# **Estimation of Individual Treatment Effect in Latent Confounder Models via Adversarial Learning**

CHANGHEE LEE<sup>1</sup>, NICHOLAS MASTRONARDE<sup>2</sup>, AND MIHAELA VAN DER SCHAAR<sup>3,1</sup> <sup>1</sup>UNIVERSITY OF CALIFORNIA LOS ANGELES (UCLA), <sup>2</sup> UNIVERSITY AT BUFFALO, <sup>3</sup> UNIVERSITY OF OXFORD





## **1. INTRODUCTION**

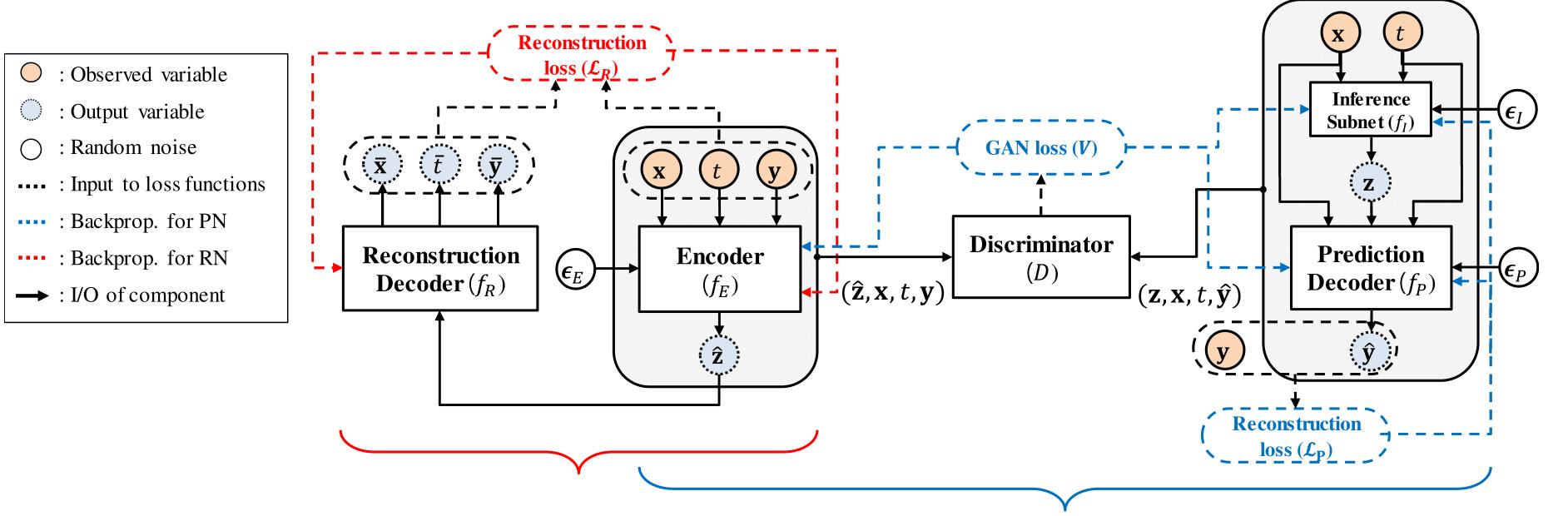
**Estimating Individual Treatment Effect (ITE)** 

- A key challenge with observational data
  → Will treatment A help patient B recover?
- Most previous work relies on the *unconfoundedness assumption*, which posits that all the confounders are measurable; see Figure 1(a)

