exists d∗∗ such that if d > d∗∗, δb(d) − d < 0 and if
d ≤ d∗∗, δb(d) − d ≥ 0. Therefore, if d ≤ d∗∗, then agents’
incentives are satisfied. Therefore if we let d̄ = min{d∗, d∗∗},
then ∀d < d̄, all agents have incentives to share the maximal
amount of information/goods with their neighbors in which
case the social optimum is also obtained. Hence, PoA = 1.

Proposition 3 states that when the connectivity degree is
low, the proposed rating protocol can achieve the optimal
performance even when agents are strategic.

B. Comparison with Direct Reciprocation

The proposed rating protocol is not the only incentive mech-
anism that can incentivize agents to share information/goods
with other agents. A well-known direct reciprocation based in-
centive mechanism is the Tit-for-Tat strategy, which is widely
adopted in many networking applications [7]-[8]. The main
feature of the Tit-for-Tat strategy is that it exploits the repeated
bilateral interactions between connected agents, which can
be utilized to incentivize agents to directly reciprocate to
each other. However, when agents have asymmetric interests,
such mechanisms fail to provide such incentives and direct
reciprocity algorithms cannot be applied.

Moreover, even if we assume that interests are symmetric
between agents, our proposed rating protocol is still guaranteed
to outperform the Tit-for-Tat strategy when the utility function
takes a concave form as assumed in this paper. Intuitively,
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because the marginal benefit from acquiring information/goods
from one neighbor is decreasing in the total number of neigh-
bors, agents become less incentivized to cooperate when their
deviation towards some neighboring agent would not affect
future information/goods acquisition from others, as is the case
with the Tit-for-Tat strategy. In the following, we formally
compare our proposed rating protocol with the Tit-for-Tat
strategy. We assume that an agent i has two possible actions
towards its neighboring agent j from : either no cooperation
at all, or a fixed sharing action, i.e. {0, āij} where āij ∈ R+.
The Tit-for-Tat strategy prescribes the action for each agent i
as follows, ∀j : gij = 1,

aij(0) = āij

aij(t+ 1) =

{
āij , if aji(t) = āji
0, if aji(t) = 0

, ∀t ≥ 0
(21)

Proposition 4. Given the network structure and the discount
factor, any action profile ā that can be sustained by the Tit-
for-Tat strategy can also be sustained by the rating protocol.

Proof: Consider the interactions between any pair of
agents i, j. In the Tit-for-Tat strategy, the long-term utility
of agent i by following the strategy when agent j played
āji in the previous period is Ui =

b̃i(āji)−āij

1−δ where
b̃i(x) = bi(âi|aki = āki, aji = x). If agent i deviates in
the current period, Tit-for-Tat induces a continuation history
({āij , 0}, {0, āji}, {āij , 0}...) where the first components are
agent i’s actions and the second components is agent j’s
actions. The long-term utility of agent i by one-shot deviation
is thus

U ′
i = b̃i(āji) + δ[

b̃i(0)−āij

1−δ2 + δ
b̃i(āji)
1−δ2 ]

=
b̃i(āji)
1−δ2 + δ

b̃i(0)−āij

1−δ2

(22)

Incentive-compatibility requires that Ui ≥ U ′
i and therefore

δ(b̃i(āji)− b̃i(0)) ≥ āij (23)

Due to the concavity of the benefit function, it is easy to
see that (23) leads to δbi(âi) ≥ ci(ai) which is a sufficient
condition for the rating protocol to be an equilibprium.

Proposition 4 proves that the social welfare achievable
by the rating protocol equals or exceeds that of the Tit-
for-Tat strategy, which confirms the intuitive argument be-
fore that diminishing marginal benefit from information/goods
acquisition would result in less incentives to cooperate in
an environment with only direct reciprocation than in one
allowing indirect reciprocation. We note that different action
profiles ā will generate different social welfare. However,
computing the best ā among the incentive-compatible Tit-for-
Tat strategies is often intractable since (23) is a non-convex
constraint. Hence, implementing the best Tit-for-Tat strategy
to maximize the social welfare is often intractable. In contrast,
the proposed rating protocol does not have this problem since
the equilibrium constraint established in Theorem 1 is convex
and hence, the optimal recommended strategy can be solved
in a distributed manner by the proposed DCRS algorithm.

