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Appendix A 

1) Proof of Lemma 1 

First, we show that 1/ 1/( ) ( )y z y zr r r r r r¢ ¢ ¢+ > +  always holds for any , 0y z >  and 0 1r r¢< < £ . 

This could be shown by taking the first-order partial derivatives of 1/( )y zr r r+  over r : 
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It is obvious that { }1
( ln ln ) max ln , lny y z z y z

y z

r r
r r

+ <
+

, while 

{ }1/ln( ) max ln , lny z y zr r r+ > . Hence, the first-order partial derivative (1) is always negative. 

The above analysis on two positive values y  and z  can be straightforwardly extended to n  positive 

values and thus Lemma 1 follows.  

2) Proof of Lemma 2 

Taking the first-order derivative in ix  over f , we have that 
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 and ( ),i if x -x ,g  is strictly increasing in ix . 

By taking the second-order derivative  
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it can be verified that both terms in the RHS of (3) are smaller than 0. Hence, we have 
2

2
0

i

f

x

¶
<

¶
 and thus 

( )if x  is twice differentiable and strictly concave in ix . Hence, Lemma 2 follows. ■ 

3) Proof of Lemma 3 

(i) Suppose that ( )* * *s = x ,g  with * * 1ij jig g = , then agent i  can strictly increase its utility by selecting 

0ijg = , which leads to a contradiction to the definition of an equilibrium. Hence, statement (i) follows.  

(ii) According to Eq. (2), we have already shown that an agent i  always produces a positive amount of 

information when it acquires a positive amount of information from its neighbors, i.e. i iX x> . 

When agent i  acquires no information from its neighbors, i.e. i iX x= , the first-order derivative in 

ix  over its benefit function becomes ( )i
i

f
v x

x

¶ ¢=
¶

. Since ( )0v ca¢ ³ > , agent i  always has the 

incentive to produce at 0ix = . Summing up, we have statement (2) follows.  

(iii) Due to Assumption 3, agent i ’s marginal benefit of production monotonically decreases with the 

amount of information it acquires from others. Hence, it has the largest marginal benefit of production, i.e. 

the largest incentive to produce information, at every point of ix  when it acquires no information from 

others, i.e. ( ) 0iN g = . The corresponding utility function for agent i  can be rewritten as 

 ( ) ( )i i iu , v x cx= -x g . (4) 

It stops producing new information when the marginal benefit of production equals to the marginal 

cost, i.e. at the point ix x=  where ( )v x c¢ = . Since ( )v x  is strictly concave, ( )v x¢  is strictly 

decreasing and hence, ( )v x c¢ =  has a unique solution. Statement (iii) follows. ■ 

 

Appendix B 

1) Proof of Theorem 1 

We first prove the existence of Nash equilibrium. In general, it is difficult to show the existence of 

pure Nash equilibrium in network formation games. Hence, in this proof, we first consider the IPLF game 

where agents play mixed strategy, which is called as IPLFM. Particularly, in IPLFM, the link formation 

choice between two agents is not binary, but continuous. That is, the link formation strategy of an agent 
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agent i  now becomes a vector { }1, ,i i inp p= p , where 0,1ijp
é ùÎ ê úë û  and 0iip = . We define the strength 

of a link to be { }max ,ij ji ij jig g p p= = . When 1ijg = , we say that the link between agents i  and j  is 

of full strength. The utility of agent i  is then defined as  

 ( )
1

i i ij j i ij
j N j N

u , v x g x cx k p
r

r r

Î Î

æ ö÷ç ÷é ùç ÷ç ÷ê úç ÷= + - -ç ÷ê úç ÷÷çê úë û ÷ç ÷çè ø

å åx g . (5) 

Since each agent plays a mixed strategy on both information production and link formation, it is 

always true that the IPLFM game has at least one equilibrium. In this rest of this proof, we show that each 

equilibrium of the IPLFM game has {0,1}ijp Î  for any ,i j NÎ , which makes it also being an 

equilibrium of the IPLF game where the link formation choice is binary.  

First, it is obvious that in any equilibrium of the IPLFM game, we have * * 0ij jip p =  holds for any pair 

of agents i  and j . Suppose there is a pair of agents i  and j  such that * (0,1)ijp Î  in an equilibrium. Now 

consider that agent i  changes *
ijp  to *

ijp e+ . The strength of the link between i  and j  increases if e  is 

positive, and decreases otherwise. To keep its total cost in information production and link formation 

constant, agent i  also changes its production level to *
ix m+  which satisfies the equality as 

