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S1 Related Work

Risk Scores

There are two main methods to compute the risk scores of patients: expert-domain knowledge and
classification. Popular expert-domain based risk score measures include the Acute Physiological
and Chronic Health Evaluation (APACHE) [17], and modified Early Warning Score (MEWS) [25].
Both the APACHE and MEWS score are designed by having the experts define the risk based on
the physiological stream values. A limitation with these methods is that they have a poor positive
predictive value and a high number of false positives in the range of 70-95% [1]. The classification
approach learns a mapping between electronic health record data and the morbidity and mortality of
the patients. For example the Rothman index [22] provides a continuous measure of the patients risk
which is computed using the mortality rate of patients after 1-year and is dependent on the vital signs,
lab results, cardiac rhythms and nursing assessments of the patient. A limitation with these methods
is that they contain a bias as a result of therapeutic intervention censoring as they do not account for
therapeutic interventions. Additionally, these methods are not personalized as they are trained without
considering patient’s with different medical conditions, demographics, and the unique therapeutic
interventions applied to each patient. As such, a one size fits all classifier is expected to have a
lower accuracy compared to our algorithm (Fig.1) which accounts for therapeutic interventions and is
personalized. Using real-world data from a cancer ward in a large academic hospital we illustrate
how our algorithm significantly improves the accuracy of estimating the clinical state of the patient
compared to these popular risk scoring methods.

Probabilistic Generative Models of Patient’s Physiological Signals and State

Dynamic models that can succinctly capture the generative model of the measured physiological data
as a function of the underlying patient state provides vital information for both classifying the patient
state and for removing the bias introduced from therapeutic intervention censoring. A common
method is to utilize multistate models based on Markov processes (e.g. hidden Markov models) for
modeling the state changes of the patient. Once the HMM parameters are estimated, using methods
such as the Baum-Welch algorithm, then the hidden state of the HMM can be computed by inference
of the HMM model. This technique has been applied to estimate several time-varying patient states
for liver cancer [16], breast cancer [19], bronchiolitis obliterans syndrome [14], HIV [8], Alzheimer’s
disease [6], hepititis C [26], and abdominal aortic aneurysms [15]. In the HMM each discrete state
variable determines the momentary state of the patient. However, there are two important limitations
with applying the HMM to estimate patient state. First the typical maximum likelihood estimation
procedures to estimate the model parameters may introduce over-fitting and under-fitting as mode
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complexity (i.e. the necessary number of states) is not accounted for. Second, the model structure has
to be defined a priori.

To mitigate the limitations of the HMM requires a richer class of stochastic processes known
as combinatorial stochastic processes in which we assume an infinite number of possible states.
Intuitively this generative model will have unbounded complexity such that under fitting is mitigated,
and the effects of over-fitting can be reduced using the tools of non-parametric Bayesian inference [29].
Additionally, utilizing combinatorial stochastic processes as the patient’s generative model allows
learning new states as further patient data is collected. Note that non-parametric here does not mean a
parameter-less model, but rather a model in which the number of states grows as more data is observed
for the patient. Common combinatorial stochastic models for time-series segmentation include the
Hierarchical Dirichlet process (HDP) [30], Beta Process [12, 31], and Pitman-Yor process [13]. The
HDP can be interpreted as a non-parametric generalization of the HMM to an infinite state HMM
where the number of states is unbounded and can be learned from the data. The HDP assumes
that all time series share the same set of behaviors and switch among them in exactly the same
manner. Application examples of where the HDP is utilized to segment temporal data can be found
in [7, 30, 2]. An example application for the HDP for segmenting clinical temporal data is provided
by Saria et al. [23] which utilizes the HDP to cluster data in electronic health records for natural
language processing. A major limitation with blindly applying non-parametric Bayesian inference to
estimate the generative model parameters of the patient is that for small sample sizes n the parameter
estimates are sensitive to the selected prior distributions. If these priors place little weight on the true
parameter values this will result in a poor segmentation. Additionally, the rate of convergence of the
posterior distribution for infinite-dimensional models to the true posterior distribution is typically
O(1/

√
n) or slower [9, 11, 10, 18]. To mitigate these issues our algorithm ensures that the resulting

segmentation is consistent with the modeling assumptions, that each segment contains sufficient
samples for parameter estimation of the dynamic models, and that each segment is statistically
unique from the other detected segments. If the segmentation from the non-parametric Bayesian
inference algorithm fails to produce a valid segmentation, then the prior parameters or/and modeling
assumptions must be adjusted.