VI. DYNAMIC NETWORKS

In Section IV, we designed the optimal rating protocol by
assuming that the network is static. In practice, the social
network can also change over time due to, e.g., new agents
entering the network and new links being created. Neverthe-
less, our framework can easily handle such growing networks
by adopting a simple extension which refreshes the rating
protocol (i.e. re-computes the recommended strategy, rating
update rules and re-initializes the ratings of agents) with a
certain probability each period. We call this probability the
refreshing rate and denote it by ρ ∈ [0, 1]. When networks are
dynamic, the refreshing rate will also be an important design
parameter of the rating protocol.

A. Refreshing Rate Design Problem

Denote the network in period t by G(t). We assume that in
each period an expected number n(t) of new agents enter the
network and stay forever. Therefore, the network G(t+1) will
be formed based on G(t) and the new agents. Note that before
the next protocol refreshing, these new agents do not create
benefits to or obtain benefits from their neighbors due to the
incentive problem. Let V opt(G(T ); ρ) be the optimal social
welfare and V ∗(G(T ); ρ) be the social welfare achieved by
the rating protocol starting from a network G for a refreshing
rate ρ. Our objective is to minimize the PoA by choosing a
proper ρ. The optimal social welfare V opt(G(T ); ρ) can be
computed as follows,

V opt(G(T ); ρ)=E
∞∑
t=0

ρ(1− ρ)t
1

t+ 1

t∑
τ=0

V opt(G(T + τ))

(24)
Due to the refreshing, agents’ discount factor effectively

becomes (1 − ρ)δ. Therefore, the social welfare achieved by
the rating protocol V ∗(G(T ); ρ) can be obtained by solving
the following optimization problem

maximize
σ

∑
i(bi(σ̂i(K))− ci(σi(K)))

subject to ci(σi(K)) ≤ (1− ρ)δbi(σ̂i(K)), ∀i
σ ≥ 0

(25)

Formally, the refreshing rate design problem is formulated
as the following optimization problem,

minimize
ρ

PoA(ρ) , V opt(G(T );ρ)
V ∗(G(T );ρ)

subject to V opt(G(T ); ρ) is computed by (24)
V ∗(G(T ); ρ) is solved by (25)

(26)

B. Impact of the Refreshing Rate

In this subsection, we study the impact of ρ on V ∗(G(T ); ρ)
and V opt(G(T ); ρ) separately and then provide guidelines on
choosing the optimal ρ∗ that minimizes PoA(ρ).

Proposition 5. Both V ∗(G(T ); ρ) and V opt(G(T ); ρ) are
non-increasing in ρ.

Proof: Since V ∗(G(T ); ρ) is the optimal solution of (25),
relaxing the constraints by decreasing ρ weakly increases
V ∗(G(T ); ρ). Therefore V ∗(G(T ); ρ) is non-increasing in ρ.
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It is easy to show that V opt(G(T + τ)) is non-decreasing
in τ because we can let the new agents share nothing and the
existing agents keep their previous strategies. Then according
to (24) it is easy to see that V opt(G(T ); ρ) is non-increasing
in ρ.

Proposition 5 shows the monotonicity of V ∗(G(T ); ρ) and
V opt(G(T ); ρ) with respect to ρ. If ρ is smaller, then there are
more new entering agents and hence, the time-average optimal
social welfare is larger. Moreover, since a smaller ρ means
a more static rating protocol, the existing agents have more
incentives to follow it.

Proposition 6. (1) lim
ρ→1

PoA(ρ) → ∞. (2) If ∀t2 > t1,

V opt(G(t2))−V opt(G(t1)) > κ > 0, then lim
ρ→0

PoA(ρ) → ∞.

(3) If lim
t→∞

V opt(G(t))− V opt(G(T )) < κ, then lim
κ→0

ρ∗ → 0.

