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Abstract

Estimating patient’s clinical state from multiple concurrent physiological streams
plays an important role in determining if a therapeutic intervention is necessary and
for triaging patients in the hospital. In this paper we construct a non-parametric
learning algorithm to estimate the clinical state of a patient. The algorithm ad-
dresses several known challenges with clinical state estimation such as eliminating
the bias introduced by therapeutic intervention censoring, increasing the timeliness
of state estimation while ensuring a sufficient accuracy, and the ability to detect
anomalous clinical states. These benefits are obtained by combining the tools of
non-parametric Bayesian inference, permutation testing, and generalizations of the
empirical Bernstein inequality. The algorithm is validated using real-world data
from a cancer ward in a large academic hospital.

1 Introduction

Timely clinical state estimation can significantly improve the quality of care for patient’s by informing
clinicians of patient’s that have entered a high-risk clinical state. This is a challenging problem as the
patient’s clinical state is not directly observable and must be inferred from the patient’s vital signs
and the clinician’s domain-knowledge. Several methods exist for estimating the patient’s clinical
state including clinical guidelines and risk scores [21, 18]. The limitation with these population
based methods is that they are not personalized (e.g. patient models are not unique), can not
detect anomalous patient dynamics, and most importantly, are biased due to therapeutic intervention
censoring [16]. Therapeutic intervention censoring occurs when a patient’s physiological signals are
misclassified in the training data as a result of the effects caused by therapeutic interventions. To
improve the quality of patient care, new methods are needed to overcome these limitations.

In this paper we develop an algorithm for estimating a patient’s clinical state based on previously
recorded electronic health record (EHR) data. A schematic of the algorithm is provided in Fig.1 which
contains three primary components: a) learning the patient’s stochastic model, b) using statistical
techniques to evaluate the quality of the estimated stochastic model, and c) performing clinical state
estimation for new patients based on their estimated models. The works by Fox et al. [10, 9] and
Saria et al. [19] for temporal segmentation are the most related to our algorithm. However [10, 19]
do not apply formal statistical techniques to validate and iteratively update the hyper-parameters
of the non-parametric Bayesian inference, are not personalized, do not remove the bias caused
by therapeutic intervention censoring, and do not utilize clinician domain knowledge for clinical
state estimation. Additionally, applying fully Bayesian methods [9] for clinical state estimation are
computationally prohibitive as the computational complexity of constructing the stochastic model of
all patients grows polynomially with the number of samples and maximum number of possible states
of all patients. The computational complexity of our algorithm is only polynomial in the number
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of samples and states of a single patient. A detailed literature review is provided in the Supporting
Material.

The proposed algorithm (Fig.1) learns a combinatorial stochastic model for each patient based on
their measured vital signs. A non-parametric Bayesian learning algorithm based on the hierarchical
Dirichlet process hidden Markov model (HDP-HMM) [10] is used to learn the patient’s stochastic
model which is composed of a possibly infinite state-space HMM where each state is associated with
a unique dynamic model. The algorithm dynamically adjusts the number of detected dynamic models
and their temporal duration based on the patient’s vital signs–that is, the algorithm has a data-driven
bound on the model complexity (e.g. number of detected states). The patient’s stochastic model
provides a fine-grained personalized representation of each patient that is interpretable for clinicians,
and accounts for the patient’s specific dynamics which may result from therapeutic interventions and
medical complications (e.g. disease, paradoxical reaction to a drug, bone fracture). To ensure that
each detected dynamic model is associated with a unique clinical state, the hyper-parameters in the
HPD-HMM are updated iteratively using the results from an improved Bonferroni method [2]. This
mitigates the major weakness of non-parametric Bayesian inference methods of how to select the
hyper-parameters [14, 12]. Additionally, the algorithm provides statistical guarantees on the dynamic
model parameters using generalizations of the scalar Bernstein inequality [13] to vector-valued
and matrix-valued random variables. In clinical applications it is desirable to relate a collection of
dynamic models from several patient’s to a unique clinical state of interest for the clinician (e.g.
detecting which patients have entered a high-risk clinical state). The clinician defines a supervised
training set that is composed of all previously observed patient’s dynamic models and their associated
clinical state, which is then used to construct a similarity metric. This construction of the similarity
metric between dynamic models and clinical states ensures that the bias introduced from therapeutic
intervention censoring is removed, and also allows for the detection of anomalous dynamic models
that are not associated with a previously defined clinical state. When a new patient arrives the
algorithm will learn their stochastic model, and then use the similarity metric to map the detected
dynamic models to their associated clinical states of interest.

