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Abstract—We investigate the impact of cooperative relaying
on uplink multi-user (MU) wireless video transmission. We
formulate the problem as an MU Markov decision process
(MDP) that explicitly considers the cooperation at the physical
layer and the medium access control sublayer, the video users’
heterogeneous traffic characteristics, and the dynamically varying
network conditions. Although MDPs notoriously suffer from the
curse of dimensionality, our study shows that the complexity
of the MU-MDP can be mitigated. Our simulation results show
that cooperation allows users with feeble direct signals to achieve
improvements in video quality on the order of 5-10 dB peak
signal-to-noise ratio, with less than 0.8 dB quality loss by users
with strong direct signals.

I. INTRODUCTION

Existing wireless networks provide dynamically varying
resources with only limited support for the Quality of Ser-
vice (QoS) required by delay-sensitive, bandwidth-intense,
and loss-tolerant multimedia applications. This problem is
further exacerbated in multi-user (MU) settings because they
require multiple video streams, with heterogeneous traffic
characteristics, to share the scarce wireless resources. To
address these challenges, recent research has focused on MU
wireless communication [1], [2], [3] and MU wireless video
streaming [4], [5], [6]. In MU video streaming applications [4],
[5], [6], cross-layer optimization is deployed to strike a balance
between scheduling users who experience very good fades,
and serving users who have the highest priority video data.
This tradeoff is important because rewarding a few lucky
participants, as opportunistic multiple access policies do [2],
does not translate to providing good quality to the application
(APP) layer. Unfortunately, with the exception of [3], [6],
the aforementioned research assumes that wireless users are
noncooperative. This leads to a basic inefficiency in the way
that the network resources are assigned: indeed, good fades
experienced by some nodes can go to waste because users
with higher priority video data, but worse fades, get access to
the shared wireless channel.

A way to not let good fades go to waste is to enlist
the nodes that experience good fades as cooperative helpers,
using a number of techniques available for cooperative coding
(e.g [7]). As mentioned above, this idea has been considered
in [3], [6]. In [6], for example, layered video coding is
integrated with randomized cooperation to enable efficient

video multicast in a cooperative wireless network. Because it is
a multicast system, there is no need for an optimal multiple-
access strategy, and no need to worry about heterogeneous
traffic characteristics. Additionally, in both [3], [6], it is
assumed that each user has a static utility function of the
average transmission rate.

In this paper, our solution is inspired by the cross-layer
resource allocation and scheduling solution in [5], in which the
MU wireless video streaming problem is modeled and solved
as an MU Markov decision process (MDP) that allows the
users, via a uniform resource pricing solution, to obtain long-
term optimal video quality in a distributed fashion. Unlike [3],
[6], the solution we adopt from [5] explicitly considers packet-
level video traffic characteristics (instead of flow-level) and
dynamic network conditions (instead of average case condi-
tions). However, as recently shown in [8], augmenting the
framework developed in [5] to also account for cooperation is
challenging because of the complexity of the resulting cross-
layer MU-MDP optimization. This paper is different from our
prior work [8] because in this paper we address the complexity
issue and introduce a new distributed cooperation protocol for
recruiting cooperative relays.

The contributions of this paper are threefold. First, we for-
mulate the cooperative wireless video transmission problem as
an MU-MDP using a time-division multiple-access (TDMA)-
like network, randomized space-time block coding (STBC) [9],
and a decode-and-forward cooperation strategy. We show ana-
lytically that the decision to cooperate can be made opportunis-
tically, independently of the MU-MDP. Second, we propose a
distributed, low complexity, opportunistic cooperative strategy
for exploiting good fades in an MU wireless network. Third,
we show experimentally that users with feeble direct signals
to the access point (AP) are conservative in their resource
usage when cooperation is disabled, but utilize resources more
aggressively when it is enabled. Consequently, the uniform
resource price that is designed to manage resources in the
network tends to increase when cooperation is enabled in a
congested network.