Novelty Detection in Physiological Data

Novelty detection or anomaly detection is typically defined as the detection of a unique set of
physiological signals that are not contained in the dataset D used for training. There are four main
classes of anomaly detection techniques that are used to detect for patients with unique physiological
signals: probabilistic, distance-based, reconstruction based, and domain based [20]. Algorithm 1
utilizes a distance-based measure for detecting anomalous physiological signals. In [5] a support-
vector machine is trained for the one-class problem where a patient is either in the “normal” or
“abnormal” state. In [21] a factorial switching Kalman filter model with a priori states associated
with normal and abnormal states is defined. A likelihood function is then utilized to estimate if
the patient has entered an abnormal state. In [24] each patient’s physiological data is fitted to a
Gaussian distribution, then Horn’s algorithm is utilized to detect any data that is not consistent with
the estimated distribution. In [28] a k-means clustering algorithm is used to construct prototype
physiological patterns, then for each pattern computes the Parzen-Window density estimation. Any
patient data not consistent with the estimated distributions are classified as abnormal. The main
limitation of these methods is that they are not personalized for patient’s and diseases, they are biased
as a result of therapeutic intervention censoring, and the number of novel states must be defined a
priori. Our algorithm for detecting novelty overcomes all these limitations as it utilizes fine-grained
personalization, does not contain bias resulting from therapeutic interventions, and learns the number
of segments non-parametrically.

S2 Cancer Ward Dataset Description

The cohort comprises 1065 patients who were diagnosed with leukemia, lymphoma, multiple
myeloma and other hematologic malignancies. The patients were receiving chemotherapy, allo-
geneic stem cell transplantation, or autologousstem cell transplantation during their hospitalization in
the cancer ward. All patients are in-patients (i.e. they where in the hospital for the duration of the
analysis unless discharged). The therapeutic treatments received by patients may cause severe im-
munosuppression during their hospitalization placing them at an extreme risk of clinical deterioration,
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Table 1: Properties of the Cancer Ward Patient’s Vitals

Parameter Mean Standard Deviation Minimum Maximum
Systolic Blood Pressure (mmHg) 122.45 16.83 54.00 243.00
Diastolic Blood Pressure (mmHg) 73.48 11.66 3.00 144.00
Heart Rate (beats per minute) 84.49 16.99 0.00 237.00
Respiratory Rate (breaths per minute) 18.82 2.67 0.00 180.00
Temperature (F) 98.45 1.13 32.00 106.90
Peripheral Capillary Oxygen Saturation (%) 96.76 8.45 0.00 100.00
Haemoglobin (g/dL) 5.49 18.16 0.00 364.19
White Blood Cell Count (×10−3/mL) 9.26 1.39 3.60 17.20
Platelet Count (×10−3/mL) 70.63 85.77 1.00 772.00
Sodium Concentration (mmol/L) 137.32 3.51 107.00 154.00
Potassium Concentration (mmol/L) 3.89 0.50 2.00 9.30
Chloride Concentration (mmol/L) 104.19 4.35 73.00 124.00
Total Carbon Dioxide (mEq/L) 24.89 3.20 10.00 45.00
Blood Urea Nitrogen (g/dL) 16.72 12.99 2.00 153.00
Creatinine (mg/dL) 0.97 1.12 0.10 19.10
Glucose (mg/dL) 120.37 42.86 39.00 801.00

which requires ICU admission. The number of patients admitted to ICU is 101, which comprises
9.48% of the 1065 patents in the cohort. Each patient’s electronic health record is associated with
17 temporal physiological data streams with the vital signs (systolic blood pressure, diastolic blood
pressure, heart-rate, respiratory-rate, temperature, etc.), and laboratory tests (white blood cell count,
haemoglobin, glucose, sodium concentration, potassium concentration, chloride concentration, etc.).
Table 1 provides the vital signs and laboratory tests used for analysis and their associated properties.
A representative example of the physiological values and associated discovered segments are provided
in Fig.S1. Note that as a result of patient anonymity we do not have demographic information (e.g.
age, sex, comorbidity) for the patients. The sampling rate of the vital signs is approximately every
4 hours, and the sampling rate of the laboratory tests are approximately every 24 hours. Note that
as these sampling rates the physiological data is not expected to have significant autocorrelations
present. The interval of each patient’s hospitalization until either discharge or ICU admission varies
across patients and is not known a priori. Given the unique medical conditions of each patient, we
can not define precise values of the physiological signals that are associated with the ICU admission
state for all patients. Instead, Algorithm 1 learns the fine-grained personalized values applicable for
the patients to detect if they have entered the ICU admission clinical state.

