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Abstract— Some users of a communications network may If all of this is common knowledge, firm 2 knows that firm
have more information about traffic on the network than do 1 has superior information, firm 1 knows that firm 2 knows
others — and this fact may be secret. Such information \_Nould this and so on. However, in some scenarios, firm 2 may
allow the possessor to tailor its own traffic to the traffic of . . , . .
others, sending a larger amount of traffic when congestion is not. know that- firm 1 knows- f|rm 2_5 COSt, function (firm 2
low and a smaller amount of traffic when Congestion is h|gh7 belleveS that firm 1 knOWS d|Str|bUt|0n of firm 2’s cost Only)
this would help the possessor of secret information and (might) and firm 1 knows this. This is a form of secret information
harm others. _ _ which obviously leads to different behaviors of firms and

To study the impact of secret information we formulate & hance equilibrium points compared to the case of common
flow control game with incomplete information where users . .
choose their flows in order to maximize their (expected) knov_vled_ge. The purpose of this paper_ IS to expl_ore_ the
utilities given the actions of others. In this environment, the implications of such secret knowledge in communications
natural baseline notion is Bayesian Nash equilibrium (BNE); networks! In particular, we ask how helpful such secret
we establish the existence of BNE in pure strategies. To capture knowledge may be for a user who possesses it and how
the effect of secret mfor_matlon, we assume that there is a user harmful it may be to users who do not possess it. We
who knows the congestion created by other users, but that the .
presence of this user isnot known by other users; thus this show tha_t t_he answers to these questl(_)ns depend _On the
user hassecret information. For this environment, we define a characteristics of the network and especially on the size of
new equilibrium concept: the Bayesian Nash Equilibrium with  the network.

Secret Information (BNE-SI) and establish its existence. We We set our study in the context of flow control. We
establish rigorous estimates for the benefit and harm that result consider a network ofV + 1 users, drawn at random from

from secret information; both the benefit and the harm are | of potential U disti ‘shed by thei
smaller for large networks than for small networks. Simulations & POO! OF potential users. USers are distinguished Dy their

confirm the estimates of benefit and harm for networks of Utility functions, which we think of as theitype Each
different sizes and demonstrate that secret information may of the users chooses a flow to send to the network and
in fact benefit all users. Secret information may also harm derives a utility that depends on its own flow and on
other users in other scenarios. This analysis can be used as anyork congestion (which we proxy by average flow). In
a starting point for securing communications networks, both our baseline scenario, users know the distribution over the
from the network manager and the user’s perspectives. ) ' .
pool of potential users but not the realized draw from the
. INTRODUCTION distribution. For this scenario, an appropriate solutiotion
i i ) , is (symmetric) Bayesian Nash Equilibrium (BNE). Under
In this paper we study the interaction of self-interested nqpriate assumptions, we show that BNE exist. To explore
users in communication networks. Much of the previoug,e impact of secret information, we depart from the baselin
analysis of such networks has assumed that users are ide@tianario by assuming that some user knows, not only its
cally informed about the parameters of the network such @Ry type (utility function) and the distribution of types of
capacity, links, etc. and the characteristics of othersjder potential users, but also thealized average flovof the
instance costs, benefits, etc.; some of the literature allo"iﬁsers in the particular network — but that no other users
for the possibility that users have private informationr (fo o this user has this information. Thus, this user has
example, they may know their own characteristics but not thgcret information Because in the considered games, only
characteristics of others). In many circumstances, howevgne average flow of others is relevant, the user with secret
some users may know much more than other users — apformation is (effectivelyomniscient it knows everything.
more interestingly, this fact may be secret. We obserMie assume here that information is effectively complete
that secret information is quite practical in many scerrio 5,4 comes at no cost. but a more elaborate model can
For example, consider a Cournot competition game Witfhye account of the amount of information that might be
incomplete mformanon_bemyeen two firms. Firm 1 kKnowS,cquired and the cost of acquiring it. For this scenario, an
its cost function and firm 2's, but firm 2 knows its costypropriate solution notion is what we call Bayesian Nash
function and only the distribution of firm 1's cost functions Equilibrium with Secret Information (BNE-SI); under the