The remainder of the paper is organized as follows. We
introduce the system and application models in Section II
and Section III, respectively. In Section IV, we present the
proposed MU cross-layer optimization. In Section V, we



Fig. 1: An uplink wireless video network with cooperation.

compute the transmission and packet error rates for both direct
and cooperative transmission modes, and propose a distributed
protocol for opportunistically recruiting cooperative relays.
Finally, we report numerical results in Section VI and conclude
in Section VII.

II. SYSTEM MODEL

We consider a network composed of M users streaming
video content over a shared wireless channel to a single
AP (see Fig. 1). Such a scenario is typical of many uplink
media applications, such as remote monitoring and surveil-
lance, wireless video sensors, and mobile video cameras. We
assume that time is slotted into discrete time-intervals of
length R > 0 seconds indexed by t ∈ N. In slot t, the
AP endows the ith user with the resource fraction xit at the
medium access control (MAC) layer, where 0 ≤ xit ≤ 1. Let
xt , (x1t , x

2
t , . . . , x

M
t )T ∈ RM denote the resource allocation

vector at time slot t, which must satisfy the stage resource
constraint ‖xt‖1 =

∑M
i=1 x

i
t ≤ 1. Each node’s physical (PHY)

layer is assumed to handle quadrature amplitude modulation
(QAM) square constellations, with a (fixed) symbol rate of
1/Ts symbols per second. We consider a frequency non-
selective block fading model, where hi`t ∈ C denotes the
fading coefficient over the i → ` link in time slot t, with
i 6= ` ∈ {0, 1, 2, . . . ,M}, and node 0 corresponding to the AP.
It is assumed that all the channels are dual, i.e., |hi`t | = |h`it |,
and that the fading coefficients hi`t are i.i.d. with respect
to t. We define Ht ∈ CM×M as the matrix collecting the
fading coefficients among all of the nodes and the AP, i.e.,
{Ht}i` = hi`t , for i 6= ` ∈ {0, 1, 2, . . . ,M}.

At the PHY layer, there are two transmission modes to
choose from: direct and cooperative. Let zit ∈ {0, 1} denote the
cooperation decision. In the direct transmission mode (zit = 0),
as shown in Fig. 1, the ith source node transmits directly to
the AP at the data rate (per unit of bandwidth) βi0t , mea-
sured in bits/second/Hz, for Rxit seconds. In the cooperative
transmission mode (zit = 1), the assigned transmission time
is divided into two phases as illustrated in Fig. 1: in Phase
I, the ith source node directly broadcasts its own data to all
the nodes in the network at the data rate βi,1t (bits/second/Hz)
for Rρit x

i
t seconds, where 0 < ρit < 1 is the Phase I time

fraction; in Phase II, some of the nodes overhearing the source
transmission demodulate the data received in Phase I, re-
modulate the original source bits, and then cooperatively trans-

mit towards the AP, along with the source i, at the data rate
βi,2t (bits/second/Hz) for the remaining R (1− ρit)xit seconds.
Thus, the cooperative data rate βi,coop

t (bits/second/Hz) is a
convex combination of the data rates attainable in these two
phases, i.e., βi,coop

t = ρit β
i,1
t + (1−ρit)β

i,2
t . In Section V, we

compute the transmission parameters βi0t , βi,1t , and βi,2t .

Notation: A circular symmetric complex Gaussian random
variable X with mean µ and variance σ2 is denoted as X ∼
CN (µ, σ2); and, b·c denotes flooring-integer.

III. APPLICATION MODEL

To accurately capture the characteristics of the video pack-
ets, we adopt the sophisticated video traffic model proposed
in [5], which accounts for the fact that video packets have
different deadlines, distortion impacts, and source-coding de-
pendencies

For i ∈ {1, 2, . . . ,M}, the traffic state T it , {F it ,bit}
represents the video data that the ith user can potentially
transmit in time slot t, and comprises the following two
components: the schedulable frame set F it and the buffer
state bit. In time slot t, we assume that the ith user can
transmit packets belonging to the set of video frames F it whose
deadlines are within the scheduling time window (STW)
[t, t + W ]. The buffer state bit , (bit,j | j ∈ F it )T represents
the number of packets of each frame in the STW that are
awaiting transmission at time t. The jth component bit,j of bit
denotes the number of packets of frame j ∈ F it remaining for
transmission at time t. We assume that each packet has size
P bits.

