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Abstract—Many societies are organized in networks. Real-
world social networks such as friendship networks, online so-
cial networks, scientific collaboration and citation networks,
are formed by people who meet and interact over time. The
way people meet is highly influenced by the evolving network
structure, and their decisions to connect depend mainly on
their intrinsic characteristics. In this paper, we present a first
mathematical model to capture the microfoundations of social
networks evolution, where people modeled as boundedly rational
agents of different types join the network, meet other agents
stochastically over time, and consequently decide to form a set
of social ties. Based on the meeting process, which is governed by
the level of structural opportunism and the a priori type distribution,
as well as the incentives of the agents to form links, which are
governed by homophily and social gregariousness, agents make a
sequence of link formation decisions that lead to an endogenously
evolving network. A basic premise of our model is that in real-
world networks, agents do not form links in a one-shot fashion
via a preferential attachment probabilistic rule, but rather form
links by reasoning about the social benefits that agents they meet
over time can bestow. We analytically study the evolution of
the endogenously formed networks in terms of friendship and
popularity acquisition given the following exogenous parameters:
structural opportunism, type distribution, homophily, and social
gregariousness. We show that the time needed for an agent to
find “friends” is highly influenced by the exogenous network
parameters: agents who are more gregarious, more homophilic,
less opportunistic, or belong to a type “minority” spend, on
average, a longer time searching for friends. Moreover, we show
that preferential attachment and thus, an agent’s popularity
acquisition, is a direct consequence of an endogenously emerging
preferential meeting process, in which agents who search for
friendships meet more popular agents with higher probability.
We also show that the meeting process can be doubly preferential,
in which agents of a certain type meet more popular similar-
type agents with higher probability. Such meeting process creates
asymmetries in the levels of popularity attained by different types
of agents.

I. INTRODUCTION

We are living in the era of networks. With the widespread
usage of online social networking (OSN) platforms, such as
Facebook and Twitter [1]; academic networking websites such
as ResearchGate [2]; and professional online networks such
as Linkedin [3], people are getting more and more connected.
With people interacting and getting connected through these
platforms, networks emerge endogenously as a result of the
actions of people who meet others over time, and take link
formation decisions, i.e. “follow” a user on Twitter, “add”
a friend on Facebook, “cite” a paper that is indexed by
Google Scholar, or “collaborate” with a researcher. Examples
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Fig. 1: Framework for the analysis of social networks evolution.

of emerging networks include: friendship networks [4] [5]
[6], scientific collaboration and citation networks [7], and
professional networks [3]. Understanding how networks form
and evolve is essential for drawing insights into networked
social interactions, carrying out predictions, and designing
policies that can guide network formation. While extensive
research has been recently devoted to the study of social
networks, no systematic model exists that can explain how
networks form and evolve over time based on the individuals
decisions and preferences.

In this paper, we present a comprehensive micro-
foundational model and analysis for dynamic social network
formation. In our model, networks are formed over time by
the actions of boundedly rational agents that arrive at the
network stochastically, and meet other agents via a random
process that is itself highly influenced by the dynamic network
structure and the characteristics of the agents themselves.
Thus, networks evolve over time as a stochastic process
driven by the individual agents, where the formation of social
ties among agents are in part endogenously determined, as a
function of the current network structure itself, and in part
exogenously, as a function of the individual characteristics
of the agents. Agents have bounded rationality, i.e. they
only have information about other agents they meet over
time, and they are not able to observe the global network
structure or reason about links formed by others. We focus
on the impact of various exogenous parameters that describe
both the characteristics of individuals forming the network,
and the nature of the network itself, on the endogenously
evolving network structure. While many network metrics
such as diameter, clustering coefficient [14], community
structures [7], and degree distribution [15] can be computed



using our model, we focus on two basic aspects of network
evolution that describe the agent-level experience in the
network: friendship acquisition (the process of forming links)
and popularity acquisition (the process of gaining links), and
we show how these experiences depend on the parameters
considered. Before presenting our model and results, we
provide the following definitions for the exogenous parameters
under study. Fig. 1 depicts and categorizes these parameters.
1- Type Distribution: Agents are heterogenous in the sense
that they possess type attributes that correspond to their
preferences, race, ethnicity, etc. The experiences of different
types of agents in the network are generally not symmetric.
The type distribution characterizes the fraction of agents of
each type in the network. We say that an agent belongs to a
type minority to qualitatively describe a scenario where the
fraction of agents of the corresponding type in the population
is small, and we say that an agent belongs to a type majority
otherwise.
2- Homophily: A pervasive feature of social networks that
corresponds to the tendency of the agents to connect to
other similar-type agents [9] [10] [11]. The extent to which
a certain type of agents is homophilic is captured by an
exogenous homophily index, which we formally define in
section II. The homophily index can be thought of as the
amount of “intolerance” that a certain type of agents have
towards making contacts with other types.
3- Social Gregariousness: Some types of agents can be more
social than others, and thus are willing to form more links.
Social gregariousness is simply measured by the minimum
number of links an agent is willing to make.
4- Structural Opportunism: Agents in the network are
said to be opportunistic if they exploit their contacts to find
new contacts; thus, agents are more likely to link with the
friends of their friends if they are opportunistic. Structural
opportunism can also be interpreted as a social norm that
agents are expected to follow. For instance, users in Twitter
are expected to retweet the tweets posted by users they follow,
which leads to the followers of followers of a certain user to
follow him. Structural opportunism can also be a social norm
in friendship networks, where people introduce their friends
to each other or people enjoy/trust the friends of their friends
more than strangers.

A. Preview of the results

The central finding of this paper is that an agent’s experience
in the network is affected by the agents it meets over time. This
meeting process is in turn affected by the exogenous network
parameters. We classify our results as follows:
1- Friendship acquisition characterization: Agents joining
the network will form a finite number of links over time. We
say that agent A is a friend of agent B if agent B forms a
directed link with agent A. In section III-A, we study the
impact of the exogenous parameters on the time needed for
an agent to find its friends. We show that agents who are more
gregarious, more homophilic, less opportunistic, or belong to a

type “minority” are more likely to spend more time searching
for friendships.
2- Popularity acquisition characterization: After an agent
joins the network, other agents form links with it. The number
of such links reflects the level of popularity of that agent,
e.g. number of followers in Twitter, and number of citations
in a citation network. We say that agent A is a follower of
agent B if agent A forms a directed link with agent B. In
section III-B, we study the impact of the exogenous parameters
on the popularity acquisition time and popularity growth
rates in a large network. We show that popularity evolution
depends on the meeting process, which can in general be
doubly preferential, i.e. the meeting process is both type and
popularity biased. We prove that depending on the exogenous
parameters, preferential attachment, which corresponds to the
cumulative advantage in popularity acquisition, emerges as a
result of the preferential meeting process. Moreover, we show
that in homophilic societies, an emerging doubly preferential
meeting process allows more gregarious agent types to get
more popular, while in non-homophilic societies, an agent’s
age in the network determines its popularity over time.