Proof: (1) Because V opt(G(T ); 1) = V opt(G(T )) > 0
and V ∗(G(T ); 1) = 0, lim

ρ→0
PoA(ρ) → ∞. (2) Since in each

time the increase of the optimal social welfare is at least a
constant positive value, lim

ρ→0
V opt(G(T ); ρ) → ∞. Because

V ∗(G(T ); 0) = V ∗(G(T )) > 0, lim
ρ→0

PoA(ρ) → ∞. (3)

κ → 0 implies that lim
ρ→0

V opt(G(T ); ρ) → V opt(G(T )). Since

V ∗(G(T ); ρ) is non-increasing in ρ, PoA(ρ) is non-decreasing
in ρ. Therefore lim

κ→0
ρ∗ → 0.

The first two parts of Proposition 6 reveals the impact of the
refreshing rate on the PoA in two different ways. On one hand,
a larger refreshing rate provides less incentives for agents to
follow the current rating protocol designed in time T . One
the other hand, a smaller refreshing rate leads to a worse
adaptation of the rating protocol to the changing network.
Therefore, the optimal refreshing probability ρ∗ should be
neither too larger nor too small. The third part states that
if the speed of the optimal social welfare increase tends to
0 sufficiently quickly (e.g. the arrival rate of new agent is
sufficiently smaller), then the optimal refreshing rate tends
to be 0, i.e. the protocol is almost never refreshed. This is
intuitive since if the network changes extremely slowly, then
we almost do not need to refresh the rating protocol.

C. Exiting agents

The proposed rating protocol with refreshing can also be
applied to the general dynamic networks with both entering
and exiting agents. However, when agents are exiting, unlike
(25), the social welfare V ∗(G(T ); ρ) that can be achieved by
the rating protocol is difficult to characterize analytically. In
particular, agents’ incentives can be affected in different ways
for different networks and V ∗(G(T ); ρ) could be 0 in the
worst case. Below we provide two examples that illustrate the
different impacts.

1) Consider a star network with N periphery agents where
at time T each periphery agent shares one unit of in-
formation/goods with the center agent and vice versa.
The center agent’s incentive constraint satisfies c(N) ≤
(1 − ρ)δb(N). Suppose one periphery agent exits the
network before the next refreshing update of the rating
protocol. The center agent then receives one less unit

of information/goods and needs to send one less unit
of information/goods. If N is large, the incentive con-
straint of the center agent is still satisfied c(N − 1) ≤
(1 − ρ)δb(N − 1) since the benefit function is concave.
Because the center agent still has an incentive to follow
the recommended strategy with respect to the remain-
ing periphery agents, the remaining periphery agents’
incentives to follow the recommended strategy are not
affected. Therefore, the rating protocol works efficiently
before the next refreshing update.

2) Consider a ring network where at time T each agent
has the incentives to follow the recommended strategy
which recommends sharing one unit of information/goods
to its right-hand side neighbor. Each agent’s incentive
constraint satisfies c(1) ≤ (1 − ρ)δb(1)p. Suppose a
single agent exits the network before the next refreshing
update of the rating protocol. In this case, the incentive of
its right-hand side neighbor to follow the recommended
strategy is violated since all its benefit disappears. More
problematically, this will cause a “chain effect” which
leads tpo all remaining agents not sharing any infor-
mation/goods with others. In such scenarios, the rating
protocol fails to provide agents with sharing incentives.

From the above two examples, we see that it is significantly
more difficult to understand the incentives of agents for the
case with agents exiting since the game played by the agents
may change in unpredictable ways. In this case, we may
require other game theoretical concepts and tools to tackle
this problem. One possible solution is making conjectures and
using the notion of conjectural equilibrium [31] or using social
learning [1]. We leave this as an interesting future research
topic.

VII. ILLUSTRATIVE RESULTS

In this section, we provide simulation results to illustrate
the performance of the rating protocol. In all simulations,
we consider the cooperative estimation problem introduced in
Section III (A). Therefore, agents’ utility function takes the
form of ui(a(t)) = [r2−MSEi(âi(t))]−ai(t) [28]. We will
investigate different aspects of the rating protocol by varying
the underlying topologies and the environment parameters.