Though our algorithm is general and can be applied in several medical settings (e.g. mobile health,
wireless health) here we focus on detecting the clinical state of patients in hospital wards. Specifically
we apply our algorithm to patient’s in a cancer ward of a large academic hospital.
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Figure 1: Schematic of the proposed algorithm for learning the dynamic model and estimating the
clinical state of the patient. From D a valid segmentation D̄ is constructed and provided to the
clinician to construct the labeled dataset L. New patient vital signs are labeled using the dataset L.

2 Non-parametric Learning Algorithm for Patient’s Stochastic Model

In this section we provide a method to segment patient’s electronic health record data D =
{{yit}t∈T i}i∈I , with yit ∈ Rm the vital signs of patient i ∈ I at time t. To segment the tem-
poral data we assume that the vital signs of each patient originate from a switching multivariate
Gaussian (SMG) process. A Bayesian non-parametric learning algorithm is utilized to select the
switching times between the unique dynamic models–that is, we consider the observation dynamics
and model switching dynamics simultaneously. The final result of the segmentation is the dataset:

D̄ = {{yit}t∈T i
k
, k ∈ {1, . . . ,Ki} = Ki}i∈I (1)
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with T i
k the time samples for segment k and Ki the set of segments for patient i. Statistical methods

are used to ensure that each dynamic model is associated with a unique clinical state, refer to Sec.3
for details.

We assume that the switching process between models satisfies a HMM where each state of the HMM
is associated with a unique dynamic model given by:

yt = εt(zt) εt(zt) ∼ N (µ(zt),Σ(zt)) (2)
where zt ∈ Ki is the state of the patient, and εt(zt) is a Gaussian white noise term with covariance
matrix Σ(zt). For notational convenience we will suppress the indices i and only include explicitly
when required. For segmentation each of the patients is treated independently. Each state zt is assumed
to evolve according to a HMM with zt associated with a specific segment k ∈ K. Notice that we
must estimate the total number of states |K|, and the associated model parameters {µ(k),Σ(k)}k∈K
using only the data {yt}t∈T .

To learn the cardinality of the HMM we use the tools of non-parametric Bayesian inference by placing
a prior on the HMM parameters to allow a data-driven estimation of cardinality of the state-space.
Recall that non-parametric here indicates that for larger sample size T , the number of possible states
(i.e. dynamic models) can also increase. To model the infinite-HMM we use the hierarchical Dirichlet
process (HDP) [3, 22]. The HDP can be interpreted as a HMM with a countably infinite state-space.
That is, the HDP is a non-parametric prior for the infinite-HMM. The main idea of the HDP is to
link a countably infinite set of Dirichlet processes by sharing atoms among the DPs with each DP
associated with a specific state. The stick-breaking construction of the HDP is given by [8, 22]:

m ∼ H, φ0 =

∞∑
m=1

βmδm, βm = vm

m−1∏
l=1

(1− vl), vm ∼ Beta(1, γ),

φk =

∞∑
m=1

πkmδm, πk ∼ DP(α,β). (3)

Eq.(3) represents an infinite state HMM with πkm the transition probability of transitioning from
state k ∈ K to state m ∈ K. πk represents the transition probabilities out of state k of the HMM with
β the shared prior parameter of the transition distribution, H is a prior on the transition probability
distribution, and α the concentration of the transition probability distribution of the HMM.

The patient’s stochastic model is constructed by combining the SMG (2) with the HDP (or infinite
HMM) and is given by:

vk ∼ Beta(1, γ), βk = vk

k−1∏
l=1

(1− vl), πk ∼ DP
(
α+ κ,

αβ + κδk
α+ κ

)
k = 1, 2, . . .

zt ∼ π(·|zt−1) = πzt−1 , yt = ε(zt) t = 1, 2, . . . , T. (4)
The parameter γ controls how concentrated the state transition function is from state k to state k′.
This can be seen by setting κ = 0 and α = 0 such that E[πk] = β. If γ = 1 then the parameter
βk in β decays at approximately a geometric rate for increasing k. As γ increases, the decay of the
elements in β decrease. For α > 0 and κ > 0 then E[πk] = (αβ+κδk)/(α+κ), as such κ controls
the bias of πk towards self-transitions–that is, π(k|k) is given a large weight. The parameter α+ κ
controls the variability of πk and the base state transition distribution (αβ + κδk)/(α+ κ).