B. Related works

Previous works on network formation can be divided into
three categories: networks formed based on random events [8],
[11]-[21], networks formed based on strategic decisions [22]-
[26], and empirical models distilled by mining networks’ data
[4]-[7], [30]. A fairly large body of literature has been devoted
to developing mathematical models for network formation,
yet much fewer works attempt to interpret and understand
how networks evolve over time and how can individual
agents affect the characteristics of such networks. Probabilistic
models based on random events are generative models that
are concerned with constructing networks that mimic real-
world social networks. In [11]-[18], agents get connected in
a pure probabilistic manner in order to realize some degree
distribution [12], or according to a preferential attachment
rule [13] [14]. While such models can capture the basic
structural properties of social networks, they fail to explain
why and how such properties emerge over time. In contrast,
strategic network formation models such as those in [22]-
[26], and our previous works in [27] [28], can offer an
explanation for why certain network topologies emerge as
an equilibrium of a network formation game. However, these
results are limited to studying network stability and efficiency,
and provide only very limited insight into the dynamics and
evolution of networks. Finally, mining empirical data can
help building algorithms for detecting communities [31]-[34],
predicting agents’ popularity [30], or identifying agents in a
network [29], but cannot help understanding how networks
form and evolve.

II. MODEL

A. Network model

We consider a discrete-time model for a growing social
network where one agent is born each time step and is indexed



by its birth date i ∈ {1, 2, . . ., t, . . .}. At date t ∈ N, a
snapshot of the network is modeled by a step graph Gt

given by Gt = (Vt, Et), where Vt is the set of nodes,
Et = {et1, et2, . . ., et|Et|} is the set of edges between different
nodes, with each edge etk being an ordered pair of nodes
etk = (i, j) (i ̸= j, and i, j ∈ Vt), and |Et| is the number of
distinct edges in the graph. Thus, Gt is a directed graph. Nodes
correspond to agents (social actors) and edges correspond to
directed links (social ties) between the agents. The adjacency
matrix of Gt is denoted by At

G = [At(i, j)], At(i, j) ∈
{0, 1}, At(i, i) = 0, ∀i, j ∈ Vt. An entry of the adjacency
matrix At(i, j) = 1 if (i, j) ∈ Et

k, and At(i, j) = 0 otherwise.
If At(i, j) = 1, then agent i initiates a link with agent j, and
we say that j is a “friend” of i, and i is a “follower” of j. The
directed nature of a link indicates the agent initiating the link,
and only this agent obtains the social benefit of linking and
pays the link cost. The indegree of agent i is the number of
links that are initiated towards i, denoted by deg−i (t), while the
outdegree, denoted by deg+i (t), is the number of links initiated
by agent i.

Each agent i ∈ Vt in the network possesses a type attribute
θi, which belongs to a finite set of types θi ∈ Θ,Θ =
{1, 2, 3, . . ., |Θ|}, where |Θ| is the number of types. The set of
type-k agents at time t is denoted by Vt

k, where Vt =
∪|Θ|

k=1 Vt
k.

Agents are identified by both their birth dates and types.
The network starts initially with a seed graph G0, which we
assume to be an empty graph with no agents at t = 0,
and agents arrive one at a time at each date t. The agents
arrival in the network is modelled as a stationary stochastic
process λ(t) = {θt}t∈N, with a sample space Λ = ΘN,
i.e. Λ = {(θ1, θ2, . . .) : θt ∈ Θ, ∀t ∈ N}. We assume that the
types of agents are independent and identically distributed, and
that the agents’ type distribution is P(θi = k) = pk, where∑

k∈Θ pk = 1. Thus, λ(t) is a Bernoulli scheme. Using Borel’s
law of large numbers, we know that

P
(
lim
t→∞

1

t

∣∣Vt
k

∣∣ = pk

)
= 1.

In other words, for a sufficiently large network size (and age
t), the actual fraction of agents of each type in the network
converges almost surely to the prior type distribution of the
Bernoulli scheme. Thus, at date t, and for a large enough
network, the expected number of type k agents in the network
is pkt, and the total number of agents is t, i.e. |Vt| = t,

E {|Vt
k|} = pkt, and limt→∞

|Vt
k|

|Vt| = pk.

B. The meeting process

Let Mi(t) = {mi(t)}i+Ti−1
t=i be the meeting process of

agent i, which corresponds to the sequence of birth dates of the
agents that agent i meets over time (note that birth dates are
used to identify agents), and Ti is the stopping time of Mi(t),
which we define in section III-A as the link formation time.
The sample space of the meeting process is given by M =
{(mi(i),mi(i+ 1), . . .,mi(i+ Ti − 1)) : mi(t) ≤ t,mi(t) ̸= i}.
Unlike the arrival process, which is stationary and exogenous,
the meeting process depends on the history of actions of all

agents in the network, i.e. the probability that agent i meets
agent j at time t depends on their relative positions in the
network at time t, which in turn depend on the sequence of
meetings for both agents up to time t − 1. Moreover, the
probability that a certain sample path of the meeting process
occurs depends on all the exogenous parameters shown in
Fig. 1. We denominate the set of agents to whom agent i
forms links as agent i’s friends, and the set of agents that
form links with agent i by agent i’s followers. Denote the set
of type-k friends of agent i ∈ Vt by N+,k

i,t , and the set of all
friends of i as N+

i,t =
∪|Θ|

k=1 N
+,k
i,t , where |N+

i,t| = deg+
i (t).

Similarly, we denote the followers of agent i by N−
i,t, where

|N−
i,t| = deg−i (t). Define the set Ki,t =

∪
j∈N+

i,t−1
N+

j,t−1/ {i}
as the set of friends of friends of agent i at time t, and the set
K̄i,t = Vt/

{
Ki,t

∪
N+

i,t

∪
i
}

as the set of strangers to agent
i at time t. We capture the degree of structural opportunism
of agents in the society by a parameter1 γ ∈ [0, 1], where
γ = 0 corresponds to fully opportunistic agents, and γ = 1
corresponds to non-opportunistic agents. That is, γ is a
measures of how often an agent i finds new friends without
exploiting its current connections as we show in the following
meeting process. For t ≥ i, agent i meets one agent selected
uniformly at random from the set of friends of friends with
probability 1− γ if Ki,t ̸= ϕ, while if K̄i,t = ϕ, then agent i
meets one agent selected from Ki,t with probability 1, i.e.