* * * *( ) ( )i ij i ijc x g k cx g km e+ + + = + , i.e. 
k

c
m e= - . After all these changes, agent i ’s benefit from 

information consumption becomes 

1

* * * * *

,

( ) ( ) ( )( )i il l ij j
l N l j

v x g x g x
r

r r rm e
Î ¹

æ ö÷ç ÷é ùç ÷ç ÷ê úç ÷+ + + +ç ÷ê úç ÷÷çê úë û ÷ç ÷çè ø

å . Since the total 

cost of agent i  keeps unchanged, its utility increases if its benefit from information consumption 

increases, which is equivalent to the following inequality 

 * * *( ) ( ) ( )i j i

k
x x

c
xr r re e- + ³ , (6) 

which can be further transformed into  
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c
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With simple manipulation, it can be proved that the LHS of (7) is a linear decreasing function of e  

while the RHS is a concave decreasing function of e . Since the LHS and the RHS equal at 0e = , it is 

then obvious that there is a sufficiently small 0e>  which makes (7) valid. Hence, the utility of agent i  

monotonically increases and we have that if * 0ijp >  in an equilibrium, then * 1ijp =  should always hold. 

Therefore, it is proved that each equilibrium of the IPLFM game has {0,1}ijp Î  for any ,i j NÎ  and 

hence, the existence of Nash equilibrium in the IPLF game follows.  

To prove the second part of the theorem, we classify all strategy profiles into two classes and analyze 

them separately. The first class AS  contains strategy profiles with which there is no link in the network, 

i.e. each agent is isolated. The second class /B AS S S=  contains all other strategy profiles. Here S  is 

the set of all strategy profiles. 

If there is a strategy profile ASÎs  that is an equilibrium, then each agent should produce x  and 

hence statement (i) follows. 

If there is a strategy profile BS¢ Îs  being an equilibrium. It should be noted that there is at least one 

link in the network under ¢s . Now look at any two agents j  and j ¢  who are mutually connected with 

each other. According to Assumption 3 and Lemma 3(iii), both j  and j ¢  have production levels lower 

than x . Suppose there is one agent i  who is isolated under ¢s , i.e. does not connect with any other agent 

in the network. Hence, i ’s production level is also x . Without loss of generality, we assume that 1jjg ¢ =  

in ¢s . Then j  can strictly increase its utility by switching the link from j ¢  to i . Hence, there should be 

no isolated agent under ¢s  and statement (ii) follows. ■ 

 

Appendix C 

2) Proof of Lemma 4 

(i) Suppose that there is an agent ( )*
hj n> s  such that * 1ijg = . If there is also an agent ( )*

hi n¢ £ s  

such that * 0iig ¢ = , then agent i  can always strictly increase its utility by switching the link from j  to i¢ . 

Therefore, we derive the fact that i  is connected with all other high producers, i.e. 

( )* *1,    ii hg i n s and i i¢ ¢ ¢= " £ ¹ . If i  is also connected with all low producers, then it is obvious that 

each neighbor of agent j  is also a neighbor of agent i , which indicates that the information that agent j  
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receives from its neighbors is no more than what is received by agent i . According to Assumption 3, if 

* *
j ix x= , then agent i  should have less incentive to produce then agent j . Hence, due to the concavity of 

the benefit function ()v ⋅  and the fact that all agents have the same incentive to produce at equilibrium (i.e. 

the partial derivative over ()if ⋅  in ix  equals to c ), we should have * *
i jx x£ . Since this argument is valid 

for all agents other than i , it can be concluded that *
ix  is the smallest among all agents in the network, 

which contradicts the fact that i  is a high producer. Hence, there is an agent ( )*
hj n¢ > s  such that 

* 0ijg ¢ = . Clearly, * 0j jg ¢ ¢¢ =  for all ( )*
hj n¢¢ > s . Otherwise, j ¢  can strictly increase its utility by 

switching the link from j ¢¢  to i .  

Now we prove that each neighbor of agent j ¢  is also a neighbor of agent i . Suppose there is an agent 

( )*
hj n¢¢ > s  such that * 1j jg ¢¢ ¢ = . It can be concluded that * 1j ig ¢¢ =  also holds. Otherwise, j ¢¢  can strictly 

increase its utility by switching the link from j ¢  to i . Regarding the fact that i  is connected with all high 

producers, it implies that every agent who is a neighbor of agent j ¢  is also a neighbor of agent i . 

Therefore, the amount of information that agent j ¢  receives from its neighbors is no more than what is 

received by agent i . According to Assumption 3, we can conclude that * *
j ix x¢ ³ , which contradicts the 

fact that * *
j ix x¢ < . Hence, this statement follows. 

(ii) Suppose an agent ( )*
hi n£ s  is connected with all ( )*

hi n¢ £ s , we can use an approach similar to 

the proof of statement (ii) to show a contradiction. Hence, for any agent ( )*
hi n£ s , there is an agent 

( )*
hi n¢ £ s  with * 0iig ¢ =  and this statement follows. 