Given the patient’s stochastic model (4), non-parametric Bayesian inference are utilized to estimate
the model parameters from the patient’s vital signs {yt}t∈T . To utilize Bayesian inference we define
a prior and compute the associated posterior since a σ-finite density measure is present. The prior
distributions on β and π are given by:

β ∼ Dir(γ/L, . . . , γ/L), πk ∼ Dir(αβ1, . . . , αβk + κ, . . . , βL) k ∈ {1, . . . , L}. (5)
Eq.(5) is the weak limit approximation with truncation level L where L is the largest number of
expected states in the estimated HMM from {yt}t∈T [25]. Note that as L→∞ then (5) approach
the HDP. If clinician domain knowledge is not available on the initial hyper-parameters γ, α, and κ,
then it is common to place Beta or Gamma priors on these distributions [25]. For the multivariate
Gaussian we utilize the Normal-Inverse-Wishart prior distribution [11]:

p(µ,Σ|µ0, λ, S0, v) ∝ |Σ|
v+m+1

2 exp
(
− 1

2
tr(vS0Σ−1 − λ

2
(µ− µ0)′Σ−1(µ− µ0))

)
(6)
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where v and S0 are the degrees of freedom and the scale matrix for the inverse-Wishart distribution
on Σ, µ0 is the prior mean, and λ is the number of prior measurements on the Σ scale. Given the
prior distribution with associated posterior distributions a MCMC or variational sampler (i.e. Gibbs
sampler [10], Beam sampler [25], variational Bayes [6, 7]) can be utilized to estimate the parameters
of the patient’s stochastic model (4) given the data {yt}t∈T .

3 Statistical Methods to Evaluate Stochastic Model Quality

Given the segmented dataset D̄ (1) generated from all the patient’s estimated stochastic models (4),
this section presents methods to evaluate the quality of D̄. This includes testing if the vital signs
{yit}t∈T i

k
for each patient and unique dynamic model are consistent with a multivariate Gaussian

distribution, contain sufficient samples to guarantee the accuracy of the dynamic model parameters,
and that the detected dynamic models for each patient are unique. If the estimated stochastic models
are of low quality then the hyper-parameters of the non-parametric Bayesian inference algorithm
can be iteratively updated to ensure that all the patient’s stochastic models accurately represent their
dynamics. This is a vital step in medical applications since the results of the non-parametric Bayesian
inference algorithm are sensitive to the selected hyper-parameters [14, 12]. For example Fig.2(a)
illustrates a poor quality segmentation that results from poorly selected hyper-parameters.

3.1 Hypothesis Tests for Model Consistency with Segments

To ensure model consistency we must test if each segment in D̄ is consistent with a multivariate
Gaussian process (i.e. samples are independent and normally distributed). To test if the segment
{yt}t∈Tk

∈ D̄ contains independent samples we evaluate the autocorrelation function (ACF) [5]
for each segment. For {yt}t∈Tk

the ACF must exponentially decay to zero which indicates that
the segment contains independent samples. Note that it is possible for a spurious autocorrelation
structure to be present in the segment if the segment is composed of a mixture of Gaussian processes.
If this is suspected then the hyper-parameters of the non-parametric Bayesian inference algorithm are
updated to increase the number of segments (for example by increasing L or decreasing κ). Since
there is no universally most powerful test for multivariate normality, we use the improved Bonferroni
method [23] which contains four affine invariant hypothesis test statistics elevating the need to select
the most sensitive single test while retaining the benefits of the these four multivariate normality tests.