P
(
mi(t) ∈ Ki,t

∣∣Ki,t ̸= ϕ, K̄i,t ̸= ϕ
)
= 1− γ,

P
(
mi(t) ∈ Ki,t

∣∣Ki,t ̸= ϕ, K̄i,t = ϕ
)
= 1.

On the other hand, agent i meets one agent selected uniformly
at random from the set of strangers with probability γ if K̄i,t ̸=
ϕ, while if Ki,t = ϕ, then agent i meets one agent selected
from K̄i,t with probability 1, i.e.

P
(
mi(t) ∈ K̄i,t

∣∣Ki,t ̸= ϕ, K̄i,t ̸= ϕ
)
= γ,

P
(
mi(t) ∈ K̄i,t

∣∣Ki,t = ϕ, K̄i,t ̸= ϕ
)
= 1.

Moreover, other agents can occasionally meet agent i at each
time step, i.e. P (mj(t) = i |j ∈ Vt/{i}, t ≤ j + Tj − 1) >
0, ∀t ≥ i.

C. Agents’ actions and utility functions

When agent i meets agent mi(t) at time t, it observes its
type and decides whether or not to form a link with that agent.
Agents draw social benefits by connecting to others, but those
benefits are type-dependent and link formation is costly. Links
are formed unilaterally and only the agent initiating the link
bears a cost of c and attains the linking benefit. We assume
local externalities, i.e. linking benefits do not flow to indirect
contacts. Let the benefit attained by agent i from linking to
agent j be αθiθj , where αθiθj ∈ R+. The action of node i
at time t is ati ∈ {0, 1}, where ati = 1 indicates that node i

1We assume that all types of agents have the same γ. The analysis can be
easily extended to the case when each type has a different γ.



forms a link with node mi(t). The utility function of agent i
at date t is given by

ut
i

(
ati
)
= vi

 ∑
j∈N+

i,t

αθiθj

− c
t∑

k=i

aki , (1)

where ati =
(
aii, a

i+1
i , . . ., ati

)
, and v(x) : x → R+ is the

benefit function that measures the social capital 2. We assume
that v(x) is concave3, twice continuously differentiable, and
monotonically increasing in x, and v(0) = 0. That is, the
marginal benefit of forming links diminishes as the number
of links increases. This corresponds to the fact that agents do
not form an infinite number of links in the network, but rather
form a “satisfactory” number of links 4. The action taken by
agent i depends on the marginal benefit of forming a link and
the linking cost as shown in (2), where agent i forms a link
to the agent it meets only if the marginal utility from linking
is positive. Thus, agents are myopic and form links without
taking future meetings into account. To capture the impact
of homophily, we assume that αθiθk > αθiθj , ∀ |θk − θi| <
|θj − θi|, and αθiθk = αθiθj , ∀ |θk − θi| = |θj − θi|.

D. The exogenous parameters

In order to measure the exogenous homophilic tendency of
a certain type of agents, we propose a novel definition of an
exogenous homophily index for type-k agents hk, which is a
variant of the well known Coleman homophily index [21]:

hk , 1−
∑|Θ|

m ̸=k pm limt→∞ rθi(m, t)

1− pk
, ∀θi = k (3)

where rθi(m, t) is the maximum excess representation of type-
m agents in agent i’s friends at time t, which is given by

rθi(m, t) , sup
N+

i,t

∣∣N+,m
i,t

∣∣
deg+i (t)

, (4)

where rθi(k, t) = 1, ∀θi = k, and 0 ≤ hk ≤ 1, ∀k ∈ Θ.
When type-k agents are indifferent to the types of agents it
connects to, i.e. type-k agents are extremely non-homophilic,
then we have limt→∞ rθi(m, t) = 1, ∀θi = k,m ∈ Θ, which
means that hk = 0. On the other hand, if agents restrict
their links to same-type agents only, then limt→∞ rθi(m, t) =
δ (m, k) , ∀θi = k,m ∈ Θ, where δ (x, y) is the Kronecker
delta function, which means that hk = 1. Now we com-
pute the exogenous homophily index in closed-form. Let
L∗
θi
(k, α) ∈ Z be the maximum number of links with

type-k agents that agent i can form in the time period
[T,∞) given that

∑
j∈N+

i,T−1
αθiθj = α, i.e. L∗

θi
(k, α) ,

sup
(
limt→∞

∣∣∣N+,k
i,t

∣∣∣− ∣∣∣N+,k
i,T−1

∣∣∣), for
∑

j∈N+
i,T−1

αθiθj =

2Our definition for social capital follows that by Bourdieu in [35].
3While we assume concavity of the utility function, our analysis applies to

any saturating function, e.g. the sigmoid function.
4For instance, in citation networks, the number of references cited in a

paper is finite and corresponds to the number of papers the authors need to
acquire knowledge, yet the number of citations on a specific paper can be
arbitrary large.

α. This can be easily computed in closed-form by taking the
first derivative of the inverse of the concave benefit function
in (1). It can be shown that

inf
Mi(t)∈M

lim
t→∞

deg+i (t) = L∗
θi (θi, 0) ,

and the exogenous homophily index of agent i is given by5

hθi =
1

1− pθi

1−
|Θ|∑
k=1

pk
L∗
θi
(k, 0)

L∗
θi
(k, 0) + L∗

θi
(θi, αθik L

∗
θi
(k, 0))

 .

The parameter L∗
θi
(θi, 0) represents the minimum number

of links an agent can form; this parameter captures social
gregariousness. In summary, our model captures the four
exogenous parameters defined in section I as follows:

• Homophily: the homophily of type-k agents is captured
by the exogenous homophily index hk.

• Social gregariousness: the gregariousness of type-k
agents is captured by L∗

k(k, 0).
• Structural opportunism: the parameter γ reflects the ex-

tent of structural opportunism.
• Type distribution: the fraction of type-k agents in a large

network is given by pk.
In the next section, we study the friendships acquisition
experience for agents in the network.