Figure S1: Physiological signals from the patient with discovered dynamic models in Fig.2(b). Note
the coloured segments are for illustration only, these colors are not related to the specific physiological
values.
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S3 Algorithm 1: Therapeutic Intervention Censoring and Risk Scores

In this section we illustrate the similarity and differences of Algorithm 1 compared to the Rothman
index [22] and MEWS [25]. Specifically we compare the performance of these methods based on the
resulting confusion matrices for different threshold values, and illustrate how Algorithm 1 mitigates
therapeutic intervention censoring compared to these popular risk scoring methods.

To gain insight into the similarities and differences of Algorithm 1, Rothman index, and MEWS,
Fig.S2 compares the state estimate from Algorithm 1, Rothman index, and MEWS for four patients.
For the Rothman and MEWS risk scores we must set the threshold for the ICU admission state. For
the Rothman index we set the threshold at 0.65, and for MEWS we set the threshold at 0.5. The
associated accuracy for these thresholds is provided in Table 1. As seen in Fig.S2(a) and Fig.S2(b)
the results of Algorithm 1 are in agreement with the results of the Rothman index and MEWS risk
score. Notice that in Fig.S2(b) both Algorithm 1 and the Rothman index detect that the patient is
in the ICU admission state at 625 hours, MEWS at 850 hours, and the Rothman index at 900 hours.
However, as a result of therapeutic intervention neither the Rothman index or MEWS scores detect
the ICU admission state at 175 hours. In Fig.S2(c) we see that the results of Algorithm 1 have a
faster timeliness for detecting the ICU admission state compared with the Rothman and MEWS.
The timeliness of detecting ICU admission is vital to ensure that clinicians have sufficient time to
perform therapeutic interventions to attempt to transition the patient out of the ICU admission state.
In Fig.S2(d) we see that Algorithm 1 is able to sufficiently estimate that patient’s clinical state of
ICU admission while both the Rothman index and MEWS do not detect the patient has entered the
ICU admission state–again illustrating the effects therapeutic intervention censoring, as in the case of
risk scores, this would not be considered an ICU admission state as the patient recovered as a result
of a therapeutic intervention. This can result significant patient harm and cost as these risk scores
recommend the patient’s physiological condition is improving when in fact it is worsening.

0 100 200 300 400

D
y
n
a
m

ic
M

o
d
el

1

2

3

4

R
is
k

S
co

re

0

0.5

1

Time [hours]

D
yn

am
ic

M
od

el
s

R
is

k
Sc

or
e

ICU

S2(a) Agreement with the Rothman index and
MEWS index for the detection of the ICU admis-
sion state.
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S2(b) Partial agreement (for dynamic model 5)
with the Rothman index and MEWS index for the
detection of the ICU admission state.
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S2(c) Agreement with the Rothman index and
MEWS index for the detection of the ICU admis-
sion state.
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S2(d) Disagreement with the Rothman index and
MEWS index for the detection of the ICU admis-
sion state.

Figure S2: The estimated clinical states from Algorithm 1 (black), the Rothman index (red), and
MEWS (blue) computed from typical physiological signals from the patients. The dotted horizontal
black line indicates the threshold for the Rothman index, and the dotted gray line indicates the
threshold for MEWS to indicate that the patient has entered the ICU admission state.

The performance of Algorithm 1, the Rothman index, and MEWS are dependent on the selected
threshold value for ICU admission which should balance the performance metrics true positive rate
(TPR), positive predictive value (PPV), false positive rate (FPR), and false negative rate (FNR).
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Fig.S3 illustrates how these performance metrics change for different threshold values. The TPR,
PPV, FPR, and FNR of Algorithm 1 are respectively: 71.9%, 37.4%, 28.1%, and 13.7% for δb = 1.
From Fig.reffig:rothmanANDmewsacc we see that Algorithm 1 has a superior performance compared
to the Rothman index and MEWS. For example if we require the TPR = 69.9%, then the associated
PPV values for the Rothman index and MEWS are 26.1% and 18.0% respectively. There is an
11.3% increase in the PPV value for the Rothman index, and 19.4% increase in the PPV for MEWS
compared to the PPV of Algorithm 1. In clinical setting it is vital to keep the FNR and FPR low
to ensure patient’s in the ICU admission state are correctly identified while ensuring the number
of false alarms is low. For an FNR = 13.7% the Rothman index has an FPR of 43.3% which is an
increase in false alarms of 15.2% compared with Algorithm 1, and the MEWS has an FPR of 64.4%
which has an increase in false alarms of 36.3% compared to Algorithm 1. Therefore Algorithm 1
has a significantly reduced false alarm rate compared with the Rothman index and MEWS while
maintaining a sufficiently low FNR.
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S3(a) Trade off between the true positive rate (TPR)
and positive predictive value (PPV) for Algorithm 1,
Rothman index, and MEWS. The dashed cross-
hair indicates the performance of Algorithm 1 for
δb = 1.
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Figure S3: The estimated performance of Algorithm 1 (black), the Rothman index (red), and MEWS
(blue) for different threshold values.