(iii) Suppose that there is a ( )*
hj n> s  such that ( )* *0,  ji hg i n= " £ s . This implies that agent j  does 

not establish links with others. If, on the contrary, agent j  establishes links, then any of these links is 

directed to some agent ( )*
hj n¢ > s , but then j  can strictly increase its utility by switching a link from j ¢  

to some ( )*
hi n£ s .  
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Using the same idea as statement (i), agent j  also receives no link from others. As a result, agent j  is 

isolated and produces an amount x , which contradicts the fact of it being a low producer. Hence, this 

statement follows. ■ 

3) Proof of Lemma 5 

Suppose there is an agent ( )*
hj n> s  with * 1jjg ¢ =  for some ( )*

hj n¢ > s . Similar to Lemma 3, it 

implies that * 1jig =  holds for all ( )*
hi n£ s . Otherwise, j  can strictly increase its utility by switching the 

link from j ¢  to i . Since it has already been proved in Lemma 3(ii) that a high producer never forms a 

link with a low producer, we have * 1jig =  for all ( )*
hi n£ s . Hence, Lemma 4 follows. ■ 

Appendix C 

1) Proof of Theorem 2 

(i) Let ( ) ( )* *
l hn n n= -s s  denote the population of low producers in an equilibrium. Since each low 

producer forms links to at least one high producer, we should have the following inequality  

 ( )( )*v x k> x , (8) 

in order to sustain a low producer’s incentive to form a link. Hence, ( )*x x  is lower bounded as follows: 

 ( )* k
x

c
> x . (9) 

It is obvious that there exists an integer hL  such that  

 ( )
11

1h h

k k
v L v L k

c c
rr

æ öæ ö ÷ç÷ç ÷ç÷ ÷ç ç+ - <÷ ÷ç ç÷ ÷ç ÷ ç ÷÷çè ø ÷çè ø
, (10) 

and hence a low producer has no incentive to form links to more than hL  high producers. 

Next, suppose there is a constant upper bound hn  for the population of high producers in any 

equilibrium, which is independent of the value of n . That is ( )*
h hn n<s , *,n"s .  

We then further classify low producers into the following three classes: 

(a) A low producer who only forms links to high producers and does not receive any link from other 

low producers; 
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(b) A low producer who only forms links to high producers and also receives links from other low 

producers; 

(c) A low producer who forms links to all high producers and some low producers.  

For notational convenience, the population sizes of the above three classes in an equilibrium are 

denoted as ( )*
lan s , ( )*

lbn s , and ( )*
lcn s , respectively.  

It is obvious that production level of a low producer of type (a) is bounded away from 0, denoted as 

lax , since the total amount of information it acquires from others will not exceed a finite amount hL x . 

Therefore, each high producer can only be connected to a finite number of low producers of type (a) 

(otherwise, its production level will go arbitrarily to zero and be smaller than lax , which leads to a 

contradiction). Given the fact that ( )*
hn s  is upper bounded, it can be concluded that there is a constant 

upper bound lan  such that ( )*
la lan n<s , *,n"s .  

Now consider a low producer j  who belongs to type (b). Let *
jx  denote its production level and we 

should also have *
j

k
x

c
> . Otherwise, no agent has the incentive to form links to it. Using the same 

argument as that for type (a), it can be concluded that there is a constant upper bound lbn  such that 

( )*
lb lbn n<s , *,n"s . 

To analyze low producers of type (c), we further classify them into the following two sub-classes and 

denote their populations as ( )*
1lcn s  and ( )*

2lcn s , respectively. 

(c1) a low producer of type (c) who produces an amount of information which is higher than 
k

c
; 

(c2) a low producer of type (c) who produces an amount of information which is lower than 
k

c
. 

It is obvious that ( )*
1lcn s  is also upper-bounded. Meanwhile, we have that any two agents of type (c2) 

do not mutually form links to each other since the link formation cost exceeds the benefit they can obtain 

from mutual information sharing. Therefore, the maximum number of neighbors that an agent of type (c2) 

has is ( ) ( ) ( ) ( )* * * *
1h la lb lcn n n n+ + +s s s s , which is upper-bounded. Using a similar argument as what 
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we did for other types of agents, ( )*
2lcn s  should also be upper-bounded. As a result, the total population 

( ) ( ) ( ) ( ) ( )* * * * *
1 2h la lb lc lcn n n n n+ + + +s s s s s  is upper-bounded by a constant number that is 

independent of the value of n , which leads to a contradiction.  