III. FRIENDSHIPS ACQUISITION: HOW LONG DOES IT TAKE
TO FIND FRIENDS?

In the next subsection, we characterize the time needed for
agents to find their friends in the evolving network. Unlike
previous works where link formation is a one-shot process
(which is the case in [8], [14], [18], [19], [20], [21], [22],
[23], [25], and [26]), in our model agents form links over
time, and all agents can meet other agents and take link
formation actions at every time step as long as their utility
functions are not yet saturated. Based on such dynamic model,
a distinguishing characteristic of a network is the time span
over which agents keep forming links, i.e. how long would
an agent keep searching for friends upon its arrival. Based on
the definition of the utility function in (1) and (2), we know
that there exists a time after which an agent stops forming
links, which follows from our assumption of the concavity
of the utility function. Moreover, the minimum number of
friends that an agent makes in the network reflects the agent’s
gregariousness. The time horizon over which the agent forms
this number of links is a function of all the exogenous
parameters since it clearly depends on the meeting process,
i.e. the time span over which an agent forms links is random
as it depends on the types of agents that the agent meets over
time and the history of the link formation decisions. For an
agent i, the time span of link formation Ti is defined as

Ti , inf {t ∈ N : aτi = 0, ∀τ > t} − i+ 1. (5)

Since Ti is random, we characterize the time spent by an agent
in the link formation process in terms of the expectation of

5A detailed proof can be found in Appendix A.



ati =
1

2
sgn

v

 ∑
j∈N+

i,t−1

αθiθj + αθiθmi(t)

− v

 ∑
j∈N+

i,t−1

αθiθj

− c

+
1

2
. (2)

Ti. Note that Ti can be thought of as the stopping time of the
meeting process Mi(t). This can be easily proven by showing
that the event Ti = T only depends on the history of meetings
and link formation decisions up to time T . We define the
Expected Link Formation Time (ELFT) T i as

T i = E [Ti |i, θi ] , (6)

where the expectation is taken over the probability mass
function (pmf) of Ti, which we denote by fTi(Ti). In the
following Theorem, we compute the ELFT for extreme cases
of agents’ homophily.

Theorem 1: (Homophily induces uncertainity) For an agent
i born in an asymptotically large network (i → ∞), if hk =
0,∀k ∈ Θ, then the LFT for agent i and is equal to

Ti = L∗
θi(θi, 0)

almost surely, while if hk = 1, ∀k ∈ Θ, then the ELFT is
given by

T i =
1

pθi
+

L∗
θi
(θi, αθiθi)

γpθi + (1− γ)
.

Proof: See Appendix B.

Thus, when the agents are not homophilic, there is no
uncertainity in the friendships acquisition process, and both
the number of links and the link formation time are determin-
istic. This deterministic LFT is independent on the network,
and only depends on the agent’s gregariousness. That is, if
hk = 0, ∀k ∈ Θ, then an agent’s journey in the network is
controlled by the agent itself and how it values friendships, and
not by the network structure or the actions of others. If agents
value friendships more, i.e. are more gregarious, then they will
spend more time making friends, yet this time is deterministic
and only depends on parameters that are determined by the
agent and not the network. On the other hand, if agents are
extremely homophilic, then the agent’s journey in the network
will entail more stochasticity, i.e. agents are less certain about
the time needed to form links since they can meet different-
type agents with which they do not form any links. It is clear
from Theorem 1 that the ELFT of extremely homophilic agents
depends on the type distribution and opportunism, in addition
to gregariousness. We emphasize these dependencies in the
following corollary.

Corollary 1: (Gregarious agents and minorities search for
friends longer, opportunistic agents search shorter) If hk =
1,∀k ∈ Θ, then for an agent i, the ELFT is:

• a monotonically increasing function agent i’s gregarious-
ness L∗

θi
(θi, 0).

• a monotonically decreasing function of pθi , and
• a monotonically increasing function of γ.
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Fig. 2: Stochastic dominance of the LFT with decreasing structural
opportunism.

Proof: See Appendix C.

Corollary 1 says that the ELFT is monotonic in gregarious-
ness, which is intuitive since the more friends an agent is will-
ing to make, the longer it takes to find those friends. Moreover,
agents belonging to minorities are expected to spend more
time in the link formation process. This is again intuitive since
when the fraction of similar-type agents in the population is
small, each agent would need to meet a longer sequence of
agents in order to find similar-type friends. Finally, the ELFT
decreases as structural opportunism increases. This is because
once the agent becomes attached to a network component
of similar-type agents, it is then better to be opportunistic
and keep meeting the friends of friends who are guaranteed
to be similar-type agents, rather than meeting strangers with
uncertain types.

Note that the results in Theorem 1 are concerned with ex-
treme cases of homophily, i.e. hk = 0 and hk = 1. Computing
the exact ELFT for an arbitrary exogenous homophily index is
not mathematically tractable due to the combinatorial nature of
the agents’ interactions. However, in the following Theorem,
we generalize Theorem 1 and Corollary 1 using stochastic
ordering6.

Theorem 2: (Stochastic ordering of the LFT statistics with
respect to exogenous parameters) In an asymptotically large
network, for any agent i with an exogenous parameters tuple
(pθi , hθi , γ, L

∗
θi
(θi, 0)), and a corresponding pmf of the LFT

fTi (Ti), we have:
• If p̃θi > pθi and all other exogenous parameters are the

6The definition for stochastic dominance can be found in section 4.5.5 in
[8].



same, then fTi (Ti) first-order stochastically dominates
f̃Ti (Ti).

• If h̃θi > hθi and all other parameters are the same, then
f̃Ti (Ti) first-order stochastically dominates fTi (Ti).

• If γ̃ > γ and all other parameters are the same, then
f̃Ti (Ti) first-order stochastically dominates fTi (Ti).

Proof: See Appendix D.

Theorem 2 generalizes Theorem 1 and Corollary 1 in the
sense of stochastic ordering; the monotonicity of the ELFT
as a function of the exogenous parameters, as well as the
expectation of any other increasing function over the LFT
pmf, follows the same behavior in Corollary 1. Note that
while the ELFT can be shown to be increasing with an
agent’s gregariousness, the social gregariousness is actually
coupled with the homophily index, thus one cannot change the
gregariousness while fixing a homophily index. Fig. 2 shows
that the pmf of the LFT for γ = 1 stochastically dominates
that for γ = 0.

IV. POPULARITY ACQUISITION: HOW POPULAR CAN AN
AGENT BECOME?

Each agent forms a finite number of links that satisfies
its social gregariousness, but the number of links that an
agent receives (which quantifies the agent’s popularity) can
be arbitrarily large depending on the agent’s type, age, and
position in the network. In this subsection, we characterize
the evolution of the agents’ popularity over time. While the
ELFT measures the time span over which the agent forms
links, we introduce another measure for the time span over
which an agent attains a certain level of popularity, which we
term the Expected Popularity Acquisition Time (EPAT). Let
T p
i (d) be the popularity acquisition time, i.e. the time period

over which an agent’s indegree becomes d, i.e.

