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1. INTRODUCTION 3. CEGAN ARCHITECTURE & COMPONENTS
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e In practice, there are often unmeasurable ~ ks

(latent) confounders; see Figure 1(b) '

. . . Reconstruction Network (RN) Prediction Network (PN)
— Socio-economic status affects medica-
tions available to a patient and her health Figure 2: CEGAN architecture

e [f not appropriately accounted for, the es- Prediction Network:
timated I'TE will be subject to confounding
bias

e Generator (G):

— Comprises encoder (fr), inference subnet (f7), and prediction decoder (fp) which output
confounder 7 ~ qp(z|x,t,y), z~ qi(z|x,t), ¥ ~ qp(y|z,x,t) (via universal approximator technique)

observed
feature treatment

opserved emtment — Constructs samples of tuples (z, x,¢,y) drawn from two joint distributions, i.e.,
45(2,X,t,y) = pa(X,t,y)qe(z/x,t,y) and qp(z,X,t,y) = pa(x,t)qr(2z/x, t)gp(y|2, X, 1)
— Tries to fool the discriminator into believing the tuples are drawn from the same distribution

X >

outcome outcome

e Discriminator (D):
(a) No latent confounding (b) Latent confounding

— Distinguishes between tuples (z, x, ¢, y) that are drawn from qg(z,x,t,y) and qp(z,x,t,y)

Figure 1: Causal diagrams ]
Reconstruction Network:

e Comprises the same encoder (fg) and reconstruction decoder (fr)

2. PROBLEM FORMULATION

Observational Dataset: D = {(x;, t;, y@-)}f\il

x;: feature vector

e Nudge fr to learn a meaningful mapping by reconstructing its original input

CEGAN matches the two distribution by playing an adversarial game between GG and D.

t;: treatment (we assume t € {0, 1})

v.: outcome vector 4. EXPERIMENTS: SEMI-SYNTHETIC

z.: latent confounder that is not in D TWINS Dataset:

e Based on records of twin births in the USA from 1989-1991
Objective: o Artificially create a binary treatment: ¢ = 1 (¢ = 0) denotes being born the heavier (lighter)
e Estimate ITE without confounding bias: e Outcome corresponds to the mortality of each of the twins in their first year

ITE(x) =E|y|x, do(t = 1)] — E[y|x,do(t = 0)]| | Data Generation Process:
o Select GESTAT (i.e. the gestational age in weeks) as the latent confounder z.

How to Account for Latent Confounding? e Assign binary treatment ¢; ~ Bern(o(wz;)), where w ~ N (10, 0.1%).
e We assume the latent confounder model in e Choose outcome of the heavier twin, y;(1), if {; = 1 and that of the lighter twin, y;(0), if ¢; = 0.

Figure 1(b); x is treated as a proxy variable
that provides a noisy view of z

Table 1: Comparison of \/epenr (mean = std)

e We can identify p(y|x, do(t = 1)) (or, simi- Method Ino Latent confounding latent confounding ® "no latent conf qunding ©In-
n-sample | Out-sample | In-sample | Out-sample cludes GESTAT in the obser-
larly, p(y|x, do(t=0))) by LR-1 | 0.3654+0.00 | 0.367+0.00 | 0.413+0.01 | 0.42340.02 vational data D
p(y|x,do(t=1)) = /p(y|Z, x,do(t=1))p(z|x,do(t =1))dz LR-2 0.404+0.02 | 0.411£0.02 | 0.442+0.02 | 0.454+0.02 - Causal model — Figure 1(a)
z kNN 0.486+0.02 | 0.5064+0.02 | 0.4924+0.02 | 0.51540.02
_ / (y|z, x,t = 1)p(z|x)dz, CForest | 0.356+0.01 | 0.3724+0.01 | 0.417+0.02 | 0.429+0.02 | ® “latent confounding” excludes
z CMGP | 0.367+0.01 | 0.365+0.01 | 0.430+0.05 | 0.438+0.05 GESTAT from the observa-
o We adopt an adversarial learning frame- CFRWASS 0.37140.03 0.3714+0.03 0.4274+0.05 0.438=+0.05 ti()nal data ‘D
work to learn p(y|z, x, ) and p(z|x) CEVAE | 0.3634+0.00 | 0.364+0.00 | 0.423+0.00 | 0.428+0.00 - Causal model — Figure 1(b)
CEGAN | 0.3634+0.00 | 0.362+0.00 | 0.369+0.00 | 0.36940.00

6. PERFORMANCE METRIC

Precision in Estimation of Heterogeneous

5. EXPERIMENTS: SYNTHETIC

Effect (PEHE) Toy Example: (a) Error in ITE
. . e To assess the robustness of CEGAN to latent con-
e A commonly used metric to quantify the .. . 0.08] P CEVAE
L fouderers (due to noise in the proxy variables) —@- CEGAN
goodness of ITE estimation L= CEGAN(E
N Data Generation Process: cem LR.1 i
EPELE = NZ ((yz (1)—y; (O)) — ( - e Assume latent confounding model in Figure 1(b): E 0-06
=1 ZijNN(3(/L—1),12), jzl,...,dz, QOO
.04
i~ Bern(0.5), n~AN(0,T) |
7. BENCHMARKS %;|z; = z; + 0
. . 1|41, — 4y 9 0.02 | | | | |
o CFRwass: counterfactual reg. w/ Wasserstein tz"Zi - Bern (0(0.2 5. Zid. ))’ 0 1 > 3 4 5

o CMGP: causal multi-task Gaussian process
e CEVAE: causal effect VAE (CEVAE) yilzi, t; = o(11z; + (2t; — 1)) Figure 3: |/epere with respect to noise level ¢

noise std (()