. . . . . _ same assumptions as before, we show that BNE-SI exist.
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erage flow of the other users in the network can choodbat deplends on its own flow; € A, on the average
to gend a low flow_ vvhen the networ.k is congested ang _ Z x; of the flows of all users, and on the
a high flow when it is not. Secret information matters 1\’4-1]46

because it prevents others from countering the effects ofpe 6; € © of the user. Throughout we assume:

this information. Secret informatiomlwaysconfers a benefit (A1) Flow choices lie in some compact intervdlc R,

to a user who possesses’ifflhe actions of a user with(a2) User types are drawn independently from some distri-
secret information are beneficial to other users when those  pytion f with full support in©

action; reduce conges.tion and detrimental to others w 88) Utility U is bounded, measurable, continuously twice
they increase congestion. However, both of these effects ifferentiable in each of the there variables

are attenuated when there are many users in the netwerky utility U7 is differentiably strictly concave in own flow
— most obviously because the impact afiy one user is 2.3
attenuated when the network is large, more subtly becau

i
Most of the utility functions commonly used in the literagur
the Law of Large Numbers reduces the usefulness of sec y y

'i% e these properties; examples include:
information, and more subtly still because the latter effec v sip perties, examp Sl ! . .
x;, T, 0;) = 0;b(x;) — C(T), whereb is strictly

feeds back into the behavior of a user who possesses secr@t _U( ] ) . )
information. Paradoxically, the overall implication isath increasing, _St”Ct_Iy co'ncave,'and cpntmuously differ-
secret information may be less important in larger networks ~ €ntiable; C' is strictly increasing, strictly convex, and
than in smaller networks. Our findings have implications for _ continuously differentiable _
the necessity for a network manager to provide security, andf) U (%7 0:) = 0:b(z;) — z;¢(7), whereb is assumed as
suggest — again, paradoxically — that security may be less of " (), andc has similar assumptions &S in (i).
a concern in larger networks than in smaller networks. ~ The above utility model has been deployed in numerous
To analyze the mentioned scenarios, we use gamtesearch works, including [6], [7], [10]- [14] and referenc
theoretic tools which have been applied to analyze thi&erein. We interpret;b(z;) as thebenefitderived by a user
behavior of users and their performance in communica¥ith type 6; who sends flowz; and C () or z;c(Z) as the
tions networks, for example see [1] and references thereig@rrespondingcost incurred on the user when the average
Particularly, there is by now a substantial literature thalow through the network is. The literature typically as-
uses Bayesian games [2] to model the interactions amoggmes that cost depends on the total flow through the network
selfish users with incomplete information who compete fol10] rather than on the average flow. We prefer using average
access to network resources (e.g., power and bandwidth).flow because it facilitates comparisons across networks of
these models, action spaces typically represent powels|evedifferent sizes, especially when we study many users regime
transmission probabilities, or expenditures on resourcgsr By using the average flow dependent cost functions, we have
types when considered typically represent channel gaingplicitly assumed that the network capacity either is fixed
Much of this literature asks about existence and uniquened8d large compared to the demand of all users, i.e., ‘high
of Bayesian Nash equilibrium and system performance &andwidth networks’ or grows at the same rate as the number
equilibrium [3]— [5]. [6], [7] use Bayesian games to capturedf users in the system [13]- [16]. Otherwise, as the number
the effects of information availability and asymmetry oe th Of users increases, the demand for resources increases, but
problem faced by a profit-maximizing manager. Moreover@vailable resource would remain constant which does not
a literature that might seem parallel to ours but is actualljeflect the setting of current communications systems. Thus
quite distinct considers the problem of malicious usersrais Using the average flow in the cost function makes more sense
whose objective is to damage the network and/or increase théien considering many users regime, i.e., equation (3.2) in
cost incurred by other users; see for instance [8], [9]. OU#4]. It is worth stressing that the forms (i), (ii) differ only
omniscient users seek only to maximize their own utiliin the cost term. In both cases, cost depends on average flow,
from flow; their behavior may harm others, but this is a sid&hich we interpret as a proxy for congestion. In case (i), it
consequence of their own selfish maximizing behavior; it it thetotal costthat depends on congestion while in case (ii)