T p
i (d) , inf

{
t ∈ N : deg−i (τ) ≥ d,∀τ > t

}
− i+ 1. (7)

Note that T p
i (d) can be thought of as the difference between

the hitting time of the process
{

deg−i (t)
}∞
t=i

and the birth date
of agent i. Since such period is random, we define the expected
popularity acquisition time (EPAT) T

p

i (d) as

T
p

i (d) = E [T p
i (d) |i, θi ] . (8)

The popularity of agent i at time t is simply given
by deg−i (t). We say that the popularity growth rate is

O (g(t)) if limt→∞

∣∣∣∣E
{

deg−
i
(t)

}
g(t)

∣∣∣∣ = b, where b is a positive

constant. Finally, we define the popularity crossover time
T p
c (i, j, θi, θj , γ, γ

′
), as the time at which the expected popu-

larity of an agent j of type θj in a network realization with
structural opportunism γ

′
exceeds the popularity of an agent i

of type θi in a network realization with structural opportunism
γ, i.e.

T p
c (i, j, θi, θj , γ, γ

′
) ,

inf
{
t ∈ N : E

{
deg−i (τ) |γ

}
< E

{
deg−j (τ)

∣∣∣γ′
}
, ∀τ > t

}
.

(9)

When γ = γ
′
, we simply denote the popularity crossover time

by T p
c (i, j, θi, θj). Next, in the following, we define a new

notion of doubly preferential meeting processes, which plays
a central role in the popularity evolution process.

Definition 1: (Doubly preferential meeting process) We say
that the meeting process Mi(t) is doubly preferential if

P
(
mi(t) = j

∣∣i ≤ t ≤ i+ Ti − 1, deg−j (i)
)
= yij

(
deg−j (i)

)
,

where yij(x) is a linear function of x, and yij(x) > yik(x), ∀x
if and only if pθjrθi(θj ,∞) > pθkrθi(θk,∞).
Thus, a doubly preferential meeting process is a process that
leads agent i to meet an agent j with a probability proportional
to both the current popularity level of agent j, and the max-
imum excess representation of type-θj agents in the friends
of type-θi agents. The meeting process is doubly preferential
because it gives an advantage to the more popular agents,
and in addition gives an advantage to similar-type agents.
For an extremely homophilic agent i (hθi = 1), we have
yij(x) = 0,∀x, θi ̸= θj . It is worth mentioning that since dou-
bly preferential meetings allows similar-type agents to meet
with higher probability, it then captures what Mayhew calls
“structuralist” homophily effects in [10], and what Kossinets
and Watts refer to as “induced homophily” in [11], together
with the linear preferential attachment growth model. In the
following Lemma, we show that structural opportunism and
homophily promotes doubly preferential meeting processes.

Lemma 1: (Structural opportunism and homophily promote
doubly preferential meetings) For any network with γ ∈ [0, 1)
and hk ∈ (0, 1], ∀k ∈ Θ, the meeting process of any agent i
is doubly preferential.
In the following Theorem, we show that preferential attach-
ment in the popularity evolution process emerges over time as
a result of the doubly preferential meeting processes, which
in turn results from structural opportunism.

Theorem 3: (Emergence of preferential attachment due to
structural opportunism) For any network with γ ∈ [0, 1),
preferential attachment emerges over time and we have

P
(
At(i, j) = 1

∣∣ deg−j (i), i ≤ t ≤ i+ Ti − 1
)
∝ yij

(
deg−j (i)

)
.

This Theorem says that if agents are opportunistic, then the
popularity of each agent exhibits an accumulated advantage
pattern where the popular gets more popular. Unlike [13]
[14] [19] [36], in our model preferential attachment emerges
endogenously over the link formation time as a result of the
meeting process and the actions of the agents rather than being
a probabilistic link formation rule that specifies a one-shot
linking behavior. Moreover, the probability that agent i links
to agent j depends not only on the popularity of agent j, but
also on the gregariousness of agent i, and the types of agents i
and j. Next, in the following Theorem we study the impact of
the exogenous network parameters on the agents’ popularity
growth rates.

Theorem 4: (Popularity growth in non-homophilic societies)
For a network with hk = 0, ∀k ∈ Θ, the popularity growth
rates are given as follows:



• For γ = 0, the popularity of an agent i grows sublinearly
with time, i.e. E

{
deg−i (t)

}
is O

(
t
L̄−1
L̄

)
, where L̄ =∑

k∈Θ pkL
∗
k(k, 0), and the EPAT grows super-linearly

with the degree of popularity, i.e. T p
i (d) is O

(
d

L̄
L̄−1

)
.

• For γ = 1, the popularity of an agent i grows logarithmi-
cally with time, i.e. E

{
deg−i (t)

}
is O

(
L̄ log(t)

)
, and the

EPAT grows exponentially with the degree of popularity,
i.e. T p

i (d) is O
(
e

d
L̄

)
.

This Theorem demonstrates the impact of opportunism and
gregariousness on popularity accumulation. The popularity
of opportunistic agents grows sublinearly with time, and the
sublinearity exponent depends on the “average” gregariousness
of all types of agents in the society. On the other hand,
if agents are not opportunistic, their popularity will grow
only logarithmically with time. Thus, opportunism plays a
fundamental role in determining the popularity growth rate.
It is due to the emerging preferential attachment (which is
promoted by agents’ opportunism) that the popularity follows
a sublinear growth over time. However, since the society is
non-homophilic, the meeting process is not doubly preferential
and the growth rates of all agents are the same. In fact, it is
only the agent’s age in the network that decide its expected
popularity level as we show in the next Corollary.

Corollary 2: (Superiority of older agents in non-homophilic
societies) For a network with hk = 0, ∀k ∈ Θ,
T p
c (i, j, θi, θj) = ∞, ∀j > i. That is, the expected popularity

E
{

deg−i (t)
}

of an agent i at any time step dominates the
expected popularity of all younger agents.

This Corollary says that popularity crossover does not occur
in non-homophilic societies. This is a direct consequence of
agents being indifferent to other agents’ types, thus it is only
the birth dates that distinguishes the agents. In the following
Theorem, we compute the popularity crossover time for the
same agent for γ = 0 and γ = 1, and show that opportunism
leads to popularity gains in the long-run.

Theorem 5: (Opportunism is good in the long-run) For a
network with hk = 0, ∀k ∈ Θ, the popularity crossover time
T p
c (i, i, θi, θi, γ, γ

′
) is always finite and can be approximated

by

T p
c (i, i, θi, θi, 1, 0) ≈ i×

(
−L̄ W−1

(
1

L̄
e

−1
L̄

)) L̄
L̄−1

,

where W−1(.) is the lower branch of the Lambert W function
[37].

