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Abstract

Electronic health records provide a rich source of data for machine learning meth-
ods to learn dynamic treatment responses over time. However, any direct estimation
is hampered by the presence of time-dependent confounding, where actions taken
are dependent on time-varying variables related to the outcome of interest. Drawing
inspiration from marginal structural models, a class of methods in epidemiology
which use propensity weighting to adjust for time-dependent confounders, we
introduce the Recurrent Marginal Structural Network - a sequence-to-sequence
architecture for forecasting a patient’s expected response to a series of planned treat-
ments. Using simulations of a state-of-the-art pharmacokinetic-pharmacodynamic
(PK-PD) model of tumor growth [12], we demonstrate the ability of our network
to accurately learn unbiased treatment responses from observational data – even
under changes in the policy of treatment assignments – and performance gains over
benchmarks.

1 Introduction

With the increasing prevalence of electronic health records, there has been much interest in the use
of machine learning to estimate treatment effects directly from observational data [13, 41, 44, 2].
These records, collected over time as part of regular follow-ups, provide a more cost-effective method
to gather insights on the effectiveness of past treatment regimens. While the majority of previous
work focuses on the effects of interventions at a single point in time, observational data also captures
information on complex time-dependent treatment scenarios, such as where the efficacy of treatments
changes over time (e.g. drug resistance in cancer patients [40]), or where patients receive multiple
interventions administered at different points in time (e.g. joint prescriptions of chemotherapy and
radiotherapy [12]). As such, the ability to accurately estimate treatment effects over time would allow
doctors to determine both the treatments to prescribe and the optimal time at which to administer
them.

However, straightforward estimation in observational studies is hampered by the presence of time-
dependent confounders, arising in cases where interventions are contingent on biomarkers whose
value are affected by past treatments. For examples, asthma rescue drugs provide short-term rapid
improvements to lung function measures, but are usually prescribed to patients with reduced lung
function scores. As such, naïve methods can lead to the incorrect conclusion that the medication
reduces lung function scores, contrary to the actual treatment effect [26]. Furthermore, [23] show
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that the standard adjustments for causal inference, e.g. stratification, matching and propensity scoring
[16], can introduce bias into the estimation in the presence of time-dependent confounding.

Marginal structural models (MSMs) are a class of methods commonly used in epidemiology to
estimate time-dependent effects of exposure while adjusting for time-dependent confounders [15, 24,
19, 14]. Using the probability of a treatment assignment, conditioned on past exposures and covariate
history, MSMs typically adopt inverse probability of treatment weighting (IPTW) to correct for bias
in standard regression methods [22], re-constructing a ‘pseudo-population’ from the observational
dataset to similar to that of a randomized clinical trial. However, the effectiveness of bias correction
is dependent on a correct specification of the conditional probability of treatment assignment, which
is difficult to do in practice given the complexity of treatment planning. In standard MSMs, IPTWs
are produced using pooled logistic regression, which makes strong assumptions on the form of the
conditional probability distribution. This also requires one separate set of coefficients to be estimated
per time-step and many models to be estimated for long trajectories.

In this paper, we propose a new deep learning model - which we refer to as Recurrent Marginal
Structural Networks - to directly learn time-dependent treatment responses from observational data,
based on in the marginal structural modeling framework. Our key contributions are as follows:

Multi-step Prediction Using Sequence-to-sequence Architecture To forecast treatment re-
sponses at multiple time horizons in the future, we propose a new RNN architecture for multi-step
prediction based on sequence-to-sequence architectures in natural language processing [36]. This
comprises two halves, 1) an encoder RNN which learns representations for the patient’s current clini-
cal state, and 2) a decoder which is initialized using the encoder’s final memory state and computes
forward predictions given the intended treatment assignments. At run time, the R-MSN also allows
for prediction horizons to be flexibly adjusted to match the intended treatment duration, by expanding
or contracting the number of decoder units in the sequence-to-sequence model.