Therefore, we conclude that there is no constant upper bound for ( )*
hn s . Particularly, for any integer 

value hm , we can always find a value of m  such that ( ){ }
* *

*inf
n

h h
S
n m

Î
>

s
s  when n m> , where *

nS  

denote the set of equilibrium strategy profiles when the network size is n . Hence, it can be concluded 

that ( ){ }
* *

*inf
n

h
S
n

Î
 ¥

s
s  when n  ¥ . Alternatively speaking, we can always find a sufficiently large 

n  with which ( )*
hn s  is also sufficiently large in any equilibrium such that each low producer only forms 

links to high producers because high producers have produced sufficient amount of information for any 

agent to consume. In this case, no low producer forms links to other low producers. 

Consider two low producers j  and j ¢ . Let ( )*
jd s  and ( )*

jd ¢ s  denote their degrees in equilibrium, 

i.e. the numbers of their neighbors, respectively. Without loss of generality, we assume that 

( ) ( )* *
j jd d ¢>s s , or alternatively, ( ) ( )* * 1j jd d ¢³ +s s . Since agent j  has no incentive to delete its 

existing links formed to others, we have that 

 ( ) ( ) ( ) ( )( )* * * * * *
j j j jr , r , d d k¢ ¢- > -x g x g s s , (11) 

where ( )
( )

1/

i

i i j i
j N

r , v x x cx

r

r r

Î

æ öé ù ÷ç ÷çê ú ÷ç ÷çê ú+ -÷ç ÷çê ú ÷÷çê ú ÷ç ÷çë ûè ø

å
g

x g  is defined as agent i ’s utility from information consumption 

and production. Similarly, since agent j ¢  has no incentive to form new links, we have that 

 ( ) ( ) ( ) ( )( )* * * * * *
j j j jr , r , d d k¢ ¢- > -x g x g s s . (12) 

Hence, there is a contradiction and each low producer should form links to the same number of high 

producers, denoted as ( )*q g , and has the same production level, denoted as ( )*x

x . Hence, statement (i) 

of this theorem follows. 

(ii) This statement is a direct byproduct from statement (i) and the proof is omitted here. ■ 
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2) Proof of Theorem 3 

It has been proved in Theorem 2 that we can always find a sufficiently large value T  such that low 

producers will not mutually form links to each other in any equilibrium when the network size n T> .  

It is obvious that we can find a constant value ( )0,1m Î  such that ( ){ }
* *

*inf /
n

h
S
n n m

Î
>

s
s , n T" < . 

Now look at the case when n T> . It can be learned from (10) that a low producer cannot connect to 

more than hL  high producers (hub agents), which upper-bounds the amount of information it receives 

from others at hL x . Hence, there exists a constant x  such that the production level of a low producer 

( )*x

x  is no less than x  in any equilibrium *s  when n T> . Using the similar argument as in Theorem 

1, the total number of links that each high producer receives from low producers is also upper-bounded by 

a constant, denoted as lH . Given the population of high producers, i.e. ( )*
hn s , the population of low 

producers should be no more than ( )*
l hH n s , which further delivers a lower bound on ( ){ }

* *

*inf /
n

h
S
n n

Îs
s  

as ( )1 / 1 lH+ . We take ( )( )min ,1 / 1 lHh m= +  and hence Theorem 2 follows. ■ 

3) Proof of Corollary 1 

To prove this corollary, we only have to show either 
* *

*inf
n

i
S i N

x
Î Î

ì üï ïï ïí ýï ïï ïî þ
å

s
 or 

* *

*sup
n

i
S i N

x
Î Î

ì üï ïï ïí ýï ïï ïî þ
å

s

 is ( )nW . In this 

proof, we show that 
* *

*inf
n

i
S i N

x
Î Î

ì üï ïï ïí ýï ïï ïî þ
å

s
 is ( )nW . The arguments for 

* *

*sup
n

i
S i N

x
Î Î

ì üï ïï ïí ýï ïï ïî þ
å

s

 similarly follows and is 

omitted here. There is a straightforward upper bound on 
* *

*inf
n

i
S i N

x
Î Î

ì üï ïï ïí ýï ïï ïî þ
å

s
 as nx . A loose lower bound on 

* *

*inf
n

i
S i N

x
Î Î

ì üï ïï ïí ýï ïï ïî þ
å

s
 could be calculated as 

k
n
c

h
. Therefore, 

* *

*inf
n

i
S i N

x
Î Î

ì üï ïï ïí ýï ïï ïî þ
å

s
 is ( )nW  and Corollary 1 follows. 

■ 

Appendix D 

1) Proof of Proposition 1 

This proposition is proved by classifying the strategy profiles into two classes and analyzing them 

separately: AS  includes strategy profiles with which there is no link in the network and BS  includes 
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strategy profiles with which there is at least one link in the network. For notational convenience, the 

optimal social welfares achieved in AS  and BS  are denoted as AW  and BW , respectively. 

First, we analyze AS  to find out the strategy profile which maximizes the social welfare in it. When 

there is no link in the network, i.e. each agent is isolated with others, the optimal utility is achieved when 

each agent maximizes its individual utility and produces an amount x . The optimal social welfare 

achieved in AS  is then ( )AW n v x cxé ù= -ê úë û . 

