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ABSTRACT
Joint models for longitudinal and time-to-event data are commonly
used in longitudinal studies to forecast disease trajectories over
time. Despite the many advantages of joint modeling, the standard
forms suffer from limitations that arise from a fixed model specifi-
cation and computational difficulties when applied to large datasets.
We adopt a deep learning approach to address these limitations,
enhancing existing methods with the flexibility and scalability of
deep neural networks while retaining the benefits of joint modeling.
Using data from the Alzheimer’s Disease Neuroimaging Institute 1,
we show improvements in performance and scalability compared
to traditional methods.
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1 OVERVIEW
Effective clinical decision support often involves the dynamic fore-
casting of medical conditions based on clinically relevant variables
collected over time. This involves jointly predicting the expected
time to events of interest (e.g. death), biomarker trajectories, and
other associated risks at different stages of disease progression.

With the prevalence of aging populations around the globe,
Alzheimer’s disease (AD) is a significant threat to public health
- growing from being relatively rare at the start of the 20th century
to having a case being reported every 7 seconds around the world
[1]. Patients at risk of developing Alzheimer’s disease are usually
monitored over time based on longitudinal cognitive scores and
MRI measurements [6], which help doctors evaluate the severity of
a patient’s condition and formulate a diagnosis. As such, the ability
to produce joint forecasts – such as those depicted in Figure 1 –

1For the Alzheimer’s Disease Neuroimaging Initiative: Data used in preparation of this
article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed
to the design and implementation of ADNI and/or provided data but did not partic-
ipate in analysis or writing of this report. A complete listing of ADNI investigators
can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_
Acknowledgement_List.pdf
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would help doctors determine both the likelihood of developing
dementia and the expected rate of deterioration of a given patient,
potentially allowing for intervention at an early stage.

Given the promising initial results found in our companion pa-
per for Cystic Fibrosis patients [5], we investigate the application
of the Disease-Atlas – a novel conception of the joint modeling
framework using deep learning – to jointly predicting the expected
time-to-transition to Alzheimer’s disease and the values of longitu-
dinal measurements, providing additional clinical decision support
to doctors evaluating potential Alzheimer’s disease patients. We
start with an overview of the Disease-Atlas in Section 2 and 3,
demonstrating performance gains for tests on data from the ADNI
in Section 4.

Figure 1: Disease-Atlas Predictions over Time

2 PROBLEM DEFINITION
For a given longitudinal study, let there be N patients with ob-
servations made at time t , for 0 ≤ t ≤ Tcens where Tcens de-
notes an administrative censoring time 2. For the ith patient at
time t , observations are made for a K-dimensional vector of lon-
gitudinal variables Vi,t = [Y
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2 Administrative censoring refers to the right-censoring that occurs when a study
observation period ends.
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variable denoting the presence or absence of themth event. T (m)i ,t
is defined to be the first time the event is observed after t , which
allows us to model both repeated events and events that lead to
censoring (e.g. death). The final observation for patient i occurs
at Ti ,max = min(Tcens ,T

(a1)
i ,0 , . . . ,T

(amax)
i ,0 ), where {ai , . . . ,amax} is

the set of indices for events that censor observations.

3 DISEASE-ATLAS ARCHITECTURE
The Disease-Atlas captures the associations within the joint model-
ing framework, by learning shared representations between trajec-
tories at different stages of the network, while retaining the same
sub-model distributions captured by joint models. The network,
as shown in Figure 2, is conceptually divided into 3 sections: 1) A
shared temporal layer to learn the temporal and cross-correlations
between variables, 2) task-specific layers to learn shared represen-
tations between related trajectories, and 3) an output layer which
computes parameters for predictive sub-model distributions for
use in likelihood loss computations during training and generating
predictive distributions at run-time.

The equations for each layer are listed in detail below. For no-
tational convenience, we drop the subscript i for variables in this
section, noting that the network is only applied to trajectories from
one patient at time. While we focus on both the continuous valued
and time-to-event predictions for tests in Section 4, we include
descriptions of binary predictions here for completeness.

Shared Temporal Layer. We start with an RNN at the base of the
network, which incorporates historical information into forecasts
by updating its memory state over time. For the tests in Section 4,
we adopt the use of a long-short term memory network (LSTM) in
the base layer.

[ht,mt] = RNN([Xt,Vt],mt−1) (1)

Where ht is the output of the RNN and mt its memory state. To
generate uncertainty estimates for forecasts and retain consistency
with joint models, we adopt the MC dropout approach described
in [3]. Dropout masks are applied to the inputs, memory states
and outputs of the RNN, and are also fixed across time steps. For
memory updates, the RNN uses the Exponential Linear Unit (ELU)
activation function.