Scenario Analysis for Complex Treatment Regimens Treatment planning in clinical settings is
often based on the interaction of numerous variables - including 1) the desired outcomes for a patient
(e.g. survival improvement or comorbidity risk reduction), 2) the treatments to assign (e.g. binary
interventions or continuous dosages), and 3) the length of treatment affected by both number and
duration of interventions. The R-MSN naturally encapsulates this by using multi-input/output RNNs,
which can be configured to have multiples treatments and targets of different forms (e.g. continuous
or discrete). Different sequences of treatments can also be evaluated using the sequence-to-sequence
architecture of the network. Moreover, given the susceptibility of IPTWs to model misspecification,
the R-MSN uses Long-short Term Memory units (LSTMs) to compute the probabilities required
for propensity weighting. Combining these aspects together, the R-MSN is able to help clinicians
evaluate the projected outcome of a complex treatment scenario – providing timely clinical decision
support and helping them customize a treatment regimen to the patient. A example of scenario
analysis for different cancer treatment regimens is shown in Figure 1, with the expected response of
tumor growth to no treatment, chemotherapy and radiotherapy shown.

Figure 1: Forecasting Tumor Growth Under Multiple Treatment Scenarios

2 Related Works

Given the diversity of literature on causal inference, we focus on works associated with time-
dependent treatment responses and deep learning here, with a wider survey in Appendix A.
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G-computation and Structural Models. Counterfactual inference under time-dependent con-
founding has been extensively studied in the epidemiology literature, particularly in the seminal
works of Robins [30, 31, 16]. Methods in this area can be categorized into 3 groups: models based
on the G-computation formula, structural nested mean models, and marginal structural models [8].
While all these models provide strong theoretical foundations on the adjustments for time-dependent
confounding, their prediction models are typically based on linear or logistic regression. These
models would be misspecified when either the outcomes or the treatment policy exhibit complex
dependencies on the covariate history.

Potential Outcomes with Longitudinal Data. Bayesian nonparametric models have been pro-
posed to estimate the effects of both single [32, 33, 43, 34] and joint treatment assignments [35]
over time. These methods use Gaussian processes (GPs) to model the baseline progression, which
can estimate the treatment effects at multiple points in the future. However, some limitations do
exist. Firstly, to aid in calibration, most Bayesian methods make strong assumptions on model
structure - such as 1) independent baseline progression and treatment response components [43, 35],
and 2) the lack of heterogeneous effects, by either omitting baseline covariates (e.g. genetic or
demographic information) [34, 33] or incorporating them as linear components [43, 35]. Recurrent
neural networks (RNNs) avoid the need for any explicit model specifications, with the networks
learning these relationships directly from the data. Secondly, inference with Bayesian models can
be computationally complex, making them difficult to scale. This arises from the use of Markov
Chain-Monte Carlo sampling for g-computation, and the use of sparse GPs that have at leastO(NM2)
complexity, where N and M are the number of observations and inducing points respectively [39].
From this perspective, RNNs have the benefit of scalability and update their internal states with new
observations as they arrive. Lastly, apart from [35] which we evaluate in Section 5, existing models
do not consider treatment responses for combined interventions and multiple targets. This is handled
naturally in our network by using multi-input/multi-output RNN architectures.

Deep Learning for Causal Inference. Deep learning has also been used to estimate individualized
treatment effects for a single intervention at a fixed time, using instrumental variable approaches [13],
generative adversarial networks [44] and multi-task architectures [3]. To the best of our knowledge,
ours is the first deep learning method for time-dependent effects and establishes a framework to use
existing RNN architectures for treatment response estimation.

3 Problem Definition

Let Yt,i = [Yt,i(1), . . . , Yt,i(Ωy)] be a vector of Ωy observed outcomes for patient i at time t, At,i =
[At,i(1), . . . , At,i(Ωa)] a vector of actual treatment administered, Lt,i = [Lt,i(1), . . . , Lt,i(Ωl)] time-
dependent covariates and Xi = [Xi(1), . . . , Xi(Ωv)] patient-specific static features. For notational
simplicity, we will omit the subscript i going forward unless explicitly required.

Treatment Responses Over Time Determining an individual’s response to a prescribed treatment
can be characterized as learning a function g(.) for the expected outcomes over a prediction horizon
τ , given an intended course of treatment and past observations, i.e.:

E
[
Yt+τ |a(t, τ − 1), H̄t

]
= g(τ, a(t, τ − 1), H̄t) (1)

where g(.) represents a generic, possibly non-linear, function, a(t, τ − 1) = (at, . . .at+τ−1) is an
intended sequence of treatments ak from the current time until just before the outcome is observed,
and H̄t = (L̄t, Āt−1,X) is the patient’s history with covariates L̄t = (L1, . . . ,Lt) and actions
Āt−1 = (A1, . . .At−1).