For BW , we derive a bound for it in this proof by separately analyzing the highest sum utility from 

information consumption and production, i.e. ( )i
i N

r ,
Î
å x g , and the lowest sum link formation cost over 

all agents. 

We first analyze the lowest sum link formation cost for BW . We prove that (i) if A BW W< , then 

BW  is achieved by a strategy profile with which each agent (with the exception of one agent) at least one 

connection with others, i.e. no agent is isolated; (ii) if BW  is achieved by a strategy profile with which 

some agent is isolated, then A BW W> . Therefore, if BW  is the social optimum, the lowest sum link 

formation cost contained in it is at least 
2

nk
. 

First we consider the scenario that the maximum social welfare in BS  is achieved by a strategy profile 

s  with which each non-isolated agent has only one neighbor. We prove that if the social welfare 

delivered by s  is higher than AW , then s  contains at least 
2

n
 links.  

Suppose that there is at least one agent being isolated in s . We select an isolated agent i . It is obvious 

that i  should produce an amount x  of information in s  (otherwise the social welfare can always be 

improved by adjusting the production level of agent i ). 

Without loss of generality, we assume that n  is even. Then there are at least two agents being isolated 

in s . If the utility received by an isolated agent is higher than what received by a non-isolated agent, then 

the social welfare can be further increased by removing the existing links. Hence, the social welfare 

achieved by s , which is BW  is strictly smaller than AW , which satisfies case (ii). On the contrary, if the 

utility received by an isolated agent is lower than what received by a non-isolated agent, then the social 

welfare can be further increased by adding a link between two isolated agents, which leads to a 

contradiction that s  achieves the largest social welfare in BS .  
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To sum up the results so far, it can be concluded that if the maximum social welfare in BS  is achieved 

by a strategy profile s  with which each non-isolated agent has only one neighbor, then s  contains at 

least 
2

n
 links if B AW W> . 

Next, we consider the scenario when the maximum social welfare in BS  is achieved by a strategy 

profile s  with which there is at least one non-isolated agent who has more than one neighbors. Similar to 

the above, we also assume that there is an agent i  being isolated in s . 

Let j  denote one representative agent who has more than one neighbors and let j ¢  denote one of its 

neighbors. Without loss of generality, we assume that 1j jg ¢ = . Construct a strategy profile ¢s  that is the 

same to s  except the entries 0j jg ¢¢ =  and 1j ig ¢¢ = . It is obvious that any agent other than i , j , and j ¢  

receives the same utility in both s  and ¢s . The utility of j ¢  in ¢s , however, is higher than that in s  since 

j ¢  now connects to i , whose production level is higher than j . Similarly, the utility of agent i  also 

increases but the utility of agent j  decreases. Nevertheless, it is easy to show that the increase on agent 

i ’s utility outweighs the decrease on agent j ’s utility and hence, the social welfare achieved by ¢s  is 

larger than that achieved by s . This leads to a contradiction to our assumption on s  to be the socially 

optimal strategy profile and we have the following conclusion: 

If the maximum social welfare in BS  is achieved by a strategy profile s  with which there is at least 

one non-isolated agent who has more than one neighbors, then no agent is isolated and s  contains at least 

2

n
 links. 

Summing up, we have that if A BW W< , the strategy profile that achieves BW  contains at least 
2

n
 

links. Therefore, the lowest sum link formation cost contained in BW  in this case is 
2

nk
.  

Next, we analyze the highest sum utility from information consumption and production that can be 

achieved in BS , i.e.  

 

( )

{ }

,
    max

. .  0,

     0,1 , ,

i
i N

i

ij

r ,

s t x i N

g i j N

Î

ì üï ïï ïí ýï ïï ïî þ
³ " Î

Î " Î

å
x g

x g

. (13) 
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It is obvious that the optimum of (13) is always achieved in a complete network, i.e. 1, ,ijg i j N= " Î . 

Therefore, each agent has the same amount of effective information, denoted as optX , and has a degree of 

1n - . Let opts  denote the strategy profile that achieves the optimum of (13). For an agent i , its 

production level in opts , denoted as optix  should then satisfy the following equation: 

 ( )
1

opt
opt

opt
i

X
nv X c

x

r-æ ö÷ç ÷ç¢ =÷ç ÷ç ÷÷çè ø
. (14) 

Since (14) is satisfied for all agents, it can be concluded that each agent has the same production level 

in opts , denoted as optx , and 

1

opt optX n xr= . Eq. (14) then becomes  

 

1 1

optn v n x c

r
r r
- æ ö÷ç ÷ç ÷¢ ç =÷ç ÷ç ÷÷çè ø

 (15) 

whose solution is nx


. We then have the solution of (13) being ( )1/
n nn v n x cxré ù-ê úë û
 

.  

