Estimation of Individual Treatment Effect in Latent Confounder Models via Adversarial Learning

CHANGHEE LEE¹, NICHOLAS MASTRONARDE², AND MIHAELA VAN DER SCHAAR^{3,1} ¹UNIVERSITY OF CALIFORNIA LOS ANGELES (UCLA), ² UNIVERSITY AT BUFFALO, ³ UNIVERSITY OF OXFORD

1. INTRODUCTION

Estimating Individual Treatment Effect (ITE)

- A key challenge with observational data
 → Will treatment A help patient B recover?
- Most previous work relies on the *unconfoundedness assumption*, which posits that all the confounders are measurable; see Figure 1(a)

Latent Confounder Model

 In practice, there are often unmeasurable (latent) confounders; see Figure 1(b)
 → Socio-economic status affects medications available to a patient and her health

3. CEGAN ARCHITECTURE & COMPONENTS

• If not appropriately accounted for, the estimated ITE will be subject to *confounding bias*

2. PROBLEM FORMULATION

Observational Dataset: $\mathcal{D} = \{(\mathbf{x}_i, t_i, \mathbf{y}_i)\}_{i=1}^N$

- **x**_{*i*}: feature vector
- t_i : treatment (we assume $t \in \{0, 1\}$)

Reconstruction Network (RN)

Prediction Network (PN)

Figure 2: CEGAN architecture

Prediction Network:

- Generator (G):
 - Comprises encoder (f_E), inference subnet (f_I), and prediction decoder (f_P) which output $\hat{\mathbf{z}} \sim q_E(\mathbf{z}|\mathbf{x}, t, \mathbf{y}), \ \mathbf{z} \sim q_I(\mathbf{z}|\mathbf{x}, t), \ \hat{\mathbf{y}} \sim q_P(\mathbf{y}|\mathbf{z}, \mathbf{x}, t)$ (via universal approximator technique)
 - Constructs samples of tuples $(\mathbf{z}, \mathbf{x}, t, \mathbf{y})$ drawn from two joint distributions, i.e., $q_E(\mathbf{z}, \mathbf{x}, t, \mathbf{y}) = p_d(\mathbf{x}, t, \mathbf{y})q_E(\mathbf{z}|\mathbf{x}, t, \mathbf{y})$ and $q_P(\mathbf{z}, \mathbf{x}, t, \mathbf{y}) = p_d(\mathbf{x}, t)q_I(\mathbf{z}|\mathbf{x}, t)q_P(\mathbf{y}|\mathbf{z}, \mathbf{x}, t)$
 - Tries to fool the discriminator into believing the tuples are drawn from the same distribution
- Discriminator (D):
- Distinguishes between tuples $(\mathbf{z}, \mathbf{x}, t, \mathbf{y})$ that are drawn from $q_E(\mathbf{z}, \mathbf{x}, t, \mathbf{y})$ and $q_P(\mathbf{z}, \mathbf{x}, t, \mathbf{y})$ Reconstruction Network:
- Comprises the same encoder (f_E) and reconstruction decoder (f_R)
- Nudge f_E to learn a meaningful mapping by reconstructing its original input

CEGAN *matches the two distribution* by playing an *adversarial game* between *G* and *D*.

4. EXPERIMENTS: SEMI-SYNTHETIC

- **y**_{*i*}: outcome vector
- \mathbf{z}_i : latent confounder that is not in \mathcal{D}

Objective:

• Estimate ITE without confounding bias:

 $ITE(\mathbf{x}) = \mathbb{E}[\mathbf{y}|\mathbf{x}, do(t=1)] - \mathbb{E}[\mathbf{y}|\mathbf{x}, do(t=0)]$

How to Account for Latent Confounding?