not malicious. it is the per-unit costthat depends on congestioiWe should
note that the utility forms exhibit negative externalitigsich
Il. BAYESIAN COMMUNICATION NETWORKS is typical scenario in flow control games in communications

networks [13], [14]. Typical benefit and cost functions used

We consider a network formed by the sg8tof N +1 . )
in the literature are

users, denoted users, 1,...,N. Potential users in this o ] _
network are distinguished by theiypes which we identify ~ * (#i) = IOg(ffi)Q (logarithmic benefit) [6], [10], [17];
with their utility functions; for tractability we assumeeh b(zi) = z; — axj (quadratic benefit) [12], [18]

space of types is a compact subset of the nonnegative rea)
line: ® C Ry. Each user in the network sends a flowy
to the network, and derives an utility/payotf(x;, T, ;)

Keep in mind that own flowz; enters into average flow; hence
erentiable strict concavity with respect to own flawy means

02U

2
7=U11+< >U12+< >U22<0
2By contrast, information that a user is known to possess needonfer 890? N+1 N+1
a benefit on the possessor, and may be harmful.




o O(7) = ~vx* (quadratic total cost) [7], [L11]:(T) = kT lower type. We show that when the utilities are of particular
(linear per-unit cost). forms, the BNE is monotone.

We assume for the moment that all of the above is Proposition 1:Under assumptions (Al)-(A4) and &
common knowledgéhat is, each user knows the descriptioriS of forms (i) or (ii), then a monotone Bayesian Nash
of the environment and his own type; each user knowgquilibrium exists.
that all other users have the same knowledge; each ust/e caution the reader that Theorem 1 (Proposition 1, respec-
knows that all other users know that all other users hav&ely) guarantees that a BNE (monotone BNE, respectively)
the same knowledge, etc. (We deviate from the commd®Xists but not that it is unique. If BNE is not unique, the
knowledge assumption in the following Section when weéssumption that users behave according to a particular BNE
introduce secret information.) In this contexts&rategyis requires a form of coordination; such coordination could be
a (measurable) functiodk : © — A that specifies, for obtained, for instance, by a recommendation of the network
each potential user, the flow choice (as a function of typejnanager. By definition, no user would have an incentive to
To define payoffs conditional on this strategy, write= deviate (unilaterally) from such a recommendation.

(0o, ...,0n) € ONFL for a profile of types andxy, . .., vx)
for a profile of flows; writed_; for the profile of types of A. Calculating BNE

users other than user Write To illustrate the nature of BNE and in particular the
_ influence of the number of users and the distribution of user
T-i=% ij types, we offer two example®efore presenting them, it is
I7i useful to make a simple observation. Fix a (symmetric) BNE

for the average of flows of users other than useMote that X and a typed;. By definition, X (¢;) solves the following
the average of flows of all usersis= (z;+N7_;)/(N+1). optimization problem:
To economize on notation, define

V(xiay>ei) = U(mlv<xl+Ny)/(N+l)791) zi€A

If useri chooses the flow:; and others follow the strategy Assuming that the solution to (3) is interior, due to thecstri
X then the profile of flows of other users i¥(6_;) = concavity of the utility functions, the solution is deterrad
(X(00),...,X(0;—1), X(0;51),...,X(0x)) and the aver- by the first order condition
age flow of other users is o

B ) v 0.0).6)/(0-)d(0-) =0. (&)

(6-) = 5 > X(0))
ji Equation (4) provides a functional equation for the BNE.