The popularity crossover time increases linearly with the
agent’s birth date, and grows as O

(
L̄ log(L̄)

)
with the agents’

average gregariousness. Thus, younger and more gregarious
agents need to wait longer to harvest the popularity gains
attained by opportunism. Fig. 3 shows the expected popularity
growth over time for agents born at t = 10, 20, and 30.
Solid lines are the logarithmically growing popularity if agents
are not opportunistic, while dashed lines correspond to the
sublinearly growing expected popularity for the opportunistic
agents, and it can be seen that a finite crossover time exists
for all such agents.

In the results above, we focused on non-homophilic soci-
eties, where meetings are not doubly preferential and different
types go through the same popularity evolution process. In the
following Theorem, we evaluate the popularity growth rates in
homophilic societies.

Theorem 6: (Popularity growth in homophilic societies) For
a network with hk = 1, ∀k ∈ Θ, the popularity growth rates
are given as follows:

• For γ = 0, the popularity of an agent i grows sublinearly
with time, i.e. E

{
deg−i (t)

}
is O

(
tb
)
, and the EPAT

grows super-linearly with the degree of popularity, i.e.
T p
i (d) is O

(
d

1
b

)
, where b =

L∗
θi

(θi,0)−1

L∗
θi

(θi,0)
.

• For γ = 1, the popularity of an agent i grows logarithmi-
cally with time, i.e. E

{
deg−i (t)

}
is O

(
L∗
θi
(θi, 0) log(t)

)
,

and the EPAT grows exponentially with the degree of
popularity, i.e. T p

i (d) is O
(
ebd

)
, where b = 1

L∗
θi

(θi,0)
.

It is clear that for homophilic societies, the popularity
growth rate are the same as those computed in Theorem 4, yet
the sublinearity exponent for opportunistic agents’ popularity
growth, and the scaling factor for the logarithmic popularity
growth of non-opportunistic agents depend on the gregari-
ousness of each type of agents. Thus, agents that are more
gregarious experience faster growth rates, which implies that
doubly preferential meeting process promotes the popularity of
older and more gregarious agents by the effects of preferential
attachment and homophily respectively as we show in the
following Corollary.

Corollary 3: (Younger and more gregarious agents are more
popular than older and less gregarious agents) For a network
with hk = 1, ∀k ∈ Θ, T p

c (i, j, θi, θj) < ∞, ∀j > i if and only
if L∗

θj
(θj , 0) > L∗

θi
(θi, 0).

Thus, the fraction of type-k agents in the society does
not affect its chances of getting popular. In fact, it is the
gregariousness of type-k agents, in addition to the structural
opportunism, that control the popularity evolution. Structural
opportunism leads to preferential attachment, which gives a
cumulative advantage to older agents to get more popular,
while homophily creates a doubly preferential meeting pro-
cess, which together with the heterogeneity in the agent’s
gregariousness can promote the popularity of certain types
of agents. The net effect can be that, unlike the case of
non-homophilic societies, a younger agent can on average
get more popular than an older agent if the younger agent
belongs to a more gregarious type. Fig. 4 shows that the
popularity of a younger, but more gregarious agent born at
t = 30 exceeds that of an older agent born at t = 20. The
results of Theorem 6 can be used to interpret the interesting
empirical results on citation networks in [38], where it has
been shown that there is a correlation between the number
of references per paper and the total number of citations in
a certain scientific field. We quote the following conclusion
from the report in [39], which is based on a statistical analysis
of Thomson Reuters Essential Science Indicators database:
“One might think that the number of papers published or the
population of researchers in a field are the predominant factors
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Fig. 3: Popularity crossover times for agents with and without
structural opportunism. Agents are born at t = 10, 20, and 30.

that influence the average rate of citation, but it is mostly the
average number of references presented in papers of the field
that determines the average citation rate.” Such conclusion
is in perfect agreement with Theorem 6 (and Corollary 3),
where we predict that for the inherently homophilic citation
networks, the popularity of researchers in different fields (total
citation rate) is governed by their “gregariousness” (number of
references per paper), and not by the type distribution (number
of papers/researchers). We know from [39] that mathematics
papers typically list few references, whereas those in molecular
biology display extensive citations. Thus, molecular biologists
are more “gregarious” than mathematicians, and one would
expect that younger molecular biologists can, on average, get
more popular than mathematicians. To illustrate this, we have
collected the publicly available Google Scholar citation data
for all molecular biologists who started publishing papers in
the year 2000, and the citation data for mathematicians who
started publishing in 1993. As predicted by Theorem 6 and
Corollary 3, we show in Fig. 57 that a popularity crossover
occurs for the “young” molecular biologists in the year 2006.

V. DISCUSSION AND FUTURE EXTENSIONS

A comprehensive theoretical model for the evolution of
social networks was presented, and the associated analysis for
agent-level link formation and acquisition was carried out. In
this section, we discuss various uses and applications of our
model. In particular, the model can be used, in addition to
providing insights into the network evolution process, to carry
out agent and network-level predictions, and designing policies
that guide network formation.

A. Network Prediction

Our model can make useful predictions about the network
structure and individuals popularity, time to acquire friend-
ships etc. and how these change when the interacting agents

7Note that popularity growth in Fig. 5 is super-linear due to the non-
stationary arrival process and gregariousness, which we will incorporate in
our future extensions for the model.
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exhibit different characteristics. Moreover, our model predicts
the emergence of preferential attachment, which is widely
observed in many real-world networks [13], as a result of
the agents’ dynamic meeting process and linking actions.
In contrast, data driven approaches [4]-[7] [29]-[30] cannot
provide such network characterizations and predictions unless
they have access to an abundance of relevant data. Moreover,
the proposed microfoundational model enables us to determine
what networks will form and how will they evolve when the
agents characteristics are different and to understand what
would be different if the agents would have different character-
istics. Such detailed comparisons, analysis and counterfactuals
are not possible based on data-driven approaches because this
would require access to enormous amounts of data and, even
more importantly, access to networks that cannot be monitored
and may not even exist (yet). For instance, Leskovec et.
al [6] characterized the friendship acquisition time, where a
parameterized model is constructed with the aid of a large
data set of temporal node (agent) arrivals and edge (link)
creation times for Linkedin, Yahoo! Answers, and Flickr. The
time gap between the creation of two links by the same node



is shown to fit an exponential distribution, and estimates for
the exponential distribution parameter for different networks
are provided. While [6] estimates the exponential distribution
parameters for different networks, it implicitly assumes that
all types of agents go through the same experience, and in
addition cannot explain why different networks have different
time gap statistics, and what will happen if different param-
eters are changed. In contrast, by calibrating the values of
the exogenous parameters, our model can explain why the
LFT of agents in different networks would differ, how is it
affected by the exogenous parameters, and can in addition
handle counterfactuals.