By combining the highest sum utility from information consumption and production and the lowest 

sum link formation cost, we can give an upper bound on BW  as being ( )1/

2n n

nk
n v n x cxré ù- -ê úë û

 
 when 

B AW W> . Hence, the first part of Proposition 1 follows.  

In order to prove the existence of the threshold k , it is sufficient to show that if the social optimum is 

achieved in a non-empty network when 1k k= , then it is also achieved in a non-empty network when 

1k k< , which is always true since BW  is an decreasing function on k . Similarly, if the social optimum 

is achieved in an empty network when 2k k= , then it is also achieved in an empty network when 2k k> . 

■ 

2) Proof of Proposition 2 

Since each agent can receive a utility which is at least ( )v x cx-  by choosing to produce x  and form 

no links to other agents, the utility it receives in any equilibrium should always be no less than this. Hence 

this proposition follows. ■ 

3) Proof of Theorem 4 

This is a straightforward outcome of Proposition 1 and 2. ■ 
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Appendix E 

4) Proof of Theorem 5  

To prove this theorem, we first define the concept of a component. 

Definition 3 (Component). A component in a network is a group of agents which satisfies the 

following properties: 

(i) There is a path between any two agents in the group. 

(ii) There is no path between any agent in the group and any agent outside the group. 

Suppose there is a component of size b  in an equilibrium strategy profile *s . Since each agent in this 

component has the same amount of effective information. It is easy to know that each of them should also 

have the same production level at equilibrium, denoted as *
by . According to the equilibrium condition, we 

have 

 

1 1

*
bv b y b c

r
r r

-æ ö÷ç ÷ç ÷¢ ç =÷ç ÷ç ÷÷çè ø
. (16) 

For illustration purpose, we consider an isolated agent as a particular component with size 1. 

First, it is easy to see that in an equilibrium strategy profile, each agent in a component of size larger 

than 1 only forms at most one link. If there is an agent forms two links connecting with two different 

agents in the same component, it can always delete one of them with the amount of its effective 

information unchanged and its utility monotonically increased.  

Then, we show that in any strategy profile, an agent’s utility from information consumption and 

production, which is 

1

* *
b bv b y cyr

æ ö÷ç ÷ç ÷ç -÷ç ÷ç ÷÷çè ø
 monotonically increases with the size of component it is in. This can 

be seen by taking the first-order partial derivative of 

1

* *
b bv b y cyr

æ ö÷ç ÷ç ÷ç -÷ç ÷ç ÷÷çè ø
 over b , which is 

 

( )

1 1 1* *1
* *

1 1 *1
* *

1

1
1 0

b b
b b

b
b b

y y
v b y b b y c

b b

y
b y v b y b c

b

r r r

r r

r

r

-

-

æ öæ ö÷ ÷ç ç ¶ ¶÷ ÷ç ç÷ ÷¢ ç ç + -÷ ÷ç ç÷ ÷ç ç ¶ ¶÷ ÷÷ ÷ç çè øè ø
æ ö÷ç ¶÷ç ÷¢ ç= + - >÷ç ÷ç ¶÷÷çè ø

. (17) 
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With this result, we can prove that in any equilibrium strategy profile, there is at most one component 

whose size is larger than 1. Suppose in an equilibrium strategy profile *s  where there are two 

components 1C  and 2C  of size 1b  and 2b . Without loss of generality, we assume that 1 21 b b< £ . Then 

for an agent i  in 1C  who forms a link, it is always beneficial to switching this link to any agents in 2C , 

which leads to a contradiction to the fact that *s  is an equilibrium. 

Now consider another equilibrium where there is an isolated agent j  and a component C  whose size 

is 1b > . With a little abuse of notation, this equilibrium is also denoted as *s . Obviously, j  has no 

incentive to form a link and connect itself with C  if and only if the link formation cost 

( ) ( ) ( ) ( )
1

*
b b bk v b y z v x c z x

r r r
æ ö÷ç ÷æ öç ÷÷çç ÷÷> + - - -çç ÷÷çç ÷÷ççè ø ÷÷ç ÷çè ø

, where bz  is the solution of the following equation: 

 ( ) ( )
( ) ( )

1
1

*1

*
b b

b b
b

b y z

v b y z c
z

r

r r r

r r r

-æ ö÷ç ÷æ öç ÷÷ççæ ö ÷÷+çç ÷÷ç ÷çç ÷÷ ÷æ ö çç çè ø ÷÷÷çç ÷ç÷¢ ÷+ =çç ÷÷ç÷ç ÷ç ÷ç÷ç ÷çè ø ÷ç ÷÷ç ç÷ç ÷è øç ÷ç ÷ç ÷÷çè ø

. (18) 