In general, this functional equation will be intractabledan
impossible to solve in closed form — even if the utility
function V is relatively simple. However, this functional
equation is solvable in several representative cases.
Example 1 There areN + 1 users. Utility has the form

Hence the average flow of all users(is + NX (0_;))/(N +
1). Thus, if useri chooses the flow:; and others follow the
strategyX and have realized typés ;, then user’s user's
utility will be V(z;, X(6_;),0;). Given the distribution of
types, useri's expected utility if he chooses flow; and
others follow the strategy’ will therefore be Ulx;, T, 0;) = 0; log(a;) — yauT

U(x;, 0, X) = /V(mi,Y(G_i), 0;)f(0_;)d(6_;) (1) where the cost coefficient > 0 is a constant. The type space
and action space af@ = [0, 1], and.A = [0, 1], respectively;

where f(0_;) = f(0o)...f(0:i—1)f(0:41)f(0n) and types are independently and identically distributed adiooy
d(0_;) =dby ...db;_1d;1dfx. By definition, the strategy to the distributionf (6;).
X is a(symmetric) Bayesian Nash EquilibricNE) where Assuming that optimal flow is interior, the first order

users with the same type choose the same flow if for eadondition that determineX (¢;) reduces to
type 0, the flow choiceX (6;) is optimal given that others

follow the strategyX: 0, 29X(0 / =
X(6;) N+1 N+1 X i)d0: = 0. (%)
X(0;) = argmax EU(x;,0;|X) (2)
#i€A Write A = f(}X(ei)f(ei)dei € (0,1) and rewrite (5) as a

Notice that given the strategy of other users, the optimal quadratic equation ik (6;)

flow choice X (6;) is unique due to the strict concavity of )

the utility functions. 29X (0:)" + YNAX(6;) — (N +1)6; = 0. (6)
Theorem 1:Under assumptions (Al)-(A4), a (Symmetric)

Bayesian Nash Equilibrium exists.

A monotone increasing strategy is a strategy such that a user NA

of higher type chooses a weakly higher action than a user of X(6:) = T4 + 47\/(7NA)2 +8(N+1)70:. (7)

The unique positive solution to this equation is




By definition A must satisfy the identity: In particular, BNE flow is linear in type. It may be shown

NA 1 ! — and is seen clearly in Figure 1 — that (fixingand the
A= — + — / V(YNA)2 +8(N + 1)~0;f(0;)dd;.  distribution), BNE flowsX ™ for networks withN + 1 users

4 Ay o (8 converge, asV — oo, to the BNE flowsX > for the network

It is easy to see that (8) has a unique solution since the Iéﬁ’fth a cqntlnuum of users, although it is _not obvious how
hand side is strictly increasing i and the right hand side to]\?stabllsh a rate of convergence.In particular, BNE flows
is strictly decreasing iM. Moreover, it can be shown that X &€ asymptotically linear iav. [J
A € (0,1). Hence (continuing to assume that optimal flc*»~
are interior) we can solve for the unique BNE by finding .

solution to (8) and substituting in (7). Equilibrium exped —2users |
utility for each type andex anteexpected utility are: - -4 users
osll 10 users B
Y 2 YNA == 100 users
0;) = 0;1log X (0;) — X(0;,)° — ——X(6;
v(6:) log X (0:) N+1 (6:) N+1 (6:) *l—500 users A
1
o ) ) ) ana— B
v o= / v(0;) f(6;)db;. X
0 ; 05~
An issue of particular interest to us is the way in wh 2.0 I
BNE depends on the size of the network. It is impor | -~ ------
to understand that we are not concerned with the exerci e 1
holding the physical network fixed and increasing the nur i ]

of users. Instead, we imagine that the physical net\

(capacity, etc.) grows at the same rate as the number of.