A. Impact of Network Connectivity

Now we investigate in more detail how the agents’ connec-
tivity shapes their incentives and influences the resulting social
welfare. In the first experiment, we consider the cooperative
estimation over star topologies with different sizes (hence, dif-
ferent connectivity degrees). Figure 5 shows the PoA achieved
by the rating protocol for discount factors δ = 1, 0.9, 0.8, 0.7
for the noise variance r2 = 8. As predicted by Proposition 3,
when the connectivity degree is small enough, the PoA equals
one and hence, the performance gap is zero. As the network
size increases (hence the connectivity degree increases in the
star network), the socially optimal action requires the center
agent to share more with the periphery agents. However, it
becomes more difficult for the center agent to have incentives
to do so since the sharing cost becomes much larger than
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the benefit. In order to provide sufficient incentives for the
center agent to participate in the sharing process, the rating
protocol recommends less sharing from the center agent to
each periphery agent. However, incentives are provided at a
cost of reduced social welfare. Figure 5 also reveals that when
agents’ discount factor is lower (agents value less the future
utility), incentives are more difficult to provide and hence, the
PoA becomes higher. Since our applies to any benefit function
that satisfies the Assumption, we show in Figure 6 the PoA
for different noise variances r2 for discount factor δ = 0.9. As
we can see that the above analysis holds for other values of
r2. Moreover, as the noise variance increases, PoA is smaller
for the same network size. This is because the benefit from
cooperation increases and hence, agents are more likely to
cooperate at the optimal level.

In the next simulation, we study scale-free networks in the
imperfect monitoring scenarios. We used the standard Barbasi-
Albert (BA) model to create the networks [27]. In scale-free
networks, the number of neighboring agents is distributed
as a power law (denote the power law parameter by dSF ).
Table III shows the mean and variance of PoA achieved by
the rating protocol developed for various values of dSF and

SF
d   0=ε  0.05=ε  0.1=ε  

2 
Mean 1.151 1.174 1.199 

Variance 5.9e-3 6.2e-3 6.4e-3 

3 
Mean 1.154 1.177 1.203 

Variance 8.6e-3 8.8e-3 9.2e-3 

4 
Mean 1.002 1.023 1.046 

Variance 3.1e-5 2.9e-5 2.7e-5 

5 
Mean 1.001 1.022 1.044 

Variance 1.6e-5 1.5e-5 1.4e-5 

6 
Mean 1.000 1.022 1.046 

Variance ~0 5.3e-7 2.5e-6 
 

 

 

TABLE III
PERFORMANCE FOR VARIOUS dSF IN SCALE-FREE NETWORKS.SF

d  N = 100 N = 200 N = 500 
2 1.174 1.173 1.176 
3 1.177 1.175 1.179 
4 1.023 1.023 1.023 
5 1.022 1.021 1.022 
6 1.022 1.022 1.020 � TABLE IV

PERFORMANCE FOR SCALE-FREE NETWORKS OF DIFFERENT SIZES

different monitoring error probabilities ϵ. The noise variance
is set to be r2 = 4 and the discount factor is δ = 0.8.
Each result is obtained by running 100 random trials. As
we can see, the proposed rating protocol achieves close-to-
optimal social welfare in all the simulated environments. In
Table IV, we further show the achievable PoA by the proposed
rating protocol for scale-free networks of different sizes when
ϵ = 0.05. Since the considered network is scale-free, the
performance is similar for different network sizes.

