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INTRODUCTION
The need for interpretability
• Machine learning models can accurately

predict medical outcomes
• However, clinicians cannot professionally

or ethically utilize black-box models with-
out understanding and trusting them

• As a result, we need interpretability

Intrepretability in clinical settings
• ML interpretability has focused on user

comprehension - interpretability modules
presented with the ML model’s outputs

• However, comprehensibility is insufficient
• Clinicians must also trust models before

they can use them
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Solution: Ask doctors!
• Use reinforcement learning to design

comprehensible, trustworthy systems
• Present supplementary information to

clinicians, and learn from their responses

EXPERIMENTAL DESIGN
We designed a RL-based clinical decision-support system (DSS) around the neural network
model, in the form of an online survey.
Below are screenshots showing some of the model evidence presented (counter-clockwise):
A patient scenario, local linear model, local decision-tree model, and a feature sensitivity sample.

• Patient Betty is an 86-year-old non-Caucasian female suffering from 
heart failure

• Betty has a BMI of 21.6
• Betty exhibits rales and shortness of breath at rest

• Our model predicts the probability of Betty dying within 1 year is 
83.5%

Examine how the following features might impact Betty’s risk score, 
based on our neural network model:

Predicted Risk Score:
77.2%

New York Risk Association Score: IV

Prescription:
No prescription

 ACE Inhibitors               x
Beta Blockers

Local linear approximation for 80-100% risk strata:
Significant coefficients:

Patient Characteristic 80-100% Risk
New York Heart Association Score 0.548
ACE Inhibitors or ARB perscribed -0.452
Beta Blockers perscribed -0.263
Shortness of breath at rest 0.248
Ethnicity (Caucasian) -0.241
Rales 0.211
Diabetes 0.138
Gender 0.057
Age 0.051

Local decision-tree approximation for 80-100% risk strata:

Heart Failure 
Duration < 246

Hemoglobin 
< 48

Systolic Blood 
Pressure < 150

T F

…

Num. Patients = 79
Risk = 84.1%

……… …

DECISION-SUPPORT SYSTEM
MAGGIC data-set
• 30,389 heart-failure (HF) patients
• 31 features: patient characteristics, symp-

toms, medications, etc.
• Average 1-year mortality rate of 18.8%

Machine Learning Model
• Predict 1-year mortality risk after HF
• Simple Deep Neural Network (DNN)

with 2 layers of 100 and 20 nodes
– Outperforms MAGGIC Risk Score used

by clinicians

Model AUC-ROC AUC-PR
Linear Regression
Random Forest
Gradient Boosting Machine

XGBoost
Neural Network
MAGGIC Risk Score

Model Evidence
• Collated a large set of possible evidence to

present to users
– Model Details: data set, training, accu-

racy, DNN approximation methods
– Interpretability Modules: linear ap-

proximations, local decision-tree, fea-
ture sensitivity

• Consulted medical experts to reduce evi-
dence space and inform design

Reinforcement Learning Model
• Multi-armed bandit using UCB1 algorithm

– Arms = evidence sequences
• Any RL method could be utilized for iden-

tifying optimal sequence of evidence

MAIN RESULTS
• We surveyed 14 doctors who rated their confidence in the model based on evidence shown
• We also surveyed 30 ML experts who predicted the average doctor’s confidence in the model

The average ratings provided by doctors and ML experts for each evidence sequence are below:
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(a) General Model Evidence Sequences (b) Patient Scenario Sequences

FUTURE WORK
Our proposed framework utilizing reinforce-
ment learning to design comprehensible,
trustworthy systems based on ML models can
be extended:

• Test different ML models, data-sets, or
contexts in medicine and beyond

• Test the effectiveness of a wide vari-
ety of interpretability modules, includ-
ing LIME, DeepLIFT, associative classi-
fiers, feature rankings, and more

• Test different RL algorithms, including
contextual bandits and deep RL

Next step: improved, larger scale survey

• Fewer arms, more doctors + ML experts

– Statistically significant results

• Contextualize clinicians by specialization,
years in practice, familiarity with ML, etc.

∗This study was reviewed by the Ethics Committee of the Univer-

sity of Oxford’s Department of Computer Science, 2018

KEY FINDINGS
• Machine learning experts appear unable

to predict which interpretability modules
will best engender doctor trust

• Evidence is not super-additive: more in-
formation may not increase confidence,
possibly due to information overload

• Doctors must be consulted to create ML-
driven DSSs that are truly useful in health-
care settings

TAKE OUR SURVEY!
Contact the research team for details!

Contact:

owen.lahav@gtc.ox.ac.uk