In particular, we might imagine that a network doubles ir: oo e e

because two identical networks merge, creating a net

with twice the capacity and twice the usage. It is for this

reason that we write utility as a function aefverage flow Fig. 1. BNE flowX (0;); U(x;,Z, ;) = 0; log(zi) —8z;z; pdf f(0) = 1

rather than total flowAs noted previously, such capacity (Uiform distribution)

expansion rule when the number of users in the system grows

has been mentioned and/or considered in [6], [13], [14]).[" ™
To give some insight into this issue, we calculate and ‘ ‘

play in Figures 1 and 2 the BNE flow (¢;) and equilibriunr —2users

expected utilityv(;), respectively for particular parame T users

. . . w10
choices and various numbers of users. Types are unifc ‘_‘_loouzz[:rs
distributed in[0, 1]. We have fixedy = 8. The optimal flows — 500 users

are interior in[0,1] and are monotone with typé; as in
Proposition 1. When there are large number of users,
more than 100 users, the optimal flows are less depel
on the network size. As in the case of flows, the utility is |
dependent on the network size when the network is lar
An useful way to understand these results is to con:
the ‘limit network’ with a continuum of users, for whic
each user’s contribution to average flow is negligible.
suming that the Law of Large Numbers holds exactly in
continuum limit, a user of typd, maximizesé;log(x;) — o o
~x; A, where A is average flow (and is independent
x;). Assuming interiority, the solution to this maximization
problem is X*°(6;) = 0;/~vA. Since average flow isl =

Equilibrium utility v(6)

TyE)Ee 0

Fig. 2. BNE Uti”ty’u(@i); U(J?/L',E, 91) =0, log(aci)—SxiE; pdff(@) =1
(uniform distribution)

1/2 .
IIl. SECRETINFORMATION: EQUILIBRIUM
A = | [osen] ©) ILIER
We now depart from the formulation given above by
- g —1/2 assuming that one user — say uder— has additional
X>0:) = {7/9#’(0 )d@] 0; (10)  information about other usefsWe focus on the starkest

Note that BNE flow will in fact be interior, as we have 4The advantage of information in wireless systems has been suaew

. . considered in [19] where the authors showed that a user womgdve its
assumed, prowded thatf f(ei)dei > 1. This can be proved performance if it has more information about the strategy ofcthrapeting

rigorously but the details are omitted due to space lingtati user.



scenario in which usef is omniscientand hence knows We continue the example in Section 2 and study the
everything relevant about other users; in our scenario thatrategy of the omniscient user.

means that usdris able to observe the average flow of otheExample 2 ConsiderN + 1 users with log benefit and linear
users, and hence knows the network congestibimwever, per-unit cost functions. The strategy of the omniscient use
the fact that used possesses this information is not commort can be shown as

knowledge; rather userk, ..., N have the same beliefs as

in the previous Section, and hence use the same strategielg— . Ny 1
6o) = 1,——=+— Ny)? N +1)v6
(v,00) = ming 1, ===+ =/ (yNy)* + 8(N + 1)76,

and usel knows this. Thus, usdr hassecret informatior? 4y

In this environmentBayesian Nash Equilibrium with Secret (11)
Information BNE-SI consists of a strategy : © — A for  wherey is the realized average flow of other users.
usersl,...,N and a strategy" : A x © — A for the |f the omniscient usef is allowed to send any flow larger
omniscient usef such that: than 1, then its strategy can be slightly modified. Note that

o for eachd; € ©: x; = X(6;) maximizesEU (z;,0;|X) given a fixedy, the BNE-SI strategy for the omniscient
« for eachfy € ©, y € A: zg = F(y,0y) maximizes user is still monotone increasing in its tygh in these
V(xo,y,60) examples. We can see that different from BNE, at BNE-SI,

Note that at BNE-SI, it is optimal for the omniscient userthe omniscient user adapts its flow depending on the realized
to exploit its secret knowledge. The interpretation is thagongestion in the network, sending large fléWy, 6,) when
users other tha® behave according to the BNE (as in the congestion caused by other usgis low and vice versa.
the Section 2) but the omniscient us&roptimizes given
the realized congestiorin the network. We emphasize that
at BNE-SI equilibrium, the omniscient user conditions her |y SECRETINFORMATION: BENEEIT AND HARM
behavior on her own type and on the realized congestion,
but other users believe (wrongly) thatconditions only on The benefit that secret information confers on an omni-
her own type (and follows the strategy). We can also scient user is the difference between the utility the omeisc
interpret that at BNE, users take their actions simultaslgou user obtains when all others follow a BNE but the omniscient
and the action of a user is not revealed to others wharser conditions on its own typend on the realized conges-
they take actions. However, at BNE-SI, us@ys.., N move tion, and the utility the omniscient user obtains when it and
first, then, omniscient usé€r moves next after observing the all others follow a (given) BNE. We fix a particular type
congestion caused by other users. of the omniscient user and focus on the expected benefit