B. Comparison with Tit-for-Tat

As mentioned in the analysis, incentive mechanisms based
on direct reciprocation such as Tit-for-Tat do not work in
networks lacking bilateral interests between connected agents
and hence, reasons to mutually reciprocate. In this simulation,
to make possible a direct comparison with the Tit-for-Tat
strategy, we consider a scenario where the connected agents
do have bilateral interests and show that the proposed rating
protocol significantly outperforms the Tit-for-Tat strategy. In
general, computing the optimal action profile ā∗ for the Tit-
for-Tat strategy is difficult because it involves the non-convex
constraint δ(bi({ā∗ki}k:gik=1) − bi({ā∗ki}k ̸=j:gik=1, 0)) ≥ ā∗ij ,
∀i,∀j ̸= i : gij = 1; such a difficulty is not presented
in our proposed rating protocol because the constraints in
our formulated problem are convex. For tractability, here we
consider a symmetric and homogeneous network to enable the
computation of the optimal action for the Tit-for-Tat strategy.
We consider a number N = 100 of agents and that the number
of neighbors of each agent is the same di = d,∀i and each
agent adopts a symmetric action profile āij = ā, ∀i, j. The
noise variance is set to be r2 = 4 in this simulation. Figure 7
illustrates the PoA achieved by the proposed rating protocol
and the Tit-for-Tat strategy. As predicted by Proposition 4, any
action profile that can be sustained by the Tit-for-Tat strategy
can also be sustained by the proposed rating protocol (for the
same δ). Hence, the rating protocol yields at least as much
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Fig. 7. Performance comparison with Tit-for-Tat.ρ  0.005 0.02 0.04 0.06 0.08 0.10 0.12 0.14 
PoA 1.35 1.20 1.18 1.22 1.25 1.29 1.34 1.41 � TABLE V
POA OF RATING PROTOCOLS WITH DIFFERENT REFRESHING RATES.

social welfare as the Tit-for-Tat strategy (for the same δ).
As the discount factor becomes smaller, agents’ incentives to
cooperate become less and hence, the PoA is larger. Note that
for δ = 0.6, 0.8, our rating protocol achieves PoA = 1 for all
connectivity degrees.

C. Rating Protocol with Refreshing

Finally, we consider the optimal choice of the rating
protocol refreshing rate ρ when the network is growing as
considered in section VI. In this simulation, the network starts
with N = 50 agents. In each period, a new agent enters
the network with probability 0.1 and stays in the network
forever. Any two agents are connected with a priori probability
0.2. We vary the refreshing rate from 0.005 to 0.14. Table V
records the PoA achieved the rating protocol with refreshing
for δ = 0.4. It shows that the optimal refreshing rate needs to
be carefully chosen. If ρ is too large, the incentives for agents
to cooperate is small hence, the incentive-compatible rating
protocol achieves less social welfare. If ρ is too small, the
rating protocol is not able to adapt to the changing network
well. This introduces more social welfare loss in the long-term
as well. The optimal refreshing rate in the simulated network
is around 0.04.

VIII. CONCLUSIONS

In this paper, we provided a framework for designing
incentives protocols (based on ratings) aimed at maximizing
the social welfare of strategic agents which are repeatedly
sharing information/goods across a network. Our rating proto-
cols can be implemented in a distributed and informationally
decentralized manner and achieve much higher social wel-
fare than existing incentive mechanisms. Our framework and
analysis can also be used to provide guidelines for designing
and planning social, economic and engineering networks of

strategic agents, such that the social welfare of such networks
is maximized. The proposed ratings framework can also be
used to design protocols for a wide range of engineering
networks where strategic agents interact - communications net-
works, power networks, transportation networks, and computer
networks.

APPENDIX A
PROOF OF LEMMA 1

(1) Consider any action ai(θ) ̸= σi(θ̂i). According to
the rating update rule, p(θ′|θ,ai(θ)) = p(θ′|θ,0). Since
ui(θ,0) > ui(θ,ai(θ)), we can see that Ui(θ,0) >
Ui(θ,ai(θ))). Therefore, there are only two possible actions
that can potentially maximize the long-term utility.