3.2 Data-Driven Confidence Bounds for Dynamic Model Estimation

An important consideration when evaluating the quality of the segmentation D̄ is that each segment
contains sufficient samples to confidently estimate the mean and covariance {µ,Σ} of the SMG
model. This is particularly important in medical applications as it provides an estimate of the
maximum number of samples needed to confidently estimate {µ,Σ} which are used to estimate
the clinical state of the patient. Note that the estimated posterior distribution for {µ,Σ} can not be
used to bound the number of samples required. To estimate {µ,Σ} given {yt}t∈Tk

, the maximum
likelihood estimators given by:

µ̂(k) =
1

nk

nk∑
t=1

yt, Σ̂(k) =
1

nk

nk∑
t=1

(yt − µ̂(k))(yt − µ̂(k))′ (7)

are used with nk = |Tk| is the total number of samples in segment k ∈ K. If each vital sign is
independent (i.e. spherical multivariate Gaussian distribution) then an empirical Bernstein bound [13]
can be constructed to estimate the error between the sample mean µ̂ and the actual mean µ. From the
empirical Bernstein bound, the minimum number of samples necessary to ensure that P (µ̂(k, j)−
µ(k, j) ≥ ε) ≤ α for all segments k ∈ K and streams j ∈ {1, . . . ,m} for some confidence level
α > 0 and tolerance ε ≥ 0 is given by:

n(ε, α) ≥
(6σ2

max + 2∆maxε

3ε2

)
ln(

1

α
) (8)

with σ2
max the maximum possible variance and ∆max the maximum possible difference between the

maximum and minimum values of all values in the vital sign data.
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To construct a relaxed bound on the sample mean µ̂ ∈ Rm, and a bound on the sample covariance
Σ̂ ∈ Rm×m computed using (7), we generalize the empirical Bernstein bound to the multidimensional
case. The goal is to construct a bound of the form P (||Z|| ≥ ε) ≤ α where || · || denotes the spectral
norm if Z is a matrix, or the 2-norm in the case Z is a vector. To construct a probabilistic bound on
the accuracy of the estimated mean we utilize the vector Bernstein inequality given by Theorem 1.

Theorem 1 Let {Y1, . . . , Yn} be a set of independent random vectors with Yt ∈ Rm for t ∈
{1, . . . , n}. Assume that each vector has uniform bounded deviation such that ||Yt|| ≤ L ∀t ∈
{1, . . . , n}. Writing Z =

∑n
t=1 Yt, then

P (||Z|| ≥ ε) ≤ (2m) exp
( −3ε2

6V (Z) + 2Lε

)
, V (Z) =

n∑
t=1

E[||Yt||22]. (9)

The proof of Theorem 1 is provided in the Supporting Material. To construct the bound on the number
of samples necessary to estimate the mean we define Z = µ̂− µ with Yt = (yt − µ)/n. Using the
triangle inequality, Jensen’s inequality, and assuming ||yt||2 ≤ B1 for some constant B1, we have
that:

L ≤ 2B1

n
, V (Z) ≤ 1

n

(
B2

1 − ||µ||22
)
. (10)

Plugging (10) into (9) results in the minimum number of samples necessary to guarantee that
P (||µ̂− µ|| ≥ ε) ≤ α with the number of samples n(ε, α) given by:

n(ε, α) ≥
(6(B2

1 − ||µ||22) + 4B1ε

3ε2

)
ln(

2m

α
). (11)

To bound the number of samples necessary to estimate Σ we utilize the corollary of Theorem 1
for real-symmetric matrices with Z = Σ̂ − Σ. The bound on the number of samples necessary to
guarantee P (||Σ̂− Σ|| ≥ ε) ≤ α, assuming ||Σ|| ≤ ||yt − µ̂|| ≤ B2, is given by:

n(ε, α) ≥
(6B2

2 + 4B2ε

3ε2

)
ln(

2m

α
). (12)

For a given α and ε, and an estimate of the maximum spectral norm of Σ and norm of µ, equations
(11) and (12) can be used to estimate the minimum number of samples necessary to sufficiently
estimate {µ,Σ}. To accurately compute the clinical state from the unique dynamic model, each
segment must satisfy (11) and (12), otherwise any clinical state estimation may give unreliable results.