Inverse Probability of Treatment Weighting Inverse probability of treatment weighting, ex-
tensively studied in marginal structural modeling to adjust for time-dependent confounding
[22, 16, 15, 24, 26], with extensions to joint treatment assignments [19], censored observations
[14] and continuous dosages [10]. We list the key results for our problem below, with a more
thorough discussion in Appendix B.

The stabilized weights for joint treatment assignments [21] can be expressed as:

SW(t, τ) =

t+τ∏
n=t

f(An|Ān−1)

f(An|H̄n)
=

t+τ∏
n=t

∏Ωa

k=1 f(An(k)|Ān−1)∏Ωa

k=1 f(An(k)|H̄n)
(2)
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where f(.) is the probability mass function for discrete treatment applications, or the probability
density function when continuous dosages are used [10]. We also note that H̄n contains both past
treatments Ān−1 and potential confounders L̄n. To account for censoring, we used the additional
stabilized weights below:

SW ∗(t, τ) =

t+τ∏
n=t

f(Cn = 0|T > n, Ān−1)

f(Cn = 0|T > n, L̄n−1, Ān−1,X)
(3)

where Cn = 1 denotes right censoring of the trajectory, and T is the time at which censoring occurs.

We also adopt the additional steps for stabilization proposed in [42], truncating stabilized weights at
their 1st and 99th percentile values, and normalizing weights by their mean for a fixed prediction
horizon, i.e. ˜SW = SWi(t, τ)/

(∑I
i=1

∑Ti

t=1 SWi(t, τ)/N
)

where I is the total number of
patients, Ti is the length of the patient’s trajectory and N the total number of observations. Stabilized
weights are then used to weight the loss contributions of each training observation, expressed in
squared-errors terms below for continuous predictions:

e(i, t, τ) = ˜SWi(t, τ − 1)× ˜SW
∗
i (t, τ − 1)× ‖Yt+τ,i − g(τ, a(t, τ − 1), H̄t)‖2 (4)

4 Recurrent Marginal Structural Networks

An MSM can be subdivided into two submodels, one modeling the IPTWs and the other estimating
the treatment response itself. Adopting this framework, we use two sets of deep neural networks to
build a Recurrent Marginal Structural Network (R-MSN) - 1) a set propensity networks to compute
treatment probabilities used for IPTW, and 2) a prediction network used to determine the treatment
response for a given set of planned interventions. Additional details on the algorithm can be found in
Appendix E, with the source code uploaded onto GitHub1.

4.1 Propensity Networks

From Equations 2 and 3, we can see that 4 key probability functions are required to calculate the
stabilized weights. In all instances, probabilities are conditioned on the history of past observations
(Ān−1 and H̄n), making RNNs natural candidates to learn these functions.

Each probability function is parameterized with a different LSTM – collectively referred to as
propensity networks – with action probabilities f

(
Ān| .

)
generated jointly by a set of multi-target

LSTMs and censoring probabilities f (Cn = 0| . ) by single output LSTMs. This also accounts
for possible correlations between treatment assignments, for instance in treatment regimens where
complementary drugs are prescribed together to combat different aspects of the same disease.

The flexibility of RNN architectures also allows for the modeling of treatment assignments with
different forms. In simple cases with discrete treatment assignments, a standard LSTM with a sigmoid
output layer can be used for binary treatment probabilities or a softmax layer for categorical ones.
More complex architectures, such as variational RNNs [6], can be used to compute probabilities
when treatments map to continuous dosages. To calculate the binary probabilities in the experiments
in Section 5, LSTMs were fitted with tanh state activations and sigmoid outputs.