S4 Selection of the Threshold δb for Algorithm 1

In this section we study how the threshold δb can be introduced into Algorithm 1 to ensure a sufficient
balance between the performance metrics TPR and PPV. Note that δb is similar to the thresholding
values that must be selected for the Rothman index [22] and MEWS [25] when classifying if the
patient has entered the ICU admission clinical state. The two clinical states we consider in this paper
are discharge or ICU admission which we can write as l ∈ {DIS, ICU}. To compute a measure of the
segment k ∈ K being in the DIS clinical state we utilize:

δDIS(k) =
mink′∈LDIS{DB(k, k′)}
mink′∈LICU{DB(k, k′)}

. (S1)

which is the entry in the optimization problem in Step#5 of Algorithm 1. It is clear that if δDIS(k) > 1
then the clinical state is associated with ICU admission, and if δDIS(k) < 1 then the clinical state is
associated with the DIS clinical state. Therefore we set the threshold value of Algorithm 1 to δb = 1
such that if δDIS(k) > δb then the patient is in the ICU admission state. Fig.S4 illustrates the values
of δDIS(k) for all dynamic models detected with Fig.S4(a) including all the dynamic models that
do not include a clinician defined state, and Fig.S4(b) with dynamic models that have a clinician
defined state. Formally, for any segmentation {{y}t∈T i

k
, k ∈ Ki} for patient i ∈ I with associated

clinician defined clinical state lit′ at time t′, only segments that satisfy t′ /∈ T i
k are in Fig.S4(a), and

only segments that satisfy t′ ∈ T i
k are in Fig.S4(b). As seen from the results in Fig.S4(a), several of

the patients that are eventually discharged from the hospital enter the ICU admission state during their
hospitalization period. In risk scoring methods these would be considered as false positives, however
this type of assumption is what leads to the bias resulting from therapeutic intervention censoring.
The only time a false positive (patient is in discharge state however Algorithm 1 recommends ICU
admission) is detected is if the dynamic model that includes the clinician defined state is not correctly
identified as seen in Fig.S4(b). It is clear from Fig.S4(b) that utilizing the metric δDIS with δb = 1
sufficiently detects the number of patients in the ICU admission state without a significant number of
false positives.
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Note that although Algorithm 1 performs fine-grained personalization for patients, we do not utilize
any demographic information (e.g. age, sex, comorbidity) of the patient as it is not available in the
current dataset. In future work we will combine our fine-grained personalization Algorithm 1, then
utilize state-of-the-art personalization techniques in (S1) to refine the clinical state estimates of the
patient’s by only comparing patients with similar demographic information.
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Figure S4: Compute δICU and threshold δb = 1 for Algorithm 1 for estimating the clinical state of the
1065 patients.

S5 Complexity and Implementation of Algorithm 1 in Hospital Wards

The two most computationally expensive operations in Algorithm 1 are the non-parametric Bayesian
inference and the similarity comparison for large sets of electronic health record data. In this section
we provide methods to efficiently implement Algorithm 1 for large datasets.