3.3 Statistical Tests for Statistically Identical Dynamic Models

In this section we construct a novel hypothesis test for mean and covariance equality with a given
confidence, and design parameters that control the importance of the mean equality compared to
the covariance equality. The hypothesis test both evaluates the quality of the estimated stochastic
model, but can also be used to merge statistically identical segments to increase the accuracy of
the dynamic model parameter estimates. Given two segments of vital signs, each associated with a
supposedly unique dynamic model, we define the null hypothesis H0 as the equality of the mean and
covariance matrices from the two dynamic models, and the alternate hypothesis H1 that either the
mean or covariance are not equal. Formally:

H0 : Σ(k) = Σ(k′) and µ(k) = µ(k′), H1 : Σ(k) 6= Σ(k′) or µ(k) 6= µ(k′). (13)

Several methods exist for testing for covariance equality [20] and for mean equality [24], however
we wish to test for both covariance and location equality. To test for the global hypothesis H0 in (13),
note that H0 and H1 can equivalently be stated as a combination of the sub-hypothesis as follows:

H0 : H1
0 ∩H2

0 and H1 : H1
1 ∪H2

1 (14)

with H1
0 : µ(k) = µ(k′), H1

1 : µ(k) 6= µ(k′), H2
0 : Σ(k) = Σ(k′), and H2

1 : Σ(k) 6= Σ(k′). To
construct the hypothesis test for H0 the non-parametric the permutation testing method [17] is used
which allows us to combine the sub-hypothesis tests for covariance and mean equality to construct a
hypothesis test for H0.

To test for the null hypothesis H1
0 we utilize Hotelling’s T 2 test as it is asymptotically the most

powerful invariant test when the data associated with k and k′ are normally distributed [4]. Given that
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yt are generated from a multivariate normal distribution, the test statistic τ1 follows a T 2 distribution
such that τ1 ∼ T 2(m,n(k)+n(k′)−2) where n(k) and n(k′) are the number of samples in segments
k and k′ respectively. To test for the null hypothesis H2

0 we utilize the modified likelihood ratio
statistic provided by Bartlett [1], written Λ∗, which is uniformly the most power unbiased test for
covariance equality [15]. The test statistic for covariance equality is given by:

τ2 = −2ρ log(Λ∗), ρ = 1− 2m2 + 3m− 1

6(m+ 1)n
(n/n(k) + n/n(k′)− 1), n = n(k) + n(k′).

From (Theorem 8.2.7 in [15]) the asymptotic cumulative distribution function of τ2 can be approxi-
mated by a linear combination of χ2 distributions which has a convergence rate of O((ρn)−3).

To construct the permutation test for H0 Tippett’s combining function [17] is used with H0:
τ = min(λ1/k1, λ2/k2) where λ1 and λ2 are the p-values of the sub-hypothesis tests H1

0 and
H2

0 respectively, and k1 and k2 are design parameters. If k1 > k2 then the mean equality is weighted
more then the covariance equality. If k1 = k2 then both mean equality and covariance equality
are weighted equally. For the test statistics τ1 and τ2 the p-values are given by λ1 = P (τ1 ≥ τ10 )
and λ2 = P (τ2 ≥ τ20 ) where τ10 and τ20 are realizations of the test statistics. To utilize τ as a test
statistic we require the cumulative distribution function of τ . Note that if H1

0 is true (i.e. mean
equality) then the distributions of τ1 and τ2 are independent since τ1 follows a T 2 distribution which
results in λ1 ∼ U(0, 1) and λ2 ∼ U(0, 1) [17]. The cumulative distribution function of τ is given by
P (τ ≤ x) = (k1+k2)x−k1k2x2 for x ∈ [0,min(1/k1, 1/k2)]. Given P (τ ≤ x), for a significance
level α, we reject the null hypothesis H0 if τ ≤ δ where δ is the solution to P (τ ≤ δ) = α. The
parameter δ is given by: δ =

(
(k1 + k2)−

√
(k1 + k2)2 − 4αk1k2

)
/(2k1k2).

For a given significance level α, and design parameters k1 and k2, we can test H0 for the samples
{yt}t∈Tk

and {yt}t∈Tk′ by evaluating τ0 = min(λ10/k
1, λ20/k

2) with λ10 and λ20 the realizations of
the p-values for τ1 and τ2. By repeatedly applying this hypothesis test to segments {yt}t∈Tk

for
k ∈ K we can detect any segments with equal mean and covariance with a significance level α.
Similar segments can be merged to increase the accuracy of the estimated dynamic model parameters,
or be used to evaluate the quality of the patient’s stochastic model.