In each time slot t, the ith user’s scheduling action yit ,
(yit,j | j ∈ F it )T , determines the number of packets to transmit
out of bit. Its jth component yit,j represents the number of
packets of the jth frame within the STW that are transmitted
in time slot t. The scheduling action yit is constrained to be in
the feasible scheduling action set Pi(T it ,Ht), which imposes
the following three constraints:

1) Buffer: 0 ≤ yit,j ≤ bit,j .
2) Packet: The total number of transmitted packets must

satisfy ‖yit‖1 =
∑
j∈Fi

t
yit,j ≤

Rβi
t

P Ts
.

3) Dependency: If there exists a packet k that has not
been transmitted, and packet j depends on k, then(
bit,k − yit,k

)
yit,j = 0.

The sequence of traffic states {T it : t ∈ N} can be modeled
as a controllable Markov chain with transition probability
function p(T it+1 | T it ,yit).

IV. COOPERATIVE MULTI-USER VIDEO TRANSMISSION

The global state can be defined as st ,
{T 1
t , T 2

t , . . . , T Mt ,Ht} ∈ S , where S is a discrete set
of all possible states.1 The sequence of global states

1To have a discrete set of network states, the individual link states in Ht

are quantized into a finite number of bins.



{st : t ∈ N} can be modeled as a controlled Markov chain
with transition probability function

p(st+1 | st,yt) = p (Ht+1)

M∏
i=1

p(T it+1 | T it ,yit) , (1)

where yt , ({y1
t }T , {y2

t }T , . . . , {yMt }T )T collects the
scheduling actions of all the users. Moreover, under the
scheduling action yit, the ith user obtains the immediate utility
ui(T it ,yit) ,

∑
j∈Fi

t
qij y

i
t,j , which is the total video quality

improvement experienced by the ith user under the assumption
that quality is incrementally additive [10].

The objective of the MU optimization is the maximization of
the expected discounted sum of utilities The optimization can
be formulated as an MDP that satisfies the following dynamic
programming equation

U∗(s) = max
y,z

{
M∑
i=1

ui(T i,yi) + α
∑
s′∈S

p(s′|s,y)U∗(s′)

}
(2)

subject to yi ∈ Pi(T i,H) and
∑M
i=1 x

i ≤ 1, where xi is the
time-fraction allocated to the ith user, i.e., xi = P Ts

Rβi ‖yi‖1,
and βi depends on zi; the parameter α ∈ [0, 1) is the “discount
factor”, which accounts for the relative importance of the
present and future utility; and Pi(T i,H) is the set of feasible
scheduling actions.

Given the distributions p(H) and p(T i′ | T i,yi) for all i, the
above MU-MDP can be solved by the AP using value iteration.
However, there are two challenges associated with solving the
above MU-MDP. First, the complexity of solving (2) scales
exponentially with the number of users, i.e., M , and with the
number of links in H, i.e., M2. We show that the exponential
dependence on the number of links in H can be eliminated.
Second, the traffic state information is local to the users, so
neither the AP nor the users have enough information to solve
the above MU-MDP. We summarize the findings in [5] that
show that the considered optimization can be approximated to
make it amenable to a distributed solution. Additionally, this
distributed solution eliminates the exponential dependence on
the number of users.

If we can show that the optimal opportunistic (i.e., myopic)
cooperation decision is also long-term optimal, then the de-
tailed network state information does not need to be included
in the MU-MDP, and we can eliminate the exponential depen-
dence on the number of links in the network. The following
theorem shows that opportunistic cooperation is optimal.

Theorem 1 (Opportunistic cooperation is optimal): The
optimal opportunistic cooperation decision, which maximizes
the immediate transmission rate, also optimizes (2).