Our approach to secret information departs from the usuef this type (where we take expectations over the types of
approach in the economics literature, which (almost) abvayother users). This seems appropriate because the decision
assumes that all details of the environment are commao acquire secret information — which might require the
knowledge; see [2], [20], [21] for instance. The usual apexpenditure of resources — might be dependent on type.
proach in the economics literature would be to posit thadence, given a typé, € © of the omniscient user we define:
there are two components to the type of u8erthe first

component being uséXs utility function (as above) and the _/ = e
second component being usés knowledge (ordinary or G (6o) = V(F(X(e’o)’eo)’X(Q’O)’eo)f(e’o)d(e’o)

omniscient); that this is common knowledge; and that all —

users assign a common prior probability> 0 to user0 _/V<X(90)’X(9‘0)’eo)f(e‘())d(e‘(’)

being omniscient. Our approach seems more appropriate to

the problem at hand. We retain the subscript/ to emphasize that the size of the

Our assumptions guarantee that u$és optimization network matters.
problem always has a unique solution, so the assumptions The harm inflicted on any user — say us¥r— when
of the previous Section guarantee the existence of a BNEser0 has secret information is the difference between the
SI. (expected) utility of userV when all users follow a BNE
Theorem 2:Bayesian Nash Equilibrium with Secret In-and the (expected) utility of use¥ when user0 has secret
formation exists.Moreover, if the Bayesian Nash Equilib- information and conditions on the realization of types. To

rium is unique, so is the Bayesian Nash Equilibrium witrdefine the latter utility, fix a type profilgdy,...,80x) and
Secret Information. write

51t would be more than enough for usérto observe the types of __ 1 — —
other users, and hence, given a particular BNE, to infer i@ choices. Y(efN) = N {NX(efN) - X(eo) + F(X(G,O), 90)}
However it seems much more natural to assume, as we do here, énat us

0 observes congestion (average flow) directly, perhaps Iseciais able to o )
observe network information that is improperly secured. This is the average flow of users other thah provided

6f that user0 knows the realized congestion caused by other users hat user0) has secret information and chooses the flow
commorknowledge, then we would have conventional Bayesian gante witF X0 00) b 1 N foll X H
asymmetric information. However, such games, tho interesting,out of ( ( 70)7 O) ut usersi = 1,..., ollow . Hence