Task-specific Layers. For the task-specific layers, variables can
be grouped according to the types of outputs, with layer zc,t for
continuous-valued longitudinal variables, zb,t for binary longitudi-
nal variables and ze,t for events. Dropout masks are also applied
to the outputs of each layer here. At the inputs to the continuous
and binary task layers, a prediction horizon τ is also concatenated
with the outputs from the RNN. This allows the parameters of the
predictive distributions at t + τ to be computed in the final layer,
i.e. h̃t = [ht , τ ].

zc,t = ELU(Wch̃t + ac) (2a)

zb,t = ELU(Wbh̃t + ab) (2b)
ze,t = ELU(Weht + ae) (2c)

Output Layer. The final layer computes the parameter vectors
of the predictive distribution, which are used to compute log likeli-
hoods during training and dynamic predictions at run-time.

µt+τ =Wµ zc,t + aµ (3a)
σt+τ = Softplus(Wσ zc,t + aσ )) (3b)
pt+τ = Sigmoid(Wpzb,t + ap)) (3c)
λt = Softplus(Wλze,t + aλ)) (3d)

Softplus activation functions are applied to σt+τ and pt+τ to ensure
that we obtain valid (i.e. ≥ 0) standard deviations and binary prob-
abilities. For simplicity, the exponential distribution is selected to
model survival times, and predictive distributions are as below:
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3.1 Multitask Learning
From the above, the negative log-likelihood of the data given the
network is:
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Where fc (.), fb (.) are likelihood functions based on Equations 4
and W collectively represents the weights and biases of the entire
network. For survival times, fT (.) is given as:

fT

(
T
(m)
t |λ

(m)
t ,W

)
=
(
λ
(m)
t

)δi ,T
exp

(
−λ
(m)
t T

(m)
t

)
(7)

Which corresponds to event-free survival until time T before en-
countering the event [2]. While the negative log-likelihood can be
directly optimized across tasks, the use of multitask learning can
yield the following benefits:

Better Survival Representations. As shown in [4], multitask learn-
ing problems which have one main task of interest can weight the
individual loss contributions of each subtask to favor representa-
tions for the main problem. For our current architecture, where
we group similar tasks into task-specific layers, our loss function
corresponds to:

L(W) = − αc

i ,t ,w ,c∑
log fc

(
Y
(c)
t+τ |W

)
︸                             ︷︷                             ︸
Continuous Longitudinal Loss lc

−αb
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B
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)
︸                              ︷︷                              ︸

Binary Longitudinal Loss lb

− αT

i ,t ,m∑
log fT

(
T
(m)
t |W

)
︸                           ︷︷                           ︸

Time-to-event Loss lT

(8)

Given that survival predictions are the primary focus of many
longitudinal studies, we set αc = αb = 1 and include αT as an ad-
ditional hyperparameter to be optimized. To train the network,
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Algorithm 1 Training Disease-Atlas

Input: Data Ω = {Ω1, . . . ,ΩQ }, max iterations J
Output: Calibrated network weightsW
for count= 1 to J do
Get minibatchM ∼ γ random samples from Ω
Sample task loss function l ∼ {lc , lb , lT }
Update W ← Adam(l ,M), using feed-forward passes with
dropout applied

end for

patient trajectories are subdivided into Q sets of Ωq (i , ρ, τ ) ={
Xi,0:ρ ,Yi,ρ+τ ,Tmax, i, δi

}
, where ρ is the length of the covariate

history to use in training trajectories up to a maximum of ρmax.
Full details on the procedure can be found in Algorithm 1.

Handling Irregularly Sampled Data. We address issues with irreg-
ular sampling by grouping variables that are measured together into
the same task, and training the network with multitask learning. For
instance, volumes of different parts of the brain (e.g. hippocampal,
ventricular and intra-cranial volume) that are be measured together
during the same MRI scan session can be grouped together in the
same task. Given the completeness of the datasets we consider, we
assume that task groupings match those defined by the task-specific
layer of the network, and multitask learning is performed using
Equation 8 and Algorithm 1.

We note, however, that in the extreme case where none of the
trajectories are aligned, we can define each variable as a separate
task with its own loss function l∗. Algorithm 1 then samples loss
functions for one variable at a time, and the network is trained using
only actual observations as target labels. This could reduce errors
in cases where multiple sample rates exist and simple imputation is
used, which might result in the multioutput networks replicating
the imputation process instead of making true predictions.

3.2 Forecasting Disease Trajectories
Dynamic prediction involves 2 key elements - 1) calculating the ex-
pected longitudinal values and survival curves as described above,
and 2) computing uncertainty estimates. To obtain these measures,
we apply the Monte-Carlo dropout approach of [3] by approximat-
ing the posterior over network weights as:

p(V
(k)
t+τ |Ft ) ≈

1
J

J∑
j=1

p(V
(k )
t+τ |Ft , Ŵj ) (9)

Where we draw J samples Ŵj using feed-forward passes through
the network with the same dropout mask applied across time-steps.
The samples obtained can then be used to compute expectations
and uncertainty intervals for forecasts.