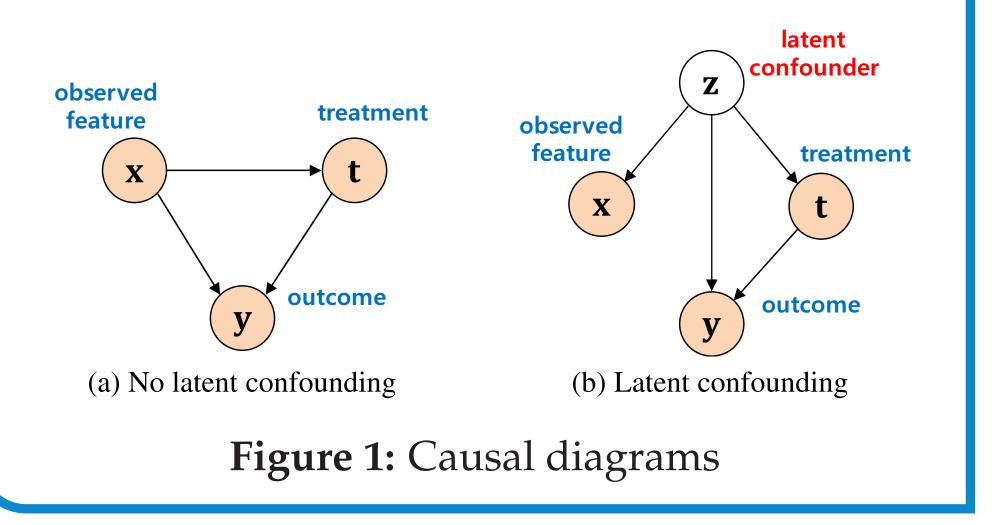
#### Latent Confounder Model

 In practice, there are often unmeasurable (latent) confounders; see Figure 1(b)
 → Socio-economic status affects medications available to a patient and her health

# **3. CEGAN ARCHITECTURE & COMPONENTS**



• If not appropriately accounted for, the estimated ITE will be subject to *confounding bias* 



# 2. PROBLEM FORMULATION

**Observational Dataset:**  $\mathcal{D} = \{(\mathbf{x}_i, t_i, \mathbf{y}_i)\}_{i=1}^N$ 

- **x**<sub>*i*</sub>: feature vector
- $t_i$ : treatment (we assume  $t \in \{0, 1\}$ )

**Reconstruction Network (RN)** 

**Prediction Network (PN)** 

#### Figure 2: CEGAN architecture

### **Prediction Network:**

- Generator (G):
  - Comprises encoder ( $f_E$ ), inference subnet ( $f_I$ ), and prediction decoder ( $f_P$ ) which output  $\hat{\mathbf{z}} \sim q_E(\mathbf{z}|\mathbf{x}, t, \mathbf{y}), \ \mathbf{z} \sim q_I(\mathbf{z}|\mathbf{x}, t), \ \hat{\mathbf{y}} \sim q_P(\mathbf{y}|\mathbf{z}, \mathbf{x}, t)$  (via universal approximator technique)
  - Constructs samples of tuples  $(\mathbf{z}, \mathbf{x}, t, \mathbf{y})$  drawn from two joint distributions, i.e.,  $q_E(\mathbf{z}, \mathbf{x}, t, \mathbf{y}) = p_d(\mathbf{x}, t, \mathbf{y})q_E(\mathbf{z}|\mathbf{x}, t, \mathbf{y})$  and  $q_P(\mathbf{z}, \mathbf{x}, t, \mathbf{y}) = p_d(\mathbf{x}, t)q_I(\mathbf{z}|\mathbf{x}, t)q_P(\mathbf{y}|\mathbf{z}, \mathbf{x}, t)$
  - Tries to fool the discriminator into believing the tuples are drawn from the same distribution
- Discriminator (D):
- Distinguishes between tuples  $(\mathbf{z}, \mathbf{x}, t, \mathbf{y})$  that are drawn from  $q_E(\mathbf{z}, \mathbf{x}, t, \mathbf{y})$  and  $q_P(\mathbf{z}, \mathbf{x}, t, \mathbf{y})$ Reconstruction Network:
- Comprises the same encoder  $(f_E)$  and reconstruction decoder  $(f_R)$
- Nudge  $f_E$  to learn a meaningful mapping by reconstructing its original input

CEGAN *matches the two distribution* by playing an *adversarial game* between *G* and *D*.

## 4. EXPERIMENTS: SEMI-SYNTHETIC

- **y**<sub>*i*</sub>: outcome vector
- $\mathbf{z}_i$ : latent confounder that is not in  $\mathcal{D}$

### **Objective:**

• Estimate ITE without confounding bias:

 $ITE(\mathbf{x}) = \mathbb{E}[\mathbf{y}|\mathbf{x}, do(t=1)] - \mathbb{E}[\mathbf{y}|\mathbf{x}, do(t=0)]$ 

## How to Account for Latent Confounding?

- We assume the latent confounder model in Figure 1(b); x is treated as a *proxy variable* that provides a noisy view of z
- We can identify  $p(\mathbf{y}|\mathbf{x}, do(t=1))$  (or, similarly,  $p(\mathbf{y}|\mathbf{x}, do(t=0))$ ) by
- $p(\mathbf{y}|\mathbf{x}, do(t=1)) = \int_{\mathbf{z}} p(\mathbf{y}|\mathbf{z}, \mathbf{x}, do(t=1)) p(\mathbf{z}|\mathbf{x}, do(t=1)) d\mathbf{z}$  $= \int_{\mathbf{z}} p(\mathbf{y}|\mathbf{z}, \mathbf{x}, t=1) p(\mathbf{z}|\mathbf{x}) d\mathbf{z},$
- We adopt an **adversarial learning framework** to learn  $p(\mathbf{y}|\mathbf{z}, \mathbf{x}, t)$  and  $p(\mathbf{z}|\mathbf{x})$

