Introduction

Problem: Survival Analysis
- Accurate prediction of Disease Trajectories is critical for the Early Identification and Timely Treatment of patients at risk.

Current Methods
- Statistical methods like Cox Landmarking and Joint Modeling are often limited by parametric assumptions and computationally constrained.
- Recent Deep Learning approaches improve on these limitations, but do not capture potential information in longitudinal covariate histories.

Main Ideas
- Issue Dynamically Updated survival predictions via longitudinal sliding-window mechanism.
- Use Temporal Convolutions to capture explicit representations of temporal dependencies.
- Accommodate potentially informative patterns of Missingness with dual-stream structure.

Problem Formulation

Notation
- Covariate Vector \(x_{i,t} \) for Patient \(i \in \{1, ..., N\} \) at Time \(t \) where time has discrete resolution \(\delta \).
- Survival Datum \((t, x_{i,t}, s_{i,t})\), where \(s_{i,t} \) is the binary Survival Indicator for event of interest.
- Time-to-Event \(T_i = \min(T_{\text{cens}}, T_{\text{cens}})\), where \(T_{\text{cens}} \) is the random variable for time of Event Occurrence and \(T_{\text{cens}} \) for Right-Censoring.

Dynamic Prediction
- Historical Window of observations in \((t - w, t]\), where \(w \) indicates the width of lookback:
 \[
 X_{i,t-w} = \{(t', x_{i,t'}, s_{i,t'})\}_{t' \leq t}
 \]
- Failure Prediction for forward interval \((t, t + \tau]\), where \(\tau \) indicates the prediction horizon:
 \[
 F_i(t; t + \tau) = \mathbb{P}(T_{\text{cens}} \leq t + \tau | T_{\text{cens}} > t, x_{i,t,w})
 \]

Related Work

Non-Deep Direct-to-Time Dynamic Linearity Learning Probability Variance Prediction

1. \[x\] \[N\] \[N\] \[N\] \[x\] \[x\]
2. \[x\] \[N\] \[x\] \[x\] \[x\] \[x\]
3. \[x\] \[x\] \[x\] \[x\] \[x\] \[x\]
4. \[x\] \[x\] \[x\] \[x\] \[x\] \[x\]
5. \[x\] \[x\] \[x\] \[x\] \[x\] \[x\]
6. MATCH-Net

Discriminative Performance

<table>
<thead>
<tr>
<th>(\tau)</th>
<th>MATCH-Net</th>
<th>S-TCN</th>
<th>S-MLP</th>
<th>FCN</th>
<th>D-Atlas</th>
<th>RNN</th>
<th>MLP</th>
<th>JM</th>
<th>LM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.962</td>
<td>0.961</td>
<td>0.959</td>
<td>0.954</td>
<td>0.959</td>
<td>0.949*</td>
<td>0.948*</td>
<td>0.913*</td>
<td>0.909*</td>
</tr>
<tr>
<td>1.0</td>
<td>0.942</td>
<td>0.941</td>
<td>0.932</td>
<td>0.930</td>
<td>0.929</td>
<td>0.930</td>
<td>0.930</td>
<td>0.917*</td>
<td>0.914*</td>
</tr>
<tr>
<td>1.5</td>
<td>0.902</td>
<td>0.902</td>
<td>0.897</td>
<td>0.895</td>
<td>0.892</td>
<td>0.891</td>
<td>0.890</td>
<td>0.881</td>
<td>0.878</td>
</tr>
<tr>
<td>2.0</td>
<td>0.909</td>
<td>0.908</td>
<td>0.904</td>
<td>0.903</td>
<td>0.896</td>
<td>0.901</td>
<td>0.895</td>
<td>0.894</td>
<td>0.890</td>
</tr>
<tr>
<td>2.5</td>
<td>0.886</td>
<td>0.884</td>
<td>0.881</td>
<td>0.883</td>
<td>0.884</td>
<td>0.883</td>
<td>0.874</td>
<td>0.874</td>
<td>0.874</td>
</tr>
</tbody>
</table>

AUPRC

<table>
<thead>
<tr>
<th>(\tau)</th>
<th>MATCH-Net</th>
<th>S-TCN</th>
<th>S-MLP</th>
<th>FCN</th>
<th>D-Atlas</th>
<th>RNN</th>
<th>MLP</th>
<th>JM</th>
<th>LM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.594</td>
<td>0.580</td>
<td>0.500</td>
<td>0.536</td>
<td>0.517</td>
<td>0.464*</td>
<td>0.469*</td>
<td>0.473*</td>
<td>0.469*</td>
</tr>
<tr>
<td>1.0</td>
<td>0.513</td>
<td>0.505</td>
<td>0.447</td>
<td>0.453</td>
<td>0.423</td>
<td>0.410*</td>
<td>0.435</td>
<td>0.415*</td>
<td>0.412*</td>
</tr>
<tr>
<td>1.5</td>
<td>0.373</td>
<td>0.367</td>
<td>0.354</td>
<td>0.357</td>
<td>0.364</td>
<td>0.340</td>
<td>0.340</td>
<td>0.319</td>
<td>0.325</td>
</tr>
<tr>
<td>2.0</td>
<td>0.390</td>
<td>0.380</td>
<td>0.364</td>
<td>0.375</td>
<td>0.352</td>
<td>0.355</td>
<td>0.359</td>
<td>0.362</td>
<td>0.367</td>
</tr>
<tr>
<td>2.5</td>
<td>0.384</td>
<td>0.381</td>
<td>0.371</td>
<td>0.365</td>
<td>0.360</td>
<td>0.365</td>
<td>0.356</td>
<td>0.366</td>
<td>0.363</td>
</tr>
</tbody>
</table>

Performance for \(\tau_{\max} = 5.5, \delta = 2/3 \) years. *indicates statistically significant difference (p < 0.05) with MATCH-Net.

Use Case: Personalized Screening

MATCH-Net: Dynamic Prediction in Survival Analysis using Convolutional Neural Networks

Daniel Jarrett*, Jinsung Yoon†, & Mihaela van der Schaar‡,§

*University of Oxford, †UCLA, ‡Alan Turing Institute

This work was supported by the Office of Naval Research and the National Science Foundation