Here, ( ) ( )
1

*
b b bv b y z cz

r r r
æ ö÷ç ÷æ öç ÷÷çç ÷÷+ -çç ÷÷çç ÷÷ççè ø ÷÷ç ÷çè ø

 is the largest utility from information consumption and production that 

j  can receive by forming a link with C  and ( )v x cx-  is its current utility. Similar to 

1

* *
b bv b y cyr

æ ö÷ç ÷ç ÷ç -÷ç ÷ç ÷÷çè ø
, 

we can prove that ( ) ( )
1

*
b b bv b y z cz

r r r
æ ö÷ç ÷æ öç ÷÷çç ÷÷+ -çç ÷÷çç ÷÷ççè ø ÷÷ç ÷çè ø

 also monotonically increases with b  and hence, if an 

isolated agent has no incentive to form a link with one component, it also has no incentive to form a link 

with any component with smaller size. That is, let ( ) ( ) ( ) ( )
1

*
b b b bv b y z v x c z x

r r r
g

æ ö÷ç ÷æ öç ÷÷çç ÷÷= + - - -çç ÷÷çç ÷÷ççè ø ÷÷ç ÷çè ø

, it 

monotonically increases with b . 
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Summarizing all the above, it can be concluded that if 1k g< , there is a unique equilibrium where 

there is a unique component in the network such that there is a path between any two agents; and if 

1 1nkg g -< < , there are multiple possible equilibria, each of which contains a minimally connected 

component whose size b n<  and the rest n b-  agents being isolatd. When  1nk g -> , the network has 

a unique equilibrium where all agents are isolated with each other. Hence, we have max 1nk g -=  and 

min 1k g= .  

5) Proof of Corollary 2 

We have known from Theorem 5 that bg  monotonically increases with b  and hence, maxk  

monotonically increases with n . Meanwhile, min 1k g=  is constant and does not change with n . ■ 

6) Proof of Theorem 6 

Consider a strategy profile #s  which achieves the social optimum. We look at a component C  of size 

b  in the network. Similar to Theorem 5, all agents in this component has the same production level in #s , 

denoted as #
by  which satisfies the following equality: 

 

1 1

#
bv b y b cr r

æ ö÷ç ÷ç ÷¢ ç =÷ç ÷ç ÷÷çè ø
. (19) 

Due to the concavity of ( )v  , we have # *
b by y>  when 1b >  and # *

b by y=  when 1b = .  

Now suppose there is an isolated agent i  in #s . The sum utility of i  and agents in C  are  

 ( ) ( ) ( )
1

# # 1b bv x bv b y c x by k br
æ ö÷ç ÷ç ÷ç+ - + - -÷ç ÷ç ÷÷çè ø

. (20) 

If i  forms a link to any agent in C , a new component of size 1b +  is formed and the optimal sum utility 

of all agents in it is now 

 ( ) ( ) ( )
1

# #
1 11 1 1b bb v b y c b y kbr

+ +

æ ö÷ç ÷ç+ + - + -÷ç ÷ç ÷÷çè ø
. (21) 

The difference between (20) and (21) is  
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 ( ) ( ) ( ) ( )( )
1 1

# # # #
1 11 1 1b b b bv x bv b y b v b y c x by b y kr r

+ +

æ ö æ ö÷ç ÷ç÷ç ÷÷ çç+ - + + - + - + +÷÷ çç ÷÷ ç ÷ç ÷ ÷çè ø÷çè ø
. (22) 

Since #s  is optimal, we should have (22) larger than 0, i.e.  

 ( ) ( ) ( ) ( )( )
11

# # # #
1 11 1 1b b b bk b v b y v x bv b y c b y x byrr

+ +

æ öæ ö ÷ç÷ç ÷ç÷ ÷ç ç³ + + - - - + - -÷ ÷ç ç÷ ÷ç ÷ ç ÷÷çè ø ÷çè ø
. (23) 

Denote the RHS of (23) as bk , we prove that the first-order derivative of bk  over b  is larger than 0, as 

shown below: 

 

( ) ( ) ( ) ( ) ( )
#1 1 1 1

1# # # 1
1 1 1

1 1 1 1 #1
# # #

1
1 1 1 1 1

1
       

bb
b b b

b
b b b

y
v b y b v b y b y b

b b

y
v b y bv b y b y b

b

r r r r

r r r r

k

r

r

- +
+ + +

-

æ öæ ö æ ö ¶ ÷¶ ç÷ ÷ç ç ÷÷ ÷çç ç¢ ÷= + + + + + + +÷ ÷çç ç ÷÷ ÷çç ç ÷÷ ÷ ¶÷ ÷ç ç ç ÷è ø è øè ø
æ ö æ öæ ö÷ ÷ ÷ç ç ç ¶÷ ÷ ÷ç ç ç÷ ÷ ÷¢ç ç ç- - +÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç ¶÷ ÷ ÷÷ ÷ç ç çè ø è øè ø