#### **TWINS Dataset:**

- Based on records of twin births in the USA from 1989-1991
- Artificially create a binary treatment: t = 1 (t = 0) denotes being born the heavier (lighter)
- Outcome corresponds to the mortality of each of the twins in their first year

## **Data Generation Process:**

- Select GESTAT (i.e. the gestational age in weeks) as the latent confounder *z*.
- Assign binary treatment  $t_i \sim \text{Bern}(\sigma(wz_i))$ , where  $w \sim \mathcal{N}(10, 0.1^2)$ .
- Choose outcome of the heavier twin,  $y_i(1)$ , if  $t_i = 1$  and that of the lighter twin,  $y_i(0)$ , if  $t_i = 0$ .

| Method              | no latent confounding |                    | latent confounding |                    |
|---------------------|-----------------------|--------------------|--------------------|--------------------|
|                     | In-sample             | Out-sample         | In-sample          | Out-sample         |
| LR-1                | $0.365 \pm 0.00$      | $0.367 \pm 0.00$   | $0.413 \pm 0.01$   | $0.423{\pm}0.02$   |
| LR-2                | $0.404 \pm 0.02$      | $0.411 {\pm} 0.02$ | $0.442{\pm}0.02$   | $0.454{\pm}0.02$   |
| kNN                 | $0.486 \pm 0.02$      | $0.506 {\pm} 0.02$ | $0.492{\pm}0.02$   | $0.515 {\pm} 0.02$ |
| CForest             | 0.356±0.01            | $0.372 {\pm} 0.01$ | $0.417 {\pm} 0.02$ | $0.429{\pm}0.02$   |
| CMGP                | $0.367 \pm 0.01$      | $0.365 {\pm} 0.01$ | $0.430 {\pm} 0.05$ | $0.438 {\pm} 0.05$ |
| CFR <sub>WASS</sub> | $0.371 \pm 0.03$      | $0.371 {\pm} 0.03$ | $0.427 {\pm} 0.05$ | $0.438 {\pm} 0.05$ |
| CEVAE               | $0.363 \pm 0.00$      | $0.364{\pm}0.00$   | $0.423 {\pm} 0.00$ | $0.428 {\pm} 0.00$ |
| CEGAN               | $0.363 \pm 0.00$      | 0.362±0.00         | 0.369±0.00         | 0.369±0.00         |

#### **Table 1:** Comparison of $\sqrt{\epsilon_{\text{PEHE}}}$ (mean $\pm$ std)

"no latent confounding" includes GESTAT in the observational data  $\mathcal{D}$ - Causal model  $\rightarrow$  Figure 1(a)

• "latent confounding" excludes GESTAT from the observational data  $\mathcal{D}$ 

- Causal model  $\rightarrow$  Figure 1(b)

# 6. PERFORMANCE METRIC

Precision in Estimation of Heterogeneous Effect (PEHE)

• A commonly used metric to quantify the *goodness* of ITE estimation

 $\epsilon_{\text{PEHE}} = \frac{1}{N} \sum_{i=1}^{N} \left( \left( y_i(1) - y_i(0) \right) - \left( \hat{y}_i(1) - \hat{y}_i(0) \right) \right)^2$ 

# 7. BENCHMARKS

- CFR<sub>WASS</sub>: counterfactual reg. w/ Wasserstein
- CMGP: causal multi-task Gaussian process
- CEVAE: causal effect VAE (CEVAE)

## **5. EXPERIMENTS: SYNTHETIC**

#### **Toy Example:**

• To assess the robustness of CEGAN to latent confouderers (due to noise in the proxy variables)

#### **Data Generation Process:**

• Assume latent confounding model in Figure 1(b):  $z_{ij} \sim \mathcal{N}(3(\mu - 1), 1^2), \quad j = 1, \dots, d_z,$   $\mu \sim \text{Bern}(0.5), \quad \mathbf{n} \sim \mathcal{N}(0, \zeta^2 \mathbf{I})$   $\mathbf{x}_i | \mathbf{z}_i = \mathbf{z}_i + \mathbf{n},$   $t_i | \mathbf{z}_i \sim \text{Bern}(\sigma(0.25 \cdot z_{id_z})),$   $y_i | \mathbf{z}_i, t_i = \sigma(\mathbf{1}^T \mathbf{z}_i + (2t_i - 1))$ 