B. Policy design

Our model can be used to not only carry out link predictions,
but it can also be used to analyze and design new policies
that can modify and guide the formation and evolution of
networks. An example for a policy is to influence the agents’
meeting process at every time step given the observed step
graph at the previous time step. This corresponds to the link
recommendation problem [40], i.e. suggesting friends for the
agent over time. Such process of guiding link creation are
of interest to network planners and designers since in many
OSN, such as Facebook, the friends recommendation system
is responsible for a significant fraction of link creations. The
policy design problem can have different objectives such as:
controlling the level of popularity of different types of agents,
minimizing the LFT, or controlling the community structure.

APPENDIX A
DERIVATION OF THE EXOGENOUS HOMOPHILY INDEX

The exogenous homophily index for type-k agents is given
by

hk = 1−
∑|Θ|

m ̸=k pm limt→∞ rθi(m, t)

1− pk
,∀θi = k,

thus, we need to evaluate the term limt→∞ rθi(m, t), where

lim
t→∞

rθi(m, t) = lim
t→∞

sup
N+

i,t

∣∣N+,m
i,t

∣∣
deg+i (t)

.

It is easy to see that the maximum excess representation of
type-m agents can be evaluated by looking at all the possible
set of friends that contains only type-m and type-k agents, i.e.

lim
t→∞

rθi(m, t) = lim
t→∞

sup
N+

i,t=N+,θi
i,t ∪N+,m

i,t

∣∣N+,m
i,t

∣∣
deg+i (t)

,

which is equivalent to

lim
t→∞

rθi(m, t) = 1− lim
t→∞

inf
N+

i,t=N+,θi
i,t ∪N+,m

i,t

∣∣∣N+,θi
i,t

∣∣∣
deg+i (t)

.

The constraint N+
i,t = N+,θi

i,t ∪N+,m
i,t implies that we restrict

the links formed by agent i to agents of types θi and m only.
Thus, hθi can be computed by studying the sample paths for
agent i where θmm

i (t) ∈ {θi,m},∀t ∈ {i, i+1, . . ., i+Ti−1},

where mm
i (t) is a meeting process that restricts the types of

agents met by agent i to types θi and m, and its corresponding
sample space is Mm ⊂ M. Thus, we have that

lim
t→∞

inf
N+

i,t=N+,θi
i,t ∪N+,m

i,t

∣∣∣N+,θi
i,t

∣∣∣
deg+i (t)

=

inf
mm

i (t)∈Mm

∑∞
t=i 1{at

i=1,mm
i (t)=θi}∑∞

t=i a
t
i

,

which can be rewritten as

inf
mm

i (t)∈Mm

∑∞
t=i 1{at

i=1,mm
i (t)=θi}∑∞

t=i 1{at
i=1,mm

i (t)=θi} +
∑∞

t=i 1{at
i=1,mm

i (t)=m}
,

which can be further reduced to

inf
mm

i (t)∈Mm

1

1 +

∑∞
t=i 1{at

i
=1,mm

i
(t)=m}∑∞

t=i 1{at
i
=1,mm

i
(t)=θi}

.

Due to the monotonicity and concavity of vi(x), it is
clear that for two meeting processes mm

i,1(t) and mm
i,2(t),

if
∑∞

t=i 1{at
i=1,mm

i,1(t)=m} >
∑∞

t=i 1{at
i=1,mm

i,2(t)=m}, then∑∞
t=i 1{at

i=1,mm
i,1(t)=θi} <

∑∞
t=i 1{at

i=1,mm
i,2(t)=θi}, and∑∞

t=i 1{at
i
=1,mm

i,1
(t)=m}∑∞

t=i 1{at
i
=1,mm

i,1
(t)=θi}

>

∑∞
t=i 1{at

i
=1,mm

i,2
(t)=m}∑∞

t=i 1{at
i
=1,mm

i,2
(t)=θi}

.

Therefore, the term 1

1+

∑∞
t=i

1{at
i
=1,mm

i
(t)=m}∑∞

t=i
1{at

i
=1,mm

i
(t)=θi}

is minimized

by maximizing the number of type-m agents in the friends
of agent i. Now define L∗

θi
(k, α) as the maximum number of

type-k links that can be established by agent i given that the
agent i has initially as aggregate benefit of α. L∗

θi
(k, α) can be

computed by taking the first derivative of the utility function
with respect to type-k links, thus we have

L∗
θi(k, α) =

{
⌊L⌋ : vi (Lαθik)− vi ((L− 1)αθik) < c
⌈L⌉ : vi (Lαθik)− vi ((L− 1)αθik) > c

where

L =
1

αθik

(
g−1
i

(
c

αθik

)
− α

)
,

and gi(x) = ∂vi(x)
∂x . Due to the concavity of vi(x),

then L∗
θi
(k, α1) > L∗

θi
(k, α2) if α1 < α2. Thus, the

maximum number of type-m links in agent i’s friends is
L∗
θi
(m, 0), and the corresponding number of type-θi links is

L∗
θi
(θi, αθimL∗

θi
(m, 0)). Consequently, the maximum excess

representation of type-m links in agent i’s friends is given by

lim
t→∞

rθi(m, t) =
L∗
θi
(m, 0)

L∗
θi
(m, 0) + L∗

θi
(θi, αθimL∗

θi
(m, 0))

.

By substituting in (3), the exogenous homophily index for any
agent i is then given by

hθi =
1

1− pθi

1−
|Θ|∑
k=1

pk
L∗
θi
(k, 0)

L∗
θi
(k, 0) + L∗

θi
(θi, αθik L

∗
θi
(k, 0))

 .



APPENDIX B
PROOF OF THEOREM 1

We start by studying the case when hθi = 0. When hθi = 0,
then αθiθi = αθik = α,∀k ∈ Θ. Therefore, at any date t ≥ i,
we have αθiθmi(t)

= α, ∀i ≤ t, and we have

P
(
ati = 1

∣∣θmi(t)

)
=

{
1 : L∗

θi
(θi, (t− i)α) > 0

0 : L∗
θi
(θi, (t− i)α) = 0

Thus, agent i forms a link with all the agents it meets until
the stopping time of Mi(t), which in this case is equal to
L∗
θi
(θi, 0), i.e.

P
(
Ti = L∗

θi(θi, 0)
)
= 1, ∀i ∈ N.

