

BUCLA

What is Interpretable? Using ML to Design Interpretable Decision-Support Systems

Owen Lahav¹, Nicholas Mastronarde², and Mihaela van der Schaar^{1,3,4}

 1 University of Oxford, 2 University at Buffalo, 3 University of California Los Angeles (UCLA), 4 Alan Turing Institute

INTRODUCTION

The need for interpretability

- Machine learning models can accurately predict medical outcomes
- However, clinicians cannot professionally or ethically utilize **black-box** models without understanding and trusting them
- As a result, we need **interpretability**

Intrepretability in clinical settings

• ML interpretability has focused on user comprehension - interpretability modules

Experimental Design

We designed a **RL-based clinical decision-support system (DSS)** around the neural network model, in the form of an online survey.

Below are screenshots showing some of the model evidence presented (counter-clockwise): A patient scenario, local linear model, local decision-tree model, and a feature sensitivity sample.

Examine how the following features might impact Betty's risk score, based on our neural network model:

New York Risk Association Score: IV

- **Prescription:** Patient Betty is an 86-year-old non-Caucasian female suffering from No prescription heart failure **ACE Inhibitors** Betty has a BMI of 21.6 **Beta Blockers** Betty exhibits rales and shortness of breath at rest Our model predicts the probability of Betty dying within 1 year is **Predicted Risk Score:** 83.5% 77.2% **Local linear** approximation for 80-100% risk strata: **Local decision-tree** approximation for 80-100% risk strata: Significant coefficients: Heart Failure 80-100% Risk **Patient Characteristic** Duration < 246 New York Heart Association Score 0.548 Systolic Blood Hemoglobin ACE Inhibitors or ARB perscribed -0.452 Pressure < 150 < 48 Beta Blockers perscribed -0.263 Shortness of breath at rest 0.248 Ethnicity (Caucasian) -0.241 Rales 0.211 Diabetes 0.138 Num. Patients = 79 Gender 0.057 Risk = 84.1% 0.051 Age
- presented with the ML model's outputs
- However, comprehensibility is insufficient
- Clinicians must also **trust** models before they can use them

Solution: Ask doctors!

- Use **reinforcement learning** to design comprehensible, trustworthy systems
- Present supplementary information to **clinicians**, and learn from their responses

MAIN RESULTS

- We surveyed **14 doctors** who rated their confidence in the model based on evidence shown
- We also surveyed **30 ML experts** who predicted the average doctor's confidence in the model

The average ratings provided by doctors and ML experts for each evidence sequence are below:

DECISION-SUPPORT SYSTEM

MAGGIC data-set

- 30,389 heart-failure (HF) patients
- 31 features: patient characteristics, symptoms, medications, etc.
- Average 1-year mortality rate of 18.8%

Machine Learning Model

- Predict 1-year mortality risk after HF
- Simple **Deep Neural Network (DNN)** with 2 layers of 100 and 20 nodes

 Outperforms MAGGIC Risk Score used by clinicians

0.573 ± 0.0078	0.250 ± 0.0023
0.731 ± 0.0046	0.328 ± 0.0105
0.710 ± 0.0031	0.373 ± 0.0116
0.711 ± 0.0041	0.371 ± 0.1110
0.725 ± 0.0054	0.376 ± 0.0060
0.693 ± 0.0071	0.324 ± 0.0121
	0.373 ± 0.0078 0.731 ± 0.0046 0.710 ± 0.0031 0.711 ± 0.0041 0.725 ± 0.0054 0.693 ± 0.0071

Model Evidence

Key Findings

- Machine learning experts appear unable to predict which interpretability modules will best engender doctor trust
- Evidence is not super-additive: more information may not increase confidence, possibly due to **information overload**
- Doctors must be consulted to create ML-

FUTURE WORK

Our proposed framework utilizing reinforcement learning to design comprehensible, trustworthy systems based on ML models can be extended:

- Test different ML models, data-sets, or contexts in medicine and beyond
- Test the effectiveness of a wide variety of **interpretability modules**, includ-

- Collated a large set of possible evidence to present to users
 - Model Details: data set, training, accuracy, DNN approximation methods
 Interpretability Modules: linear approximations, local decision-tree, feature sensitivity
- Consulted medical experts to reduce evidence space and inform design

Reinforcement Learning Model
Multi-armed bandit using UCB1 algorithm

Arms = evidence sequences

Any RL method could be utilized for identifying optimal sequence of evidence

driven DSSs that are truly useful in healthcare settings

TAKE OUR SURVEY!

Contact the research team for details! Contact: owen.lahav@gtc.ox.ac.uk

ing LIME, DeepLIFT, associative classifiers, feature rankings, and more

• Test different **RL algorithms**, including contextual bandits and deep RL

Next step: improved, larger scale survey

- Fewer arms, more doctors + ML experts
 - Statistically significant results
- Contextualize clinicians by specialization, years in practice, familiarity with ML, etc.

*This study was reviewed by the Ethics Committee of the University of Oxford's Department of Computer Science, 2018