Proof: The proof follows from the fact that the set of
feasible scheduling actions under the optimal opportunistic
cooperation decision is a superset of the set of feasible
scheduling actions under the suboptimal cooperation decision.
The details are omitted due to space limitations.

A consequence of Theorem 1 is that the cooperation deci-
sion vector z does not need to be included in the MU-MDP.

Instead, z can be set to maximize the immediate transmission
rate. Most importantly, this means that the MU-MDP does not
need to include the high-dimensional network state; instead, it
is sufficient to track the users’ optimal opportunistic transmis-
sion rates provided by the PHY layer, i.e., βit for all i. Under
the assumption that the channel coefficients are i.i.d. random
variables with respect to t, βit can be modeled as an i.i.d.
random variable with probability mass function (pmf) p(βi).
We note that p(βi) depends on p(H) and the deployed PHY
layer cooperation algorithm.

Based on the above observations, we can simplify the
maximization problem in (2). Let us define the ith user’s
state as si ,

(
T i, βi

)
∈ Si and redefine the global state

as s , (s1, . . . , sM )T . The simplified maximization becomes,

U∗(s) = max
y

{
M∑
i=1

ui(T i,yi)

+ α
∑
s′∈S

M∏
i=1

p(si′ | si,yi)U∗(s′)

}
,∀s,

(3)

subject to yi ∈ Pi(T i, βi) and
∑M
i=1 x

i ≤ 1, where
p(si′ | si,yi) = p(βi′) p(T i′ | T i,yi). Although we have elim-
inated the exponential dependence on the number of links in
the network, the complexity of solving (3) still scales expo-
nentially with the number of users because it must be solved in
a centralized fashion. However, it is shown in [5] that (3) can
be reformulated as an unconstrained MDP using Lagrangian
relaxation. The resulting MU-MDP can be decomposed into
M MDPs, one for each user [5]. These local MDPs satisfy
the following dynamic programming equation

U i,∗(si, λ) = max
yi

[
ui(T i,yi)− λ

(
xi − 1

M

)
+ α

∑
si′∈S

p(si′ | si,yi)U i,∗(si′, λ)

]
,

(4)

Ûλ
∗
(s) = min

λ≥0

M∑
i=1

U i,∗(si, λ) , (5)

subject to yi ∈ Pi(T i, βi). We assume that the optimal
resource price λ is calculated as in [5].

V. COOPERATIVE PHY LAYER TRANSMISSION

In this section, we describe how to compute the direct, Phase
I, and Phase II transmission rates, i.e. βi0t , βi,1t , and βi,2t ,
respectively. Then, we define our opportunistic cooperative
strategy to select distributively the set of cooperative relays
Cit and determine zit at the AP.

A. Direct, Phase I, and Phase II data rates

Let us consider the direct i → ` link with instantaneous
channel gain hi`t and data rate βi`t ≥ 1 (bits/second/Hz)
corrupted by additive white Gaussian noise (AWGN). Let



BEP denote the BEP constraint at the PHY layer. The
achievable data rate βi`t under the BEP constraint is

βi`t = blog2

(
1 + Γ |hi`t |2

)
c,where Γ ,

3 γ

2
∣∣loge

(
BEP

4

)∣∣ , (6)

where γ is the average SNR per symbol expended by the
transmitter. The data rate βi0t over the link between the source
and the AP is obtained using (6) by setting ` = 0.

Because of possible error propagation, the end-to-end BEP
for a two-hop cooperative transmission is in general cumber-
some to calculate with decode-and-forward relays. To signifi-
cantly simplify the computation of βi,1t and βi,2t , we use two
different BEP thresholds BEP1 and BEP2 for the first and
second hops, respectively, where BEP1 is a large percentage
of the total error rate budget BEP , say BEP1 = 0.9BEP ,
and BEP2 = BEP − BEP1. Moreover, we assume that
the end-to-end BEP is dominated by the BEP over the worst
source-to-relay link. Under this assumption, we can estimate
βi,1t in Phase I as

βi,1t =

⌊
log2

(
1 + Γ1 min

`∈Cit
|hi`t |2

)⌋
, (7)

where Γ1 is obtained from Γ by replacing BEP with BEP1.
Since the AP and the relays cannot estimate the channel
coefficients hi`t , for all ` ∈ Cit , they cannot determine βi,1t
alone. We will deal with this problem in Subsection V-B.