4.2 Prediction Network

The prediction network focuses on forecasting the treatment response of a patient, with time-
dependent confounding accounted for using IPTWs from the propensity networks. Although standard
RNNs can be used for one-step-ahead forecasts, actual treatments plans can be considerably more
complex, with varying durations and number of interventions depending on the condition of the
patient. To remove any restrictions on the prediction horizon or number of planned interventions, we
propose the sequence-to-sequence architecture depicted in Figure 4.2. One key difference between
our model and standard sequence-to-sequence (e.g.[36]) is that the last unit of the encoder is also used
in making predictions for the first time step, in addition to the decoder units at further horizons. This
allows the R-MSN to use all available information in making predictions, including the covariates

1https://github.com/sjblim/rmsn_nips_2018
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Figure 2: R-MSN Architecture for Multi-step Treatment Response Prediction

available at the current time step t. For the continuous predictions in Section 5, we used Exponential
Linear Unit (ELU [7]) state activations and a linear output layer.

Encoder The goal of the encoder is to learn good representations for the patient’s current clinical
state, and we do so with a standard LSTM that makes one-step-ahead predictions of the outcome
(Ŷt+1) given observations of covariates and actual treatments. At the current follow-up time t, the
encoder is also used in forecasting the expected response at t+1, as the latest covariate measurements
Lt are available to be fed into the LSTM along with the first planned treatment assignment.

Decoder While multi-step prediction can be performed by recursively feeding outputs into the
inputs at the next time step, this would require output predictions for all covariates, with a high
degree of accuracy to reduce error propagation through the network. Given that often only a small
subset treatment outcomes are of interest, it would be desirable to forecast treatment responses on the
basis of planned future actions alone. As such, the purpose of the decoder is to propagate the encoder
representation forwards in time - using only the proposed treatment assignments and avoiding the
need to forecast input covariates. This is achieved by training another LSTM that accepts only actions
as inputs, but initializing the internal memory state of the first LSTM in the decoder sequence (zt)
using encoder representations. To allow for different state sizes in the encoder and decoder, encoder
internal states (ht) are passed through a single network layer with ELU activations, i.e. the memory
adapter, before being initializing the decoder. As the network is made up of LSTM units, the internal
states here refer to the concatenation of the cell and hidden states [17] of the LSTM.

4.3 Training Procedure

The training procedure for R-MSNs can be subdivided into the 3 training steps shown in Figure 3 -
starting with the propensity networks, followed by the encoder, and ending with the decoder.

(a) Step 1: Propensity Network Training (b) Step 2: Encoder Training

(c) Step 3: Decoder Training

Figure 3: Training Procedure for R-MSNs
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Step 1: Propensity Network Training From Figure 3(a), each propensity network is first trained
to estimate the probability of the treatment assigned at each time step, which is combined to compute
SW(t, 0) and SW ∗(t, 0) at each time step. Stabilized weights for longer horizons can then be
obtained from their cumulative product, i.e. SW(t, τ) =

∏τ
j=0 SW(t+ j, 0). For tests in Section 5,

propensity networks were trained using standard binary cross entropy loss, with treatment assignments
and censoring treated as binary observations.

Step 2: Encoder Training Next, decoder and encoder training was divided into separate steps -
accelerating learning by first training the encoder to learn representations of the patient’s clinical
state and then using the decoder to extrapolate them according to the intended treatment plan. As
such, the encoder was trained to forecast standard one-step-ahead treatment response according to the
structure in Figure 3(b), using all available information on treatments and covariates until the current
time step. Upon completion, the encoder was used to perform a feed-forward pass over the training
and validation data, extracting the internal states ht for the final training step. As tests in Section 5
were performed for continuous outcomes, we express the loss function for the encoder as a weighted
mean-squared error loss (Lencoder in Equation 5), although we note that this approach is compatible
with other loss functions, e.g. cross entropy for discrete outcomes.

Step 3: Decoder Training Finally, the decoder and memory adapter were trained together
based on the format in Figure 3(c). For a given patient, observations were batched into shorter
sequences of up to τmax steps, such that each sequence commencing at time t is made up of
[ht, {At+1, . . . ,At+τmax−1}, {Yt+2, . . . ,Yt+τmax}]. These were compiled for all patient-times
and randomly grouped into minibatches to be used for backpropagation through time. For continuous
predictions, the loss function for the decoder is (Ldecoder) can also be found in Equation 5.