4 Estimating Patient’s Clinical State using Clinician Domain-Knowledge

In this section the Algorithm 1 (Fig.1) is presented which constructs stochastic models of patients
based on their historical EHR data and clinician domain-knowledge, and is used to classify the
clinical state of new patients.

Algorithm 1 is composed of five main steps. Step#1 to Step#2 are used to construct the stochastic
models of the patients based on the EHR data D, and to construct the segmented dataset D̄ (1). The
stochastic models are constructed using the non-parametric Bayesian inference algorithm from Sec.2.
Step#2 measures the quality of the stochastic models, and iteratively updates the hyper-parameters
of the Bayesian inference algorithm to guarantee the quality of the detected dynamic models as
discussed in Sec.3. In Step#3 each segment (e.g. dynamic model) in D̄ is labelled by the clinician,
based on the clinical states of interest, to construct the dataset L. Step#4 and Step#5 involves the
online portion of the algorithm which constructs stochastic models for new patients and estimates
their clinical state based on each patient’s estimated stochastic model. Step#4 constructs the
stochastic model for the new patient, then in Step#5 each unique dynamic model from Step#4 is
associated with a clinical state of interest using the labelled dataset L from Step#3. Note that L
contains several segments (e.g. dynamic models) that are associated with one clinical state. To
estimate the clinical state of the new patient a similarity metric based on the Bhattacharyya distance,
written DB(·), is used. If the minimum Bhattacharyya distance between the new patients segment
k and next closest segment k′ ∈ L is greater then δth the segment is labelled as anomalous, otherwise
the segment is given the label of segment k′ ∈ L. Information on the computational complexity
and implementation details of Algorithm 1 are provided in the Supporting Material.

5 Real-World Clinical State Estimation in Cancer Ward

In this section Algorithm 1 is applied to a real-world EHR dataset composed of a cohort of patients
admitted to a cancer ward. A detailed description of the dataset is provided in the Supporting Material.
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Algorithm 1 Patient Clinical State Estimation
Step#1: Construct stochastic models for each patient using D and the non-parametric Bayesian

algorithm presented in Sec.2. Using the stochastic models construct the dataset D̄ (1).
Step#2: To evaluate the quality of each stochastic model, each segment in D̄ from Step#1 is tested

for: i) model consistency, ii) sufficient samples to guarantee accuracy of dynamic model
parameter estimates, and iii) statistical uniqueness of segments using the methods in Sec.3.
If the quality is not sufficient then return to Step#1 with updated hyper-parameters for the
non-parametric Bayesian inference algorithm.

Step#3: Given D̄ and the clinical states of interest, the clinician constructs the labelled dataset
L = {({yi

t}t∈T i
k
, lik), k ∈ {1, . . . ,Ki} = Ki}.

Step#4: For a new patient i = 0 with vital signs {y0
t}t∈T 0 , construct the stochastic model of the

patient using the Bayesian non-parametric learning algorithm. Then, based on the stochastic
model, construct the segmented vital sign data {{y0

t}t∈T 0
k
, k ∈ {1, . . . ,K0} = K0}.

Step#5: To estimate the label l(k), written l̂(k), of each segment k ∈ K0 from Step#4, compute the
solution to the following optimization problem for each k:

if min
l∈L
{DB(k, k′)} ≥ δth then l̂(k) = ∅, else l̂(k) ∈ argmin

l∈L

{ mink′∈Ll
{DB(k, k′)}

mink′∈L−l
{DB(k, k′)}

}
with ∅ the anomalous state, Ll ∈ L the set of segments that are labeled with l, L−l ∈ L the
set of all segments that are not labeled as l, and δth is a threshold. Return to Step#4.