The LFT of agent i in the non-homophilic society is equal
to L∗

θi
(θi, 0) almost surely since agent i forms a link with

whatever type of agent it meets until its utility function is
saturated. Now we focus on the case when hθi = 1. In this
case, we have L∗

θi
(k, 0) = L∗

θi
(θi, 0) δ(θi, k), θi, k ∈ Θ. Upon

its arrival, agent i meets type-k agents picked uniformly at
random from the network with probability pk, and it forms its
first link only if it meets a type-θi, i.e.

lim
i→∞

P
(
ati = 1

∣∣θmi(t), deg+i (t) = 0
)
= 1{θmi(t)

=θi},

therefore we have

lim
i→∞

P
(
ati = 1

∣∣deg+i (t) = 0
)
= pθi .

Let N1 be the time elapsed until agent i forms its first
link. It is clear that N1 is a geometric random variable, and
E {N1} = 1

pθi
. After agent i becomes attached to the network,

the probability that it meets a type-θi agent is given by

P
(
θmi(t) = θi

)
= γ P

(
θmi(t) = θi

∣∣mi(t) ∈ K̄i,t

)
+

(1− γ)P
(
θmi(t) = θi |mi(t) ∈ Ki,t

)
. (B.1)

Since any type-k agent has hk = 1, then all the
friends of friends for an agent i has a type θi. Therefore
P
(
θmi(t) = θi |mi(t) ∈ Ki,t

)
= 1. Moreover, we have

P
(
θmi(t) = θi

∣∣mi(t) ∈ K̄i,t

)
=

∣∣Vt
θi

∣∣− |Ki,t| − deg+i (t)− 1

|Vt| − |Ki,t| − deg+i (t)− 1
.

Note that the cardinality of the set Ki,t can be bounded as
follows

lim
t→∞

|Ki,t| ≤
(
L∗
θi(θi, 0)

)2
.

Thus, for an asymptotically large network, we have

P
(
θmi(t) = θi

∣∣mi(t) ∈ K̄i,t

)
=

lim
t→∞

∣∣Vt
θi

∣∣− |Ki,t| − deg+i (t)− 1

|Vt| − |Ki,t| − deg+
i (t)− 1

, (B.2)

which reduces to

P
(
θmi(t) = θi

∣∣mi(t) ∈ K̄i,t

)
=

lim
t→∞

pθit− L∗
θi
(θi, 0)

(
L∗
θi
(θi, 0) + 1

)
− 1

t− L∗
θi
(θi, 0)

(
L∗
θi
(θi, 0) + 1

)
− 1

= pθi . (B.3)

Thus, the probability of forming a link at time step t is

P
(
θmi(t) = θi

)
= γ pθi + (1− γ). (B.4)

After it forms its first link, agent i needs to form L∗
θi
(θi, 0)−

1 = L∗
θi
(θi, αθiθi) links. Let Ni be the number of time

steps needed to form the ith link, where E [N1] = 1
pθi

.
The time period needed to form the ith link Ni follows a
geometric random variable, and the set of random variables
{N1, N2, . . ., NL∗

θi
(θi,αθiθi

)} are independent for a large net-
work. Thus, we have

E [Nj ] =
1

γ pθi + (1− γ)
, ∀j ≥ 2

and

E

Ti =

L∗
θi

(θi,0)∑
j=1

Nj

 = E [N1] + E

L∗
θi

(θi,αθiθi
)∑

j=2

Nj


(B.5)

= E [N1] +

L∗
θi

(θi,αθiθi
)∑

j=2

E [Nj ]

=
1

pθi
+

L∗
θi
(θi, αθiθi)

γ pθi + (1− γ)
,

and the result of the Theorem follows.

APPENDIX C
PROOF OF COROLLARY 1

For hk = 1, ∀k ∈ Θ, we know that T i =
1

pθi
+

L∗
θi

(θi,αθiθi
)

γpθi
+(1−γ) .

Since L∗
θi
(θi, αθiθi) = L∗

θi
(θi, 0) − 1, then it follows that

T i is monotonically increasing in agent i’s gregariousness,
i.e. ∂T i

∂L∗
θi

(θi,0)
= 1

γpθi
+(1−γ) > 0. Next, by taking the first

derivative of the ELFT of agent i with respect to the fraction
of type-θi agents, we have

∂T i

∂pθi
=

−1

p2θi
−

γ L∗
θi
(θi, αθiθi)

(γpθi + (1− γ))
2 < 0.

Thus, agents belonging to minor types are expected to wait
longer in the link formation process. Finally, the ELFT varries
with the friendliness of the society in the following manner

∂T i

∂γ
=

−(pθi − 1)L∗
θi
(θi, αθiθi)

(γpθi + (1− γ))
2 > 0.

Thus, the ELFT of any agent is monotonically decreasing in
the level of structural opportunism.



APPENDIX D
PROOF OF THEOREM 2

Before studying the comparative statics of the evolving
network, we first start by showing that the link formation
process of each agent can be modeled as an absorbing
Markov chain. For an agent i, we define the vector-valued
stochastic process {St

i}
∞
t=i , where St

i ∈ Z|Θ|×1, and St
i =(

N+,1
i,t ,N+,2

i,t , . . .,N+,|Θ|
i,t

)T

. Note that for any t ≥ i, we

have 1TSt
i = deg+i (t). Since each agent starts with no friends,

we have Si
i = 0|Θ|×1, and since agents do not break links, we

have St+1
i ≽ St

i, ∀t ≥ i. Since the meeting process Mi(t) has
a finite stopping time Ti, then we have St+1

i = St
i, ∀t ≥ Ti.

Now we show that {St
i}

∞
t=i is an absorbing Markov chain.

Note that since each agent acquires at most one friend at each
time step, then the transition probabilities should satisfy the
following condition

P
(
St+1
i = st+1

i

∣∣St
i = sti

)
> 0,

if and only if 1T
(
st+1
i − sti

)
∈ {0, 1}, ∀t ≥ i, and

L∗
θi
(θmi(t),

∑|Θ|
j=1 s

t
i(j)αθij) > 0, where sti(j) is the jth

element of sti.
A pmf f(x) first order stochastically dominates a pmf f̃(x)

if the following conditions hold (See Section 4.5.5 in [22])
•

∑
q(x)f(x) ≥

∑
q(x)f̃(x), for all non-decreasing func-

tions q(.),
•

∑y
0 f(x) ≤

∑y
0 f̃(x) for all y,

•
∑∞

y f(x) ≥
∑∞

y f̃(x) for all y.
Now we study the comparative statics of the evolving network
when changing each of the exogenous parameters. We start
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