Supposing that a subset Cit of the available nodes are
recruited to serve as relays in Phase II, these nodes, along
with the ith user, cooperatively forward the source message
by using a randomized STBC rule [9]. Under the randomized
STBC rule, the AP observes the space-time coded signal
with equivalent channel vector h̃i,2t , hi0t ri + Rhi,2t , where
hi,2t , (h`0t | ` ∈ Cit)T ∈ CNi

t collects all the channel
coefficients between the relay nodes and the AP (see Fig. 1)
and R , (r` | ` ∈ Cit) ∈ CL×Ni

t is a randomized weight
matrix, with N i

t ≤ M defined as the cardinality of Cit . It is
noteworthy that the AP only needs to estimate h̃i,2t for coherent
ML decoding and that the randomized coding is decentralized
since the `th relay chooses r` locally.

By imposing the BEP constraint BEP2, the data rate βi,2t
attainable on the second hop of the cooperating link is given
by

βi,2t = blog2[1 + Γ2 (|hi0t |2 + ‖Rhi,2t ‖2)]c , (8)

where Γ2 is obtained from Γ in (6) by replacing BEP with
BEP2. It is interesting to underline that the AP can exactly
evaluate βi,2t because it can estimate hi0t and Rhi,2t via
training as explained in Subsection V-B.

B. Recruitment protocol
Recall from the end of Section II that the cooperative data

rate βi,coop
t is a convex combination of the attainable data rates

βi,1t and βi,2t . Since K and Q symbols have to be transmitted
in Phase I and II, respectively, it is required that Qρit β

i,1
t =

K (1− ρit)β
i,2
t , which means that

ρit =
1

1 + βi,1t /(βi,2t Rc)
=⇒ Rc + 1

βi,coop
t

=
Rc

βi,1t
+

1

βi,2t
, (9)

where Rc , K/Q ≤ 1 is the rate of the orthogonal
STBC rule. The cooperative mode is activated only if the
cooperative transmission is more data-rate efficient than the
direct communication, i.e., only if βi,coop

t > βi0t , which from
(9) leads to the following condition

Rc

βi,1t
+

1

βi,2t
<
Rc + 1

βi0t
. (10)

If (10) is not fulfilled, the source transmits to the AP in direct
mode.

The trouble in recruiting relays on-the-fly is that the AP
cannot directly compute βi,1t given by (7). To address this, we
propose a four-step handshaking protocol that is summarized
in Table I. The thresholds BEP1 and BEP2, as well as the
number of antennas in the space-time code L and Rc, are
fixed parameters that are known at all the nodes. Under the
proposed protocol, in Phase I, the source sends its data frame
at rate βi,1t = 1

ξt
Rc

Rc+1 β
i0
t ; in Phase II, along with the source,

the self-recruited relays cooperatively transmit the data frame
at rate βi,2t ; then, the AP finishes the procedure by sending
back to the source an acknowledgement (ACK) message. The
key observation is that the selection of Cit using (11) is done
in a distributed way and, moreover, by simply having access
to the channel state from the source i to itself, i.e., hi`t , the
`th candidate cooperative node can autonomously determine
if, by cooperating, it can improve the data rate of node i.

VI. NUMERICAL RESULTS

We consider a network with 50 nodes placed randomly and
uniformly throughout the 100 m coverage range of a single
AP and three video nodes placed to the right of the AP as
illustrated in Fig. 2. Let ηi`t denote the distance in meters
between the ith and `th nodes. The fading coefficient hi`t over
the i→ ` link is modeled as an i.i.d. CN (0, (ηi`t )−δ) random
variable, where δ is the path-loss exponent. We assume that
the entries of R, defined in Section V, are i.i.d. CN (0, 1

L )
random variables, where L is the length of the STBC. We
simulate the following three uplink scenarios:

1) Homogeneous video sources: Each of the three cameras
stream the Foreman sequence (CIF resolution, 30 Hz
framerate, encoded at 1.5 Mb/s) offset by several frames.

