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1. INTRODUCTION
Estimating Individual Treatment Effect (ITE)
• A key challenge with observational data
→Will treatment A help patient B recover?

• Most previous work relies on the un-
confoundedness assumption, which posits
that all the confounders are measurable;
see Figure 1(a)

Latent Confounder Model
• In practice, there are often unmeasurable

(latent) confounders; see Figure 1(b)
→ Socio-economic status affects medica-
tions available to a patient and her health

• If not appropriately accounted for, the es-
timated ITE will be subject to confounding
bias
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Figure 1: Causal diagrams

2. PROBLEM FORMULATION

Observational Dataset: D = {(xi, ti,yi)}Ni=1

• xi: feature vector
• ti: treatment (we assume t ∈ {0, 1})
• yi: outcome vector
• zi: latent confounder that is not in D

Objective:
• Estimate ITE without confounding bias:

ITE(x) = E [y|x, do(t = 1)]− E [y|x, do(t = 0)]

How to Account for Latent Confounding?
• We assume the latent confounder model in

Figure 1(b); x is treated as a proxy variable
that provides a noisy view of z

• We can identify p(y|x, do(t= 1)) (or, simi-
larly, p(y|x, do(t=0))) by

p(y|x,do(t=1)) =

∫
z
p(y|z,x,do(t=1))p(z|x,do(t=1))dz

=

∫
z
p(y|z,x, t = 1)p(z|x)dz,

• We adopt an adversarial learning frame-
work to learn p(y|z,x, t) and p(z|x)

3. CEGAN ARCHITECTURE & COMPONENTS

: Observed variable

: Output variable

: Random noise

: Input to loss functions

: Backprop. for PN

: Backprop. for RN

: I/O of component
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Figure 2: CEGAN architecture

Prediction Network:
• Generator (G):

– Comprises encoder (fE), inference subnet (fI ), and prediction decoder (fP ) which output
ẑ ∼ qE(z|x, t,y), z ∼ qI(z|x, t), ŷ ∼ qP (y|z,x, t) (via universal approximator technique)

– Constructs samples of tuples (z,x, t,y) drawn from two joint distributions, i.e.,
qE(z,x, t,y) = pd(x, t,y)qE(z|x, t,y) and qP (z,x, t,y) = pd(x, t)qI(z|x, t)qP (y|z,x, t)

– Tries to fool the discriminator into believing the tuples are drawn from the same distribution

• Discriminator (D):
– Distinguishes between tuples (z,x, t,y) that are drawn from qE(z,x, t,y) and qP (z,x, t,y)

Reconstruction Network:
• Comprises the same encoder (fE) and reconstruction decoder (fR)
• Nudge fE to learn a meaningful mapping by reconstructing its original input

CEGAN matches the two distribution by playing an adversarial game between G and D.

4. EXPERIMENTS: SEMI-SYNTHETIC
TWINS Dataset:
• Based on records of twin births in the USA from 1989-1991
• Artificially create a binary treatment: t = 1 (t = 0) denotes being born the heavier (lighter)
• Outcome corresponds to the mortality of each of the twins in their first year

Data Generation Process:
• Select GESTAT (i.e. the gestational age in weeks) as the latent confounder z.
• Assign binary treatment ti ∼ Bern(σ(wzi)), where w ∼ N (10, 0.12).
• Choose outcome of the heavier twin, yi(1), if ti = 1 and that of the lighter twin, yi(0), if ti = 0.

Table 1: Comparison of
√
εPEHE (mean ± std)

Method no latent confounding latent confounding
In-sample Out-sample In-sample Out-sample

LR-1 0.365±0.00 0.367±0.00 0.413±0.01 0.423±0.02
LR-2 0.404±0.02 0.411±0.02 0.442±0.02 0.454±0.02
kNN 0.486±0.02 0.506±0.02 0.492±0.02 0.515±0.02

CForest 0.356±0.01 0.372±0.01 0.417±0.02 0.429±0.02
CMGP 0.367±0.01 0.365±0.01 0.430±0.05 0.438±0.05

CFRWASS 0.371±0.03 0.371±0.03 0.427±0.05 0.438±0.05
CEVAE 0.363±0.00 0.364±0.00 0.423±0.00 0.428±0.00
CEGAN 0.363±0.00 0.362±0.00 0.369±0.00 0.369±0.00

• “no latent confounding” in-
cludes GESTAT in the obser-
vational data D
- Causal model→ Figure 1(a)

• “latent confounding” excludes
GESTAT from the observa-
tional data D
- Causal model→ Figure 1(b)

5. EXPERIMENTS: SYNTHETIC
Toy Example:
• To assess the robustness of CEGAN to latent con-

fouderers (due to noise in the proxy variables)

Data Generation Process:
• Assume latent confounding model in Figure 1(b):

zij ∼ N (3(µ− 1), 12), j = 1, . . . , dz,

µ ∼ Bern(0.5), n ∼ N (0, ζ2I)

xi|zi = zi + n,

ti|zi ∼ Bern(σ(0.25 · zidz
)),

yi|zi, ti = σ(1T zi + (2ti − 1))
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Figure 3:
√
εPEHE with respect to noise level ζ

6. PERFORMANCE METRIC
Precision in Estimation of Heterogeneous
Effect (PEHE)
• A commonly used metric to quantify the

goodness of ITE estimation

εPEHE =
1

N

N∑
i=1

((
yi(1)−yi(0)

)
−
(
ŷi(1)−ŷi(0)

))2

7. BENCHMARKS
• CFRWASS: counterfactual reg. w/ Wasserstein
• CMGP: causal multi-task Gaussian process
• CEVAE: causal effect VAE (CEVAE)