the scope of this paper. the expected harm to usé&f when when usef has secret



information is A. Large Numbers of Users with Secret Information

We first establish rigorous (although probably coarse)
estimates of the benefit that secret information confers on
— a user who possesses it and the harm inflicted on others by
_/V(X(9N>’Y(9—N)’GN)f(e)d(a) (12) " the actions of that user. Intuition suggests that, in a large
network, secret information will be of little benefit becaus
Because usef¥ could always disregard his secret informa-(hy the Law of Large Numbers) the realized distribution of
tion and others do not know he has it, usemust (for each types ‘usually’ mimics the known underlying distributiofi o
of his typesy € 6) do at least as well in a BNE-SI as in thetypes, so knowledge of the realized flow of others will not
corresponding BNE, and he will do strictly better except iRe|| a user much it cannot already infer from knowledge
degenerate scenarios. That is, secret information alwags hyf the distribution and the BNE. Intuition also suggests
positive value to the user who possesseGifi(fo) > 0. that, in a large network, the actions of a user with secret
The magnitude of this value will of course depend on thenformation will inflict little harm on other users becauset
particular environment; we return to this point below. flow choice ofany single user has little impact on average
However, the impact of usel’s secret information on congestion. We show that both of these intuitions are correc
otherusers is not obvious. To see why, suppose that the BNdwd quantify them, and also that there is an additional effec
X is monotoneWhen userd, ..., N have high types, they (stemming from the optimization behavior of the user with
will send high flows; usen, observing a highly congested secret information) that further dampens the harm caused to
network, will choose to send a lower flow than he woulthther users.
if he followed the BNE strategyX. However, a lower flow To simply demonstrate the above intuition, we look at
from user0 means that users ... NV in turn experience less the above example of log benefit and linear per-unit cost
congestion than they would if userfollowed X' —and hence fynctions where the BNE and BNE-SI strategies are given
Usersl, ... N obtain h|gher Ut|||ty than they would if usér by (7) and (11), respective|y. Due to Law of Large Numbers’
followed X. The presence of a user with secret informatiogjnce userd, ..., N follow the BNE strategy, their realized
will benefitother users for at leastometype realizations average flowy approaches, i.e., becomes close to, the average
which can be shown to be in the following set flow of each of themA with high probability. Hence, the flow
- F(y,6p) in (11) approaches the flok (6y) in (7). Since the
oyt = {9 e N | F(X(0-9),00) < X(9o)}- (13) interim expected utility is continuous in own flow, the ujli
which user0 playing BNE-SI obtains approaches the utility
Moreover, whether the presence of a user with secret infofzhich user0 playing BNE obtains, i.e., the gain becomes
mation will benefit other users on average depends on tlegnall. Similarly, the effect of secret information on other
parameters of the environment and in particular on the digsers becomes small.
tribution of types. Although one might guess that situaion We are now trying to quantify the gain and harm with
in which the presence of a user with secret information wilfespect to the size of the network. As noted earlier, it is
benefit the other users would be unusual, our simulatiorgpropriate to focus on the benefit to a user of a particular
(discussed below) suggest that they may be quite robust. Age but on the expected harm to others (taking expectations
an example, let us examine the case of linear per-unit casfer types). Because the benefit is always non-negative but
function with BNE X. The harm inflicted on useW is the harm to other users may be either positive or negative,
1 o we bound the benefit and the absolute value of the harm.
Hy = N1l /X<9N)(F(X(970)>HO) — X(90))f(9)d9 Theorem 3:There is a constar®; that depends only on
derivatives ofU such that

Hy = / V(X (0n), X(0-), 0x) 1 (6)d(6)

1 _
= ———| [ X(On)F(X(0-0),00)f(0)d6 — A*| (14)
N+l U ] Gn(0) <CLN7Y3 forall 6, c© (16)

SinceX (Ay) andF (X (6_o), 0y) are increasing and decreas-

ing, respectively witffy, we have Theorem 4:There is a constan(, that depends only on

1 - derivatives ofU such that

Hy < g [A [ P00 005000 - 4] @)
|Hy| < CoN—4/3 (17)

An immediate result is that Hy is negative if

F(X(0-0),60)f(#)df < A. In other words, secret  Ngtice that the expectedtal harm to other users i H y
information benefits userN if the expected flow of and that|NHy| < CoN~'/3; in particular, the expected
omniscient usef) at BNE-SI is less than its expected flowtotal harm to other users tends tioas the network becomes
at BNE. On the other hands, the effect of secret informatiolarge. We should emphasize that the results in Theorem 4
to user N remains unclear even when udersends larger and 5 hold in general for both cases of multiple and unique
flow at BNE-SI than at BNE on average. equilibria.