2) Heterogeneous video sources 1: Video user 1 streams the
Coastguard sequence (CIF, 30 Hz, 1.5 Mb/s), video user
2 streams the Mobile sequence (CIF, 30 Hz, 2.0 Mb/s),
and video user 3 streams the Foreman sequence (CIF, 30
Hz, 1.5 Mb/s).

3) Heterogeneous video sources 2: This is the same as the
previous scenario, but with video users 2 and 3 streaming
the Foreman and Mobile sequences, respectively.

We note that the proposed framework can be applied using
any video encoder; however, for illustration, we use a scalable
video coding scheme [11], which is attractive for wireless
streaming applications because it provides on-the-fly applica-
tion adaptation to channel conditions.

The relevant simulation parameters are given in Table II.
We let the self-selection parameter ξt = ξ = 0.2 (see Table I)



TABLE I: The proposed four-step handshaking for randomized STBC cooperation.

Step 1) The ith source initiates the handshaking by transmitting a request to send (RTS) frame, which announces its desire to transmit K data symbols and
also includes training symbols that are used by the other nodes to estimate the link gains. From the RTS message, the AP estimates the channel
coefficients hi0t and, hence, determines βi0

t . At the same time, by passively listening to all the RTS messages occurring in the network, the other
nodes estimate their respective channel parameters hi`t , for ` ∈ {1, 2, . . . ,M} − {i}, and, thus, determine β i`

t .
Step 2) The AP responds with a global cooperative recruitment signal (CRS) that provides feedback on βi0

t to all the candidate cooperative nodes, as well
as a second parameter 0 < ξt ≤ Rc

1+Rc
, which is used to recruit relays.

Step 3) The candidate cooperative nodes can self-select themselves according to the following rule:

Cit =

{
` :

βi0
t

β i`
t

≤
Rc + 1

Rc
ξt

}
, (11)

where β i`
t is defined using (6) by replacing BEP with BEP1, and the condition defining Cit assures that

Rc

βi,1
t

≤ ξt
Rc + 1

βi0
t

. (12)

The nodes belonging to the formed group Cit send in unison a help to send (HTS) message using randomized STBC of size L, which piggybacks
training symbols that are used by the AP to estimate the cooperative channel vector Rhi,2

t .
Step 4) The AP computes the data rate βi,2

t by resorting to (8) and verifies the fulfillment of the following condition

1

βi,2
t

< (1− ξt)
Rc + 1

βi0
t

. (13)

If (13) holds then, accounting also for (12), it can be inferred that cooperation is better than direct transmission, i.e., condition (10) is satisfied: in
this case, zit = 1. Otherwise, cooperation is useless: in this case, zit = 0. Therefore, in the end of the handshaking among all participants, the AP
responds with a clear to send (CTS) frame, which conveys the following information: (i) the cooperation decision zit; (ii) if zit = 1, the data rate
βi,2
t in Phase II given by (8); (iii) the resource price λ computed as explained in [5].

TABLE II: Simulation parameters.

because this value provides a large improvement in average
transmission rate over the AP’s entire coverage range. We
simulate two levels of network congestion by adjusting the
symbol rate: for low congestion, we use the symbol rate
1
Ts

= 1250000 symbols/second; whereas, for high congestion,
we use 1

Ts
= 625000 symbols/second.

Fig. 3 illustrates the average transmission rates achieved
by the video users in the homogeneous and heterogeneous
scenarios under different levels of network congestion.