Lencoder =

I∑
i=1

Ti∑
t=1

e(i, t, 1) Ldecoder =

I∑
i=1

Ti∑
t=1

min(Ti−t,τmax)∑
τ=2

e(i, t, τ) (5)

5 Experiments With Cancer Growth Simulation Model

5.1 Simulation Details

As confounding effects in real-world datasets are unknown a priori, methods for treatment response
estimation are often evaluated using data simulations, where treatment application policies are
explicitly modeled [34, 33, 35]. To ensure that our tests are fully reproducible and realistic from
a medical perspective, we adopt the pharmacokinetic-pharmacodynamic (PK-PD) model of [12]
- the state-of-the-art in treatment response modeling for non-small cell lung patients. The model
features key characteristics present in actual lung cancer treatments, such as combined effects of
chemo- and radiotherapy, cell repopulation after treatment, death/recovery of patients, and different
staring distributions of tumor sizes based on the stage of cancer at diagnosis. On the whole, PK-
PD models allow clinicians to explore hypotheses around dose-response relationships and propose
optimal treatment schedules [5, 29, 11, 9, 1]. While we refer readers to [12] for the finer details of the
model, such as specific priors used, we examine the overall structure of the model below to illustrate
treatment-response relationships and how time-dependent confounding is introduced.

PK-PD Model for Tumor Dynamics We use a discrete-time model for tumor volume V (t), where
t is the number of days since diagnosis:

V (t) =

(
1 + ρ log(

K

V (t− 1)
)︸ ︷︷ ︸

Tumor Growth

− βcC(t)︸ ︷︷ ︸
Chemotherapy

− (αd(t) + βd(t)2)︸ ︷︷ ︸
Radiation

+ et︸︷︷︸
Noise

)
V (t− 1)

(6)

where ρ, K, βc, α, β are model parameters sampled for each patient according to prior distributions
in [12]. A Gaussian noise term et ∼ N(0, 0.012) was added to account for randomness in the growth
of the tumor. d(t) is the dose of radiation applied at t, while drug concentration C(t) is modeled
according to an exponential decay with a half life of 1 day, i.e.:

C(t) = C̃(t) + C(t− 1)/2 (7)

where C̃(t) is an new continuous dose of chemotherapy drugs applied at time t. To account for
heterogeneous effects, we added static features to the simulation model by randomly subclassing
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patients into 3 different groups, with each patient having a group label Si ∈ {1, 2, 3}. This represents
specific characteristics which affect with patient’s response to chemotherapy and radiotherapy (e.g.
by genetic factors [4]), which augment the prior means of βc and α according to:

µ′βc
(i) =

{
1.1µβc

, if Si = 3

µβc
, otherwise

µ′α(i) =

{
1.1µα , if Si = 1

µα , otherwise
(8)

where µ∗ are the mean parameters of [12], and µ′∗(i) those used to simulate patient i. We note that
the value of β is set in relation to α, i.e. α/β = 10, and would also be adjusted accordingly by Si.

Censoring Mechanisms Patient censoring is incorporated by modeling 1) death when tumor
diameters reach Dmax = 13 cm (or a volume of Vmax = 1150 cm3 assuming perfectly spherical
tumors), 2) recovery determined by a Bernoulli process with recovery probability pt = exp(−Vt),
and 3) termination of observations after 60 days (administrative censoring).

Treatment Assignment Policy To introduce time-dependent confounders, we assume that
chemotherapy prescriptions Ac(t) ∈ {0, 1} and radiotherapy prescriptions Ad(t) ∈ {0, 1} are
Bernoulli random variables, with probabilities pc(t) and pd(t) respectively that are a functions of the
tumor diameter:

pc(t) = σ

(
γc

Dmax
(D̄(t)− θc)

)
pd(t) = σ

(
γd

Dmax
(D̄(t)− θd)

)
(9)

where D̄(t) is the average tumor diameter over the last 15 days, σ(.) is the sigmoid activation function,
and θ∗ and γ∗ are constant parameters. θ∗ is fixed such that θc = θd = Dmax/2, giving the model
a 0.5 probability of treatment application exists when the tumor is half its maximum size. When
treatments are applied, i.e. Ac(t) or Ad(t) is 1, chemotherapy is assumed to be administered in
5.0 mg/m3 doses of Vinblastine, and radiotherapy in 2.0 Gy fractions. γ also controls the degree of
time-dependent confounding - starting with no confounding at γ = 0, as treatment assignments are
independent of the response variable, and an increase as γ becomes larger.