(2) According to part (1), there are only two possible actions
that can be optimal. First, we note that the continuation utility
difference by choosing these two actions is

δ
∑
θ′

p(θ′|θ,σi(θ̂i))U
∗
i (θ̂i)− δ

∑
θ′

p(θ′|θ,0)U∗
i (θ̂i) (27)

which is independent of other agents’ ratings θ̂i when we
consider agent i’s one-shot unilateral deviation. This is because
the benefit that an agent can potentially receive only depends
on its own rating while the cost that the agent incurs depends
only on its neighbors’ ratings. The benefit is determined by
agent i’s current action since different actions lead to different
transitions of only agent i’s own rating. The costs are cancelled
out because the neighbors’ ratings are independent on agent
i’s actions.

It is obvious that the current period utility different satisfies,

ui((θi,K),0)− ui((θi,K),σi(θ̂i))

≥ ui((θi,θ−i),0)− ui((θi,θ−i),σi(θ̂i)), ∀θ−i
(28)

If for θ−i = K, the optimal action of agent i is a∗
i =

σi(θ̂i), then the following holds,

ui((θi,K),0)− ui((θi,K),σi(θ̂i))

≤ δ
∑
θ′

p(θ′|θ,σi(θ̂i))U
∗
i (θ̂i)− δ

∑
θ′

p(θ′|θ,0)U∗
i (θ̂i)

(29)
which means that the following is also true,

ui((θi,θ−i),0)− ui((θi,θ−i),σi(θ̂i)), ∀θ−i

≤ δ
∑
θ′

p(θ′|θ,σi(θ̂i))U
∗
i (θ̂i)− δ

∑
θ′

p(θ′|θ,0)U∗
i (θ̂i)

(30)
Therefore, for any other θ−i, the optimal action of agent i is
also a∗

i = σi(θ̂i).
(3) To simplify notations, we suppress K in the utility and

simply write U∗
i (θi) instead of U∗

i (θi, θ̂i). We also write βi,k

as βk. The value functions can be obtained by solving the
following recursive equations,

U∗
i (K) = u(K,σi) + δU∗

i (K)
U∗
i (K − 1) = u(K − 1,σi)+

δ(βK−1U
∗
i (K) + (1− βK−1)U

∗
i (K − 1))

...U∗
i (1) = u(1,σi) + δ(β1U

∗
i (2) + (1− β1)U

∗
i (1))

(31)
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We prove by induction. Suppose U∗
i (l) ≥ U∗

i (l−1), ∀l : K ≥
l ≥ k + 1. We need to show that U∗

i (k) ≥ U∗
i (k − 1). The

value functions of level k and k − 1 are

U∗
i (k) = ui(k,σi) + δ(βkU

∗
i (k + 1) + (1− βk)U

∗
i (k))

U∗
i (k − 1) = ui(k − 1,σi) + δ(βk−1U

∗
i (k)

+(1− βk)U
∗
i (k − 1))

(32)
To prove U∗

i (k) ≥ U∗
i (k − 1), we use contradiction. Suppose

U∗
i (k) < U∗

i (k − 1), then

U∗
i (k) ≥ ui(k,σi) + δU∗

i (k)
U∗
i (k − 1) < ui(k − 1,σi) + δU∗

i (k − 1)
(33)

This leads to ui(k,σi) < ui(k − 1,σi) which is a contradic-
tion. Hence, it only remains to prove U∗

i (K) ≥ U∗
i (K − 1).

This can be easily shown by computing U∗
i (K)−U∗

i (K−1),
i.e.

U∗
i (K)−U∗

i (K−1) =
ui(K,σi)− ui(K − 1,σi)

1− δ(1− βK−1)
> 0 (34)

This completes the proof.

APPENDIX B
PROOF OF THEOREM 1

According to Lemma 1, it suffices to ensure that agent i
has an incentive to take the recommended strategy when it
neighbors’ ratings are θ̂i = K. However, we need to prove
that this holds for all ratings of agent i. Therefore, we suppress
θ̂i = K and only write out θi whenever it is clear.