B. Simulations B. Proof of Proposition 1

To illustrate Theorems 3 and 4, we present simulations For clarity of presentation, we consider form (i) utility
in Figure 3 that show the maximum gain available to a usdunctions only. By Theorem 1 and by definition, a BNE exists
with secret information and the average harm inflicted oand satisfies first order condition, assuming the solution is
others by such a user. In Figure 3 utility 8(z;,Z,0;) = interior,
0;log(x;) — 8x;T; we consider three distributions. In all
cases, we present the average of 10,000 draws from th%"b1 _
given distribution. These simulations suggest that thendsu _/ 1 C'1 X (6:) + NX(Q—i))f(e Vd(6_;) =0
presented in Theorems 3, 4 are crude: at least, convergence N+1 N+1 I )
of gain and harm appear to be much faster than'/ and  pifferentiating |mpI|C|tIy with respect td; and solving for

N~—*/3. The gain is smallest and largest when types aréX (9;), we can show thag=X (¢;) is strictly positive by using
dlStI’IbUted with increasing, and decreasmg distribugighn assumpt|0ns on the funcnons hené’é(@) iS monotone
respectively. Importantly, Figure 3 illustrates the pb8&y increasing.
that a user with secret information may benefit others.

C. Proof of Theorem 2

The existence of BNE-SI follows from Theorem 1 and
the existence of the omniscient user’s best response.

x10°

D. Proof of Theorem 3

For y € A the average flow of other users and O the
type of usel, recall thatF'(y, s) is the flow that maximizes

0]
V(w,y,s) and writeg(y, s) = [F(y, s) + Ny]/[N + 1]. We
o show first thatF' is Lipschitz iny, uniformly in s. To see
E this, suppose for the moment thaly, s) is interior to the
£ |7 interval A. The first order condition is:
D
] 0=U,(F Us(F, 18
' 1( 795) N+1 2( ga) ( )

] (To economize on notation we have omitted the arguments
of Fg.) Differentiating implicitly with respect tay yields

1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500 F 1 as

Number of users

===

{N+1:| (U12(F g,8) + (N+1)U22(F 9,5 ))

U11(F7g,8)+ (N+1)U12(F g,s ) (ﬁ) U22(Fvg78)
V. CONCLUSION If we keep in mind that average flow depends on own

We have considered here a scenario in which a singfow, we can recognize the denominator %ézi i, [T +
user, otherwise no different from other users, has secrdty]/[V +1],s). By assumption{/ is strictly differentiably
information, which is complete. The analysis presente@ hefoncave with respect to; so this second partial is negative;
has important implications for the design and operation gfontinuity and compactness guarantee that it is bounded
networks. On the one hand, preventing users on a netwoaay from0 uniformly. Hence|F;| < M for some constant
from obtaining information about (the usage of) others gan b that depends only on the partial derivatives ©f It
expensive — and will typically be more expensive for largefollows immediately that” is locally Lipschitz, with constant
networks. On the other hand (as our analysis suggests), thé near everyy € A where F(y,s) is interior. It is
benefit of such information to users who have it — and thueasily checked that’(y,s) is continuous at every point
the incentives to acquire it — and the total harm done by the € A where F'(y, s) is not interior, and hence is Lipschitz
availability of such information would seem to be smalle€verywhere, with constant/.

Fig. 3. U(xz;,Z,0;) = 6;log(x;) — 8z;7; Gain and Harm

for larger networks. Paradoxically, this suggests thatissc BecauseU and hencel’ is continuously differentiable,
may belessof a concern for large networks than for smalithere is a constant (that is independent of and depends
networks. Clearly, further research is needed. only on the derivatives of/) such that

APPENDIX: PROOFS [V(w,y,s) —V(z,y,5)] < Llw — 2| (19)
A. Proof of Theorem 1 for all flows w, z and typess of user0 and average flows

[22] shows that there is an equilibrium in mixed strateof others.
gies. The assumption that utility is strictly concave in own We can now estimate the gain from secret knowl-
flow shows that best responses are unique, so an equilibriuardge Fix a types of the omniscient user. Sey* =
in mixed strategies is necessarily in pure strategies. J X(0;)f(6;)d0;; this is the expected flow of other users,



hence the expected average flow of other users. By definitiohhe integral on the right hand side is the gain to an omni-

V(F(X(G,o),s),7(9,0)7s) > V(X(s%X(aio)"g); scient user; by Theorem 3 this gain @(N~'/3). Putting

moreover this all together yields the desired result.
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