5.2 Benchmarks

We evaluate the performance of R-MSNs against MSMs and Bayesian nonparametric models,
focusing on its effectiveness in estimating unbiased treatment responses and its multi-step prediction
performance. An overview of the models tested is summarized below:

Standard Marginal Structural Models (MSM) For the MSMs used in our investigations, we
adopt similar approximations to [19, 14], encoding historical actions via cumulative sum of applied
treatments, e.g. cum(āc(t− 1)) =

∑t−1
k=1 ac(k), and covariate history using the previous observed

value V (t− 1). The exact forms of the propensity and prediction models are in Appendix D.

Bayesian Treatment Response Curves (BTRC) We also benchmark our performance against the
model of [35] - the state-of-the-art in forecasting multistep treatment responses for joint therapies
with multiple outcomes. Given that the simulation model only has one target outcome, we also
consider a simpler variant of the model without “shared" components, denoting this as the reduced
BTRC (R-BTRC) model. This reduced parametrization was found to improve convergence during
training, and additional details on calibration can be found in Appendix G.

Recurrent Marginal Structural Networks (R-MSN) R-MSNs were designed according to the
description in Section 4, with full details on training and hyperparameter in Appendix F. To evaluate
the effectiveness of the propensity networks, we also trained predictions networks using the IPTWs
from the MSM, including this as an additional benchmark in Section 5.3 (Seq2Seq + Logistic).

5.3 Performance Evaluations

Time-Dependent Confounding Adjustments To investigate how well models learn unbiased
treatment responses from observational data, we trained all models on simulations with γc = γd = 10
(biased policy) and examine the root-mean-squared errors (RMSEs) of one-step-ahead predictions as
γ∗ is reduced. Both γ∗ parameters were set to be equal in this section for simplicity, i.e. γc = γd = γ.
Using the simulation model in Section 5.1, we simulated 10,000 paths to be used for model training,
1,000 for validation data used in hyperparameter optimization, and another 1,000 for out-of-sample
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Figure 4: Normalized RMSEs for One-Step-Ahead Predictions

testing. For linear and MSM models, which do not have hyperparameters to optimized, we combined
both training and validation datasets for model calibration.

Figure 4 shows the RMSE values of various models at different values of γ, with RMSEs normalized
with Vmax and reported in percentage terms. Here, we focus on the main comparisons of interest
– 1) linear models to provide a baseline on performance, 2) linear vs MSMs to evaluate traditional
methods for IPTWs, 3) Seq2Seq + logistic IPTWs vs MSMs for the benefits of the Seq2Seq model,
4) R-MSN vs Seq2Seq + logistic to determine the improvements of our model and RNN-estimated
IPTWs, and 5) BTRC/R-BTRC to benchmark against state-of-the-art methods. Additional results are
also documented in Appendix C for reference.

From the graph, R-MSNs displayed the lowest RMSEs across all values of γ, decreasing slightly
from a normalized RMSE of 1.02% at γ = 10 to 0.92% at γ = 0. Focusing on RMSEs at γ = 0,
R-MSNs improve MSMs by 80.9% and R-BTCs by 66.1%, demonstrating its effectiveness in learning
unbiased treatment responses from confounded data. The propensity networks also improve unbiased
treatment estimates by 78.7% (R-MSN vs. Seq2Seq + Logistic), indicating the benefits of more
flexible models for IPTW estimation. While the IPTWs of MSMs do provide small gains for linear
models, linear models still exhibit the largest unbiased RMSE across all benchmarks - highlighting
the limitations of linear models in estimating complex treatment responses. Bayesian models also
perform consistently across γ, with normalized RMSEs for R-BTRC decreasing from 2.09% to 1.91%
across γ = 0 to 10, but were also observed to slightly underperform linear models on the training
data itself. Part of this can potentially be attributed to model misspecification in the BTRC, which
assumes that treatment responses are linear time-invariant and independent of the baseline progression.
The differences in modeling assumptions can be seen from Equation 6, where chemotherapy and
radiotherapy contributions are modeled as multiplicative with V (t). This highlights the benefits of
the data-driven nature of the R-MSN, which can flexibly learn treatment response models of different
types.