We prove the “only if” part first. We need to show that
for all rating protocol that is an equilibrium, δbi(σ̂i(K)) ≥
c(σ(K)), ∀i must be satisfied. Consider any rating level k
of agent i, following the recommended strategy gives it the
following long-term utility,

Ui(k,σ) = ui(k,σ)+δ(βkU
∗
i (k+1)+(1−βk)U

∗
i (k)) (35)

Deviating to 0 gives the following long-term utility,

Ui(k,0) = ui(k,0)+δ(αkU
∗
i (k−1)+(1−αk)U

∗
i (k)) (36)

Equilibrium requires that Ui(k,σ) ≥ Ui(k,0). Therefore, the
following must hold,

ui(k,0)− ui(k,σ) ≤ δ[βkU
∗
i (k + 1) + (1− βk)U

∗
i (k)

− αkU
∗
i (k − 1)− (1− αk)U

∗
i (k)]

(37)
According to Lemma 1.3, U∗

i (K) ≥ U∗
i (k),∀k in an equilib-

rium. Therefore, the following must hold,

ui(k,0)− ui(k,σ) ≤ δU∗
i (K) (38)

The left-hand side is ui(k,0) − ui(k,σ) = c(σi). Using the
recursive equation of the optimal long-term utilities (32), we
can compute the right-hand side as

U∗
i (K) =

1

1− δ
ui(1,σi) =

1

1− δ
(bi(σ̂i(1))− ci(σi(K))).

(39)
Substituting this into (38), we can obtain the desired result
after simple manipulations.

Next, we prove the “if” part by constructing a binary rating
protocol. According to the one-shot deviation principle, for

agent i to follow the recommended strategy at θi = 2, we
need

ui(2,0)− ui(2,σi) ≤ δα2(U
∗
i (2)− U∗

i (1)) (40)

for agent i to follow the recommended strategy at θi = 1, we
need

ui(1,0)− ui(1,σi) ≤ δβ1(U
∗
i (2)− U∗

i (1)) (41)

Using the value function (32), we can compute U∗
i (2)−U∗

i (1)
which is

U∗
i (2)− U∗

i (1) =
ui(2,σi)− ui(1,σi)

1− δ(1− β1)
(42)

Moreover, ui(2,0)−ui(2,σi) = ui(1,0)−ui(1,σi) = ci(σi).
For the rating protocol to be an equilibrium, we need to choose
α2, β1 such that

ci(σi) ≤ {α2, β1}ui(2,σi)−ui(1,σi)
1−δ(1−β1)

= {α2, β1} δbi(σ̂i(2)
1−δ(1−β1)

(43)

If we choose α2 = β1 = 1, then the above inequality holds.
This means that such a binary rating protocol is a PLE.

APPENDIX C
DISCUSSION ON THE DCRS ALGORITHM

When developing the DCRS algorithm, we used the widely-
adopted dual decomposition method. However, there are sev-
eral significant differences from existing problems.

First, in most existing problems [23][25], the constraint in
the optimization problem comes from the system resource
constraints. Our problem is not a NUM problem since we
do not have such resource constraints. Instead, the constraints
are derived based on the incentive-compatibility of agents,
i.e. the incentive condition under which the agents follow the
recommended strategy. More specifically, they are derived in
Theorem 1 (in the revised manuscript).

Second, in many standard dual decomposition problems
[23][25], the objective functions are directly separable, in the
sense that an agent’s utility depends on its own action. The
coupling among agents only comes from the optimization
constraints. For example, the objective function can have the
form

∑
i

fi(xi) where xi is agent i’s action and fi(xi) is its

utility. The actions of all agents need to satisfy some resource
constraints

∑
i

hi(xi) ≤ 0. In our problem, an agent’s utility

depends not only on its own action but also on the neighboring
agents’ actions, i.e.

∑
i

(bi(σ̂i)− ci(σi)) where σi is agent i’s

strategy and σ̂i is agent i’s neighbors strategies towards agent
i.

Third, even though dual decomposition allows distribut-
ed implementation, in many existing works [23][25], agents
still need to exchange messages with all other agents (e.g.
by broadcasting). This requires intensive message exchanges
among agents if broadcasting is not available and is even
impossible if agents’ interactions are subject to underly-
ing topologies. However, our solution enables a completely
distributed architecture and message exchange only occurs
between connected agents.
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