4 PERFORMANCE EVALUATION FOR
ALZHEIMER’S DISEASE

4.1 Data Description
The Alzheimer’s Disease Neuroimaging Initiative (ADNI) study
data is a comprehensive dataset that tracks the progression of the
Alzheimer’s disease (AD) through 3 main states: normal brain func-
tion, mild cognitive impairment and the onset of either the disease

or dementia. This data surveys 1737 patients for periods up to
10 years, capturing informative features extracted with Positron
Emission Tomography (PET) regions of interest (ROI) scans – e.g.
measures of cell metabolism, which are known to be reduced for
AD patients – Magnetic Resonance (MRI) and Diffusion Tensor
imaging (DTI) (for instance, ventricles volume), CSF and blood
biomarkers, genetics, cognitive tests (ADAS-Cog), demographic
and others. Observations were discretized to 6-month (or 0.5 year)
intervals, and missing measurements were imputed using the pre-
vious value if present, and the population mean otherwise. In this
investigation, we use a random selection of 60% of patients for our
training data, 20% for validation and the final 20% for evaluation as
per the CF tests. This was repeated 3 times to form 3 different parti-
tions of the dataset, which were then used for cross-validation. The
Disease-Atlas was used to jointly forecast longitudinal observations
of clinical scores and scan measurements, treating the transition to
Alzheimer’s Disease from either mild cognitive impairment (MCI)
or Cognitively Normal (CN) states as our event of interest. Hyperpa-
rameter optimization was performed with 20 iterations of random
search.

4.2 Results & Discussion
To evaluate predictions of the event-of-interest – i.e. transitions
to dementia – we compared the performance of the Disease-Atlas
against simpler recurrent neural networks (i.e. LSTMs) and standard
methods from biostatistics (i.e. landmarking [7] and joint models
(JM) fitted with a two-step approximation [8]).

Prediction results for transitions to dementia – in terms of the
area under the receiver operating characteristic (AUROC) and the
precision-recall curve (AUPRC) – and MSE improvements for longi-
tudinal forecasts can be found in Tables 1 and 2 respectively. From
the cross-validation performance, we see that the Disease-Atlas
consistently outperforms both the standard neural network and
traditional benchmarks for survival analysis particularly on short-
term horizons – improving the LSTM by 10% and JM by 7% on
average across all time steps.

For longitudinal predictions, we focus on both the Disease-Atlas
and JM which are able to generate predictions at arbitrary time
steps in the future. Once again, the Disease-Atlas outperforms joint
models across the majority of longitudinal variables and time steps,
with gains of 40% on average – highlighting the benefits of a deep
learning approach to joint modeling.

5 CONCLUSIONS
In this paper, we investigate an application of the Disease-Atlas
to forecasting longitudinal measurements and expected time-to-
transition to Dementia for patients at risk of Alzheimer’s Disease.
Using data from the ADNI, the Disease-Atlas [5] demonstrated per-
formance gains over both simpler neural networks such as LSTMs
and traditional methods from biostatistics – demonstrating the ad-
vantages of the Disease-Atlas as a method for joint modeling and
highlighting its potential as a tool for clinical decision support.
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Figure 2: Disease-Atlas Network Architecture

Table 1: Cross-Validation Performance for Transitions to
Alzheimer’s Disease (Mean ± S.D.)

τ Disease-Atlas LSTM

AUROC 0.5 0.954 (± 0.008) 0.938 (± 0.005)
1 0.935 (± 0.006) 0.929 (± 0.005)
1.5 0.906 (± 0.004) 0.905 (± 0.001)
2 0.899 (± 0.014) 0.899 (± 0.006)

τ Landmarking JM

0.5 0.913 (± 0.033) 0.916 (± 0.035)
1 0.914 (± 0.010) 0.919 (± 0.016)
1.5 0.892 (± 0.012) 0.897 (± 0.007)
2 0.884 (± 0.023) 0.890 (± 0.015)

τ Disease-Atlas LSTM

AUPRC 0.5 0.326 (± 0.038) 0.256 (± 0.036)
1 0.271 (± 0.043) 0.268 (± 0.015)
1.5 0.211 (± 0.043) 0.198 (± 0.018)
2 0.183 (± 0.056) 0.178 (± 0.027)

τ Landmarking JM

0.5 0.270 (± 0.048) 0.295 (± 0.078)
1 0.240 (± 0.056) 0.257 (± 0.083)
1.5 0.174 (± 0.040) 0.185 (± 0.040)
2 0.167 (± 0.050) 0.183 (± 0.045)
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