Multi-step Prediction Performance To evaluate the benefits of the sequence-to-sequence archi-
tecture, we report the normalized RMSEs for multi-step prediction in Table 1, using the best model of
each category (R-MSN, MSM and R-BTRC). Once again, the R-MSN outperforms benchmarks for
all timesteps, beating MSMs by 61% on the training policy and 95% for the unbiased one. While the
R-BTRC does show improvements over MSMs for the unbiased treatment response, we also observe
a slight underperformance versus MSMs on the training policy itself, highlighting the advantages of
R-MSNs.

6 Conclusions

This paper introduces Recurrent Marginal Structural Networks - a novel learning approach for
predicting unbiased treatment responses over time, grounded in the framework of marginal structural
models. Networks are subdivided into two parts, a set of propensity networks to accurately compute
the IPTWs, and a sequence-to-sequence architecture to predict responses using only a planned
sequence of future actions. Using tests on a medically realistic simulation model, the R-MSN
demonstrated performance improvements over traditional methods in epidemiology and the state-of-
the-art models for joint treatment response prediction over multiple timesteps.
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Table 1: Normalized RMSE for Various Prediction Horizons τ

Ave. % Decrease
τ 1 2 3 4 5 in RMSE vs MSMs

Training MSM 1.67% 2.51% 3.12% 3.64% 4.09% -
Policy R-BTRC 2.09% 2.85% 3.50% 4.07% 4.58% -32% (↑ RMSE)
(γc = 10, γd = 10) R-MSN 1.02% 1.80% 1.90% 2.11% 2.46% +61%
Unbiased MSM 4.84% 5.29% 5.51% 5.65% 5.84% -
Assignment R-BTRC 1.91% 2.74% 3.34% 3.75% 4.08% +66%
(γc = 0, γd = 0) R-MSN 0.92% 1.38% 1.30% 1.22% 1.14% +95%
Unbiased MSM 3.85% 4.03% 4.32% 4.60% 4.91% -
Radiotherapy R-BTRC 1.74% 1.68% 2.14% 2.54% 2.91% +74%
(γc = 10, γd = 0) R-MSN 1.08% 1.66% 1.83% 1.98% 2.14% +84%
Unbiased MSM 1.84% 2.65% 3.09% 3.44% 3.83% -
Chemotherapy R-BTRC 1.16% 2.45% 2.97% 3.34% 3.64% +20%
(γc = 0, γd = 10) R-MSN 0.65% 1.13% 1.05% 1.17% 1.31% +87%
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Appendix

A Extended Related Works

Potential Outcomes with Cross-sectional Data. A simpler instantiation of the problem is to
estimate the effect of a treatment applied to subjects in a (static) cross-sectional dataset. This problem
has recently attracted a lot of attention in the machine learning community, and various interesting
ideas were proposed to account for selection bias [3, 41, 44]. Unfortunately, most of these works cast
the treatment effect estimation problem as one of learning under "covariate shift", where the goal is
to learn a model for the outcomes that generalizes well to a population were treatments are randomly
assigned to the subjects. Because of the sequential nature of the treatment assignment process in our
setup, estimating treatment effects under time-dependent confounding cannot be similarly framed as
a covariate shift problem, and hence the ideas developed in those works cannot be straightforwardly
applied to our setup.

Off-policy Evaluation. A closely related problem in the area of reinforcement learning is the
problem of off-policy evaluation using retrospective observational data, also known as "logged bandit
feedback" [38, 37, 18, 27, 28]. In this problem, the goal is to use sequences of states, actions and
rewards generated by a decision-maker that operates under an unknown policy in order to estimate
the expected reward of a given policy. In our setting, we focus on estimating a trajectory of outcomes
given an application of a treatment (or a sequence of treatments) rather than estimating the average
reward of a policy, and hence the "counterfactual risk minimization" framework in [37] would not
result in optimal estimates in our setup. However, our learning model – with a different objective
function– can be applied for the problem of off-policy evaluation.

B Background on Marginal Structural Models

In this section, we summarize the key relevant points from the seminal paper of Robins [31]. Without
loss of generality, we consider the case of univariate treatments, response variables and baseline
covariates here for simplicity.