- We assume the latent confounder model in Figure 1(b); x is treated as a *proxy variable* that provides a noisy view of z
- We can identify $p(\mathbf{y}|\mathbf{x}, do(t=1))$ (or, similarly, $p(\mathbf{y}|\mathbf{x}, do(t=0))$) by
- $p(\mathbf{y}|\mathbf{x}, do(t=1)) = \int_{\mathbf{z}} p(\mathbf{y}|\mathbf{z}, \mathbf{x}, do(t=1)) p(\mathbf{z}|\mathbf{x}, do(t=1)) d\mathbf{z}$ $= \int_{\mathbf{z}} p(\mathbf{y}|\mathbf{z}, \mathbf{x}, t=1) p(\mathbf{z}|\mathbf{x}) d\mathbf{z},$
- We adopt an **adversarial learning framework** to learn $p(\mathbf{y}|\mathbf{z}, \mathbf{x}, t)$ and $p(\mathbf{z}|\mathbf{x})$

TWINS Dataset:

- Based on records of twin births in the USA from 1989-1991
- Artificially create a binary treatment: t = 1 (t = 0) denotes being born the heavier (lighter)
- Outcome corresponds to the mortality of each of the twins in their first year

Data Generation Process:

- Select GESTAT (i.e. the gestational age in weeks) as the latent confounder *z*.
- Assign binary treatment $t_i \sim \text{Bern}(\sigma(wz_i))$, where $w \sim \mathcal{N}(10, 0.1^2)$.
- Choose outcome of the heavier twin, $y_i(1)$, if $t_i = 1$ and that of the lighter twin, $y_i(0)$, if $t_i = 0$.

Method	no latent confounding		latent confounding	
	In-sample	Out-sample	In-sample	Out-sample
LR-1	0.365 ± 0.00	0.367 ± 0.00	0.413 ± 0.01	$0.423{\pm}0.02$
LR-2	0.404 ± 0.02	$0.411 {\pm} 0.02$	$0.442{\pm}0.02$	$0.454{\pm}0.02$
kNN	0.486 ± 0.02	$0.506 {\pm} 0.02$	$0.492{\pm}0.02$	$0.515 {\pm} 0.02$
CForest	0.356±0.01	$0.372 {\pm} 0.01$	$0.417 {\pm} 0.02$	$0.429{\pm}0.02$
CMGP	0.367 ± 0.01	$0.365 {\pm} 0.01$	$0.430 {\pm} 0.05$	$0.438 {\pm} 0.05$
CFR _{WASS}	0.371 ± 0.03	$0.371 {\pm} 0.03$	$0.427 {\pm} 0.05$	$0.438 {\pm} 0.05$
CEVAE	0.363 ± 0.00	$0.364{\pm}0.00$	$0.423 {\pm} 0.00$	$0.428 {\pm} 0.00$
CEGAN	0.363 ± 0.00	0.362±0.00	0.369±0.00	0.369±0.00

Table 1: Comparison of $\sqrt{\epsilon_{\text{PEHE}}}$ (mean \pm std)

"no latent confounding" includes GESTAT in the observational data \mathcal{D} - Causal model \rightarrow Figure 1(a)

• "latent confounding" excludes GESTAT from the observational data \mathcal{D}

- Causal model \rightarrow Figure 1(b)

6. PERFORMANCE METRIC

Precision in Estimation of Heterogeneous Effect (PEHE)

• A commonly used metric to quantify the *goodness* of ITE estimation

 $\epsilon_{\text{PEHE}} = \frac{1}{N} \sum_{i=1}^{N} \left(\left(y_i(1) - y_i(0) \right) - \left(\hat{y}_i(1) - \hat{y}_i(0) \right) \right)^2$

7. BENCHMARKS

- CFR_{WASS}: counterfactual reg. w/ Wasserstein
- CMGP: causal multi-task Gaussian process
- CEVAE: causal effect VAE (CEVAE)

5. EXPERIMENTS: SYNTHETIC

Toy Example:

• To assess the robustness of CEGAN to latent confouderers (due to noise in the proxy variables)

Data Generation Process:

• Assume latent confounding model in Figure 1(b): $z_{ij} \sim \mathcal{N}(3(\mu - 1), 1^2), \quad j = 1, \dots, d_z,$ $\mu \sim \text{Bern}(0.5), \quad \mathbf{n} \sim \mathcal{N}(0, \zeta^2 \mathbf{I})$ $\mathbf{x}_i | \mathbf{z}_i = \mathbf{z}_i + \mathbf{n},$ $t_i | \mathbf{z}_i \sim \text{Bern}(\sigma(0.25 \cdot z_{id_z})),$ $y_i | \mathbf{z}_i, t_i = \sigma(\mathbf{1}^T \mathbf{z}_i + (2t_i - 1))$