( )

( ) ( )

# #
# #1

1

11
# # # #

1 1

       1

1
     = 1

b b
b b

b b b b

y y
cy c b cy cb

b b

v b y v b y c y yrr
r

r

+
+

+ +

÷

¶ ¶
- - + + +

¶ ¶
æ öæ ö ÷ç÷ -ç ÷ç÷ ÷ç ç+ - + -÷ ÷ç ç÷ ÷ç ÷ ç ÷÷çè ø ÷çè ø

.(24) 

Because ( )
11

# #
11 0b bv b y v b yrr

+

æ öæ ö ÷ç÷ç ÷ç÷ ÷ç ç+ - >÷ ÷ç ç÷ ÷ç ÷ ç ÷÷çè ø ÷çè ø
 and # #

1 0b by y+ - > , we have 0b

b

k¶
> . Therefore, if an 

isolated agent connects with a component, the sum utility on information consumption and production has 

a larger increase if the component has a larger size.  

Using (24), we can first show that there is at most one component whose size is larger than 1 in #s . 

Suppose there are two components 1C  and 2C  with their sizes being 1 21 b b< £  without loss of 

generality. Since 1C  is minimally connected, then there is at least one agent, denoted as j , who does not 

receive any link formed by other agents. Hence, if agent j  switches its link to 2C , it is no longer 

connected to 1C . After this switch, the sum link formation cost for agents in 1C  and 2C  does not change 

since the total number of links remains the same. Meanwhile, the change on the sum utility on 

information consumption and production is 
2 1 1b bk k --  which is strictly larger than 0 since bk  
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monotonically increases with b  and 2 1 1b b> - . Hence, it is always optimal to switch the links in 1C  to 

2C  in order to increase the social welfare and there is at most one component whose size is larger than 1 

in any socially optimal strategy profile #s . 

As a result, we can derive max 1
opt

nk k -=  and min 1
optk k= . When min

optk k< , the social optimum is 

achieved in a minimally connected network and when max
optk k> , the social optimum is achieved in an 

empty network. Meanwhile, when 1( , )b bk k k +Î  for any {1,..., 2}b nÎ - , the social optimum is 

achieved in a network with a minimally connected component of 1b +  agents and other 1n b- -  

isolated agents. 

With simple computation, it can be shown that 1 1n nk g- ->  and 1 1k g> . Hence, this theorem 

follows. ■ 

Appendix F 

1) Bilateral link formation with continuous link strength  

In this section, we analyze an alternative model where the linking choice between two agents is not 

binary, but continuous. That is, the linking strategy of an agent i  now becomes a vector 

{ }1, ,i i inp p= p , where 0,1ijp
é ùÎ ê úë û  and 0iip = . We define the strength of a link to be 

{ }max ,1ij ji ij jig g p p= = + . When 1ijg = , we say that the link between agents i  and j  is of full 

strength. This model possesses some similarity to the bilateral link formation since the strength of a link 

is now determined by the investments of two agents and the link formation cost is also two-sided. The 

utility of agent i  is then defined as 

 ( )
1

i i ij j i ij
j N j N

u , v x g x cx k p
r

r r

Î Î

æ ö÷ç ÷é ùç ÷ç ÷ê úç ÷= + - -ç ÷ê úç ÷÷çê úë û ÷ç ÷çè ø

å åx g . (25) 

Proposition X. In an equilibrium ( )* * *s = x ,g , if * * 0ij jip p+ > , then * * 1ij jip p+ = . 

Proof: Suppose ( )* * 0,1ij jip p+ Î  for some agents i  and j  and we assume * 0ijp >  without loss of 

generality. By taking the first-order partial derivative in ijp  over ( )iy ,x g , we have that 
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 ( )( )
1

* * * */i i j jv X X x x k
r

r
-

¢ = . (26) 

According to (27), we then have ( ) ( )
1

* */j ix x = k / c
r r

r
-

. Since this analysis is symmetric for i  and 

j , we have that ( ) ( ) ( ) ( )
1 1

* * * */ /j i i jx x x x
r r r r- -

=  and thus * *
i jx x= . Hence, the equilibrium strategy 

profile should be symmetric where each agent produces the same amount of information. Otherwise, we 

can always find an agent who has the incentive to switch its link from one of its neighbors to some other 

agent who has a higher production level. Since we only consider asymmetric strategy in this paper, the 

above scenario cannot happen and thus we have * * 1ij jip p+ =  always holds.  

Therefore, when the link formation cost is continuous and two-sided, each link still has full strength at 

equilibrium and there is no redundant investment on any link. Consequently, the analysis in the paper can 

be extended straightforwardly. 

 

 

 