In the homogeneous scenario illustrated in Fig. 3(a), coop-
eration tends to equalize the resource allocations to the three
users. This is because the homogeneous users have identical
utility functions; thus, when sufficient resources are available,
it is optimal for them to all operate at the same point of their
resource-utility curves. In contrast, when heterogeneous users
with different utility functions are introduced, the transmission
rates change to reflect the priorities of the different users’
video data. Observing Fig. 3(b,c), it is clear that the additional
resources afforded by cooperation tend to go to the highest

-100 -50 0 50 100
-100

-50

0

50

100
AP
Potential Relays

AP
Video Sources
Potential Relays

Fig. 2: Network topology used for numerical results.

priority video user (i.e. the user streaming Mobile).
The right-hand-side of Table III illustrates the optimal

resource prices in the homogeneous and heterogeneous sce-
narios. Interestingly, cooperation impacts the resource price
differently depending on the level of congestion in the net-
work. In particular, when there is little congestion in the
network, cooperation decreases the resource price compared to
direct transmission. This is because cooperation increases the
available resources without significantly increasing aggregate
demand. In contrast, when there is congestion in the network,
cooperation increases the resource price compared to direct
transmission. This is because, users that resigned themselves to
low transmission rates in the direct scenario suddenly demand
resources.

Table III also compares the video quality obtained in the ho-
mogeneous and heterogeneous scenarios, where video quality



TABLE III: Resource price and average video quality (PSNR) in different scenarios.
 

Streaming 

Scenario 

Transmission 

Mode 

Video User 1 @ 20 m 

(Low / High) 

Video User 2 @ 45 m 

(Low / High) 

Video User 3 @ 80 m 

(Low / High) 

Resource Price 

(Low / High) 

Homogeneous 

 Foreman Foreman Foreman  

Direct 36.82 dB / 36.51 dB 35.85 dB / 30.20 dB 29.89 dB / --- dB 45.79 / 42.97 

Cooperative 36.69 dB / 35.82 dB 36.58 dB / 34.83 dB 36.04 dB / 27.12 dB 38.72 / 52.56 

Heterogeneous 

1 

 Coastguard Mobile Foreman  

Direct 32.30 dB / 31.09 dB 26.74 dB / 24.53 dB 25.94 dB / --- dB 51.01 / 53.17 

Cooperative 31.94 dB / 30.89 dB 27.14 dB / 25.8 dB 35.69 dB / 27.12 dB 48.02 / 71.94 

Heterogeneous 

2 

 Coastguard Foreman Mobile  

Direct 31.91 dB / 31.72 dB 35.16 dB / 32.75 dB 21.85 dB / --- dB 68.24 / 41.48 

Cooperative 31.56 dB / 30.97 dB 35.72 dB / 32.39 dB 26.53 dB / 22.03 dB 62.61 / 72.86 

Cooperative (Low Congestion)
Direct (Low Congestion)
Cooperative (High Congestion)
Direct (High Congestion)
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Fig. 3: Average transmission rates. (a) Homogeneous sources.
(b,c) Heterogeneous sources.

is measured in terms of peak-signal-to-noise ratio (PSNR in
dB) of the luminance channel. In the low congestion scenario,
the user furthest from the AP (user 3) benefits on the order of
5-10 dB PSNR from cooperation, while the video user closest
to the AP (user 1) is penalized by less than 0.4 dB PSNR. In
the high congestion scenario, user 3 goes from transmitting
too little data to decode the video (denoted by “− − −”)
to transmitting enough data to decode at low quality, while
penalizing user 1 by less than 0.8 dB PSNR.

VII. CONCLUSION

We introduced a cooperative multiple access strategy that
enables nodes with high priority video data to be serviced
while simultaneously exploiting the diversity of channel fading
states in the network using a randomized STBC coopera-
tion protocol. We formulated the dynamic multi-user video
transmission problem with cooperation as an MU-MDP and
we used Lagrangian relaxation with a uniform resource price
to decompose the MU-MDP into local MDPs at each user.
We analytically proved that opportunistic (myopic) cooper-
ation strategies are optimal. Subsequently, we proposed a
randomized STBC cooperation protocol that enables nodes to
opportunistically and distributively self-select themselves as

cooperative relays. Finally, we experimentally showed that the
proposed cooperation strategy significantly improves the video
quality of nodes with feeble direct links to the AP, without
significantly penalizing other users.
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