The first step of Algorithm 1 is to segment the EHR data based on the estimated stochastic models
of the patients. Fig.2(a) illustrates the dynamic models of a specific patient’s estimated stochastic
model for κ = 0.1 and S0 = 0.1Im (Im is the identity matrix), and for κ = 1 and S0 = Im. As
seen, for κ = 0.1 and S0 = 0.1Im several segments have insufficient samples for estimating the
model parameters, and are not statistically unique. However the segments resulting from κ = 1 and
S0 = Im provide a stochastic model of sufficient quality where each segment contains sufficient
samples to accurately estimate the model parameters, the segments are statistically unique, and
satisfy the multivariate normality assumption. Therefore we set κ = 1 and S0 = Im to construct the
segmented dataset D̄ from D. The dataset L is constructed by providing the clinician with D̄ who
then labels each segment as either in the ICU admission clinical state, or non-ICU clinical state.
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Of critical importance in medical applications is the accuracy and timeliness of the detection of
the clinical state of the patient. Fig.2(b) provides the trade-off between the TPR and PPV between
Algorithm 1, Rothman index [18] which is a state-of-the-art method utilized in many hospitals today,
and MEWS [21] which are dependent on the threshold selected for each. As seen Algorithm 1
has a superior performance compared to these two popular risk scoring methods. For example if
we require the TPR = 71.9%, then the associated PPV values for the Rothman index and MEWS
are 26.1% and 18.0% respectively. There is a 11.3% increase in the PPV value for the Rothman
index, and 19.4% increase in the PPV for MEWS compared to the PPV of Algorithm 1. We also
compare with methods commonly used in medical with the results presented in Table 1. As seen,
Algorithm 1 outperforms all these methods for estimating the patient’s clinical state. There are several
possible reasons that Algorithm 1 outperforms these methods including accounting for therapeutic
interventions and utilizing fine-grained personalization. Note that the results in Table 1 are computed
12 hours prior to ICU admission or hospital discharge. Additionally, the average detection time of
ICU admission or discharge using Algorithm 1 is approximately 24 hours prior to the clinician’s
decision. This timeliness ensures that the patient’s clinical state estimate provides clinicians with
sufficient warning to apply a therapeutic intervention to stabilize the patient.

Table 1: Accuracy of Methods for Predicting ICU Admission
Algorithm TPR(%) PPV(%)

Algorithm 1 71.9% 37.4%
Rothman Index 53.9% 34.5%

MEWS 28.1% 26.3%
Logistic Regression 55.7% 30.7%
Lasso Regularization 55.8% 30.3%

Random Forest 44.5% 31.1%
SVMs 32.2% 29.9%

A key feature of Algorithm 1 is that it learns the number of unique dynamic models for each patient,
and as more data is collected the number of unique dynamic models discovered may increase. Fig.2(b)
illustrates this process for a patient with associated physiological signals given in Fig.2(d). The
horizontal dashed line indicates the intervals and associated discovered dynamic models. Note that
typical hospitalization time for cancer ward patients in the dataset range from 4 hours to over 85
days. As seen, as more samples are obtained for the patient the number of dynamic models that
describe the patient’s dynamics increase. Additionally, there is good agreement between where the
patient’s dynamics change for the different time intervals. For example the change point at 40 hours
after hospitalization occurs as a result of an increase in the systolic and diastolic blood pressure, and
a decrease in the heart-rate. At 1700 hours the change in state results from a dramatic increase in
both the systolic and diastolic blood pressure, and a decrease in the heart-rate. From Fig.2(d) these
physiological signals were not observed previously, therefore Algorithm 1 correctly detects that this
is a new unique state for the patient. Though Algorithm 1 can identify changes in patient state, the
domain-knowledge from the clinician is required to define the clinical state of the patient. Only
dynamic models 8 and 9 are associated with the ICU admission state.

Further results are provided in the Supporting Material that illustrate how current methods for
constructing risk scores suffer from the bias introduced from therapeutic intervention censoring, and
how a binary threshold δb can be introduced into Algorithm 1 for controlling the TPR and PPV for
clinical state estimation.

6 Conclusion

In this paper a novel non-parametric learning algorithm for confidently learning stochastic models of
patient’s and classifying their associated clinical state was presented. Compared to state-of-the-art
clinical state estimation methods our algorithm eliminates the bias caused by therapeutic intervention
censoring, is personalized to the patient’s specific dynamics resulting from medical complication
(e.g. disease, drug interactions, physical contusions or fractures), and can detect anomalous clinical
states. The algorithm was applied to real-world patient data from a cancer ward in a large academic
hospital, and found to have a significant improvement in classifying patient’s clinical state in both
accuracy and timeliness compared with current state-of-the-art methods such as the Rothman index.
The algorithm provides valuable information to allow clinicians to make informed decisions about
selecting if a therapeutic intervention is necessary to improve the clinical state of the patients.
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