To address the complexity of the non-parametric Bayesian inference several state-of-the-art sampling
methods can be utilized. The Gibbs sampler [7, 33] has a computational complexity off O(|T i||Ki|)
with |T i| the number of samples for patient i, and |Ki| the number of unique dynamic models
associated with patient i ∈ I. Typical for medical data the number of samples |T i| and associated
number of clinical states, which is of the same order of magnitude as |Ki|, are sufficiently small
allowing the implementation of the Gibbs sampler on standard computing workstations. For example,
on a standard desktop computer a patient with |T i| = 1000, |Ki| = 10, and utilizing 10,000
iterations in the Gibbs sampler, the non-parametric Bayesian segmentation completes in under 5
min. There are however several other sampling methods that can be utilized to increase the efficiency
of sampling. For example, it may be possible to reduce the number of iterations necessary to
sufficiently converge by utilizing the Beam sampler technique introduced in [33]. The Beam sampler
is constructed by combining the ideas of slice sampling and dynamic programming to sample the
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whole hidden state trajectories {zt}t∈T , however the Beam sampler has computational complexity
O(|T i||Ki|2). For online estimation, streaming methods for dynamic model estimation are desirable.
Streaming variational inference, which utilizes assumed density filtering, has been introduced in [27]
to dynamically update the dynamic model parameter estimates as new samples arrive. In [3] an online
variational technique is introduced, based on a split-merge topic update routine, for updating the
parameter estimates as new data arrives. To account for asynchronous data arrival, which is typical in
medical settings, a unique posterior decomposition method in a combinatorial optimization framework
can be used to update the posterior distribution as new data from each stream is received [4]. The
selection of which sampling method to utilize depends on the application setting. For our analysis we
utilized the Gibbs sampler for all estimates as we are interested in segmenting the dataset D into D̄
which is performed in the offline stage of Algorithm 1. Additionally for new patients, the number of
samples is sufficiently small to allow the Gibbs sampler to be utilized for constructing the dynamic
model of the patient which takes less than 5 min on a standard desktop computer. For the results
presented in this paper the hyper-parameters of the combinatorial stochastic model are given by:
γ = 0.01, α = 1.01, L = 15, µ0 = 0 ∈ Rm, λ = 1, and v = m.

The computational complexity of evaluating the similarity (i.e. clinical state) of a new patient is given
byO(|L|m3) whereO(m3) is the computational complexity of evaluating the Bhattacharyya distance.
Notice that in medical applications the number of physiological data streams m (e.g. y ∈ Rm) is
typically sufficiently small such that |L| is the major contributor to the decease in computational
efficiency of Algorithm 1. To address this issue the cardinality of L for large medical datasets, that
may be composed of millions of patients, can be reduced by introducing a uniqueness threshold δu.
If a new segment k does not satisfy

min
k′∈L

{
DB(k, k′)

}
> δu (S2)

then it is not added to the dataset L as it is not sufficiently unique from the segments already contained
in L. It is expected that several patients in a large medical dataset will share similar physiological
signals that are associated with the same clinical state.

The computational complexity of Algorithm 1 is polynomial with O(|I|max(|T i|) max(|Ki|)) the
computational complexity of the segmentation of the EHR data to construct the labeled dataset L,
and O(|L|m3) the computational complexity of computing the clinical state of a new patient.

S6 Proof of Theorem 1

The proof of Theorem 1 is based on using the matrix Bernstein inequality presented in [32]. The
main idea is to use a linear mapping that allows the construction of a vector Bernstein inequality from
the matrix Bernstein inequality. Here we define the linear mapping L : Rm → Rm×m by

L(Y ) =

[
0 Y ′

Y 0

]
. (S3)

Set Xt = L(Yt) and note that Xt are real and symmetric random matrices with

X2
t =

[
||Yt||22 0

0 YtY
′
t

]
. (S4)

Since, ||L(Y )|| = ||Y ||2 we have that ||Xt|| = ||Yt||2 ≤ L. Additionally,∣∣∣∣∣∣ n∑
t=1

E[X2
t ]
∣∣∣∣∣∣ =

[∑n
t=1E[||Yt||22] 0

0
∑n

t=1E[YtY
′
t ]

]
=

n∑
t=1

E[||Yt||22]. (S5)

Plugging these relations into the matrix concentration inequality in [32], Theorem 1 results. �

The corollary of Theorem 1 for real and symmetric matrices is given by:

Corollary 1 Let {Y1, . . . , Yn} be a set of independent random real and symmetric matrices with
Yt ∈ Rm×m for t ∈ {1, . . . , n}. Assume that each has uniform bounded deviation such that
||Yt|| ≤ L ∀t ∈ {1, . . . , n}. Writing Z =

∑n
t=1 Yt, then

P (||Z|| ≥ ε) ≤ (2m) exp
( −3ε2

6V (Z) + 2Lε

)
, V (Z) =

∣∣∣∣∣∣ n∑
t=1

E[Y 2
t ]
∣∣∣∣∣∣. (S6)
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