Marginal structural models are typically considered in the context of follow-up studies, for example
in patients with HIV [31]. Time in the study is typically measured in relation to a fixed starting point,
such as the first follow-up date or time of diagnosis (i.e. t = 1). In such settings, marginal structural
models are used to measure the average treatment effect conditioned on a series of potential actions
and baseline covariate V taken at the start of the study, expressed in the form:

E [Yτ |a1, . . . , aτ , V ] = r(a1, . . . , aτ , X; Θ) (10)

where r(.) is a generic, typically linear, function with parameters Θ.

Time-Dependent Confounding. A full description of time-varying confounding can be found in
[23], with formal definitions in [14]. Time-dependent confounding in observational studies arises
as confounders have values which change over time - for example in cases where treatments are
moderated based on the patient’s response. A causal graph for 2-step study can be found in Figure 5,
where U denotes unmeasured factors. Note that U0, U1 do not have arrows to actions assignments,
reflecting the assumption of no unmeasured confounding.

Inverse Probability of Treatment Weighting From [31], under assumptions of no unmeasured
confounding, positivity, and correct model specification, the stabilized IPTWs can be expressed as:

SW (τ) =

τ∏
n=0

f(An|Ān−1)

f(An|Ān−1, L̄n, X)
(11)

Noting that V is defined to be a subset of L0 in [31]. Informally, they note the denominator to be
conditional probability of a treatment assignment given past observations of treatment assignments
and covariates and the numerator being that of treatment assignments alone, with the stabilized
weights representing the incremental adjustment between the two.
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Figure 5: Causal Graph of Time-dependent Confounding for 2-step Study

In real clinical settings, it is often desirable to determine the treatment response in relation to the
current follow up time, given past information. As such, we consider trajectories in relation to the
last follow-up time t, retaining the form of the stabilized weights of the MSM and using all past
observations, i.e.

SW (t, τ) =

t+τ∏
n=t

f(An|Ān−1)

f(An|Ān−1, L̄n, X)
(12)

C Additional Results for Experiments with Cancer Growth Simulation

Table 2 documents the full list of comparison for one-step-ahead predictions when tested for various
γ, using different combinations of prediction and IPTW models.

γ = 0 1 2 3 4 5
Linear (No IPTWs) 5.55% 4.81% 4.09% 3.44% 2.86% 2.42%
MSM 4.84% 4.19% 3.56% 3.00% 2.51% 2.15%
MSM (LSTM IPTWs) 4.26% 3.68% 3.13% 2.64% 2.22% 1.95%

Seq2Seq (No IPTWs) 1.52% 1.39% 1.28% 1.23% 1.17% 1.17%
Seq2Seq (Logistic IPTWs) 4.34% 3.28% 2.42% 1.83% 1.43% 1.23%
R-MSN 0.92% 0.89% 0.85% 0.84% 0.79% 0.84%

BTRC 2.73% 2.59% 2.42% 2.28% 2.11% 2.07%
R-BTRC 1.91% 1.81% 1.72% 1.69% 1.63% 1.71%

γ = 6 7 8 9 10
Linear (No IPTWs) 2.09% 1.80% 1.70% 1.65% 1.66%
MSM 1.90% 1.68% 1.64% 1.64% 1.67%
MSM (LSTM IPTWs) 1.77% 1.61% 1.62% 1.64% 1.69%

Seq2Seq (No IPTWs) 1.13% 1.07% 1.07% 1.09% 1.08%
Seq2Seq (Logistic IPTW) 1.12% 1.04% 1.04% 1.05% 1.04%
R-MSN 0.88% 0.88% 0.94% 1.00% 1.02%

BTRC 2.05% 2.01% 2.10% 2.16% 2.19%
R-BTRC 1.77% 1.79% 1.93% 2.02% 2.09%
Table 2: One-step-ahead Prediction Performance for Models Calibrated on γ = 10
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D Marginal Structural Models for Cancer Simulation

The probabilities required for the IPTWs of the standard MSM in Section 5.2 can be described using
logistic regression models with equations below:

f(At(k)|Āt) = σ
(
ω

(k)
1 (

t∑
n=0

Āc(n− 1)) + ω
(k)
2 (

t∑
n=0

Ād(n− 1))
)

(13)

f(At(k)|H̄t) = σ
(
ω

(k)
5 (

t∑
n=0

Āc(n− 1)) + ω
(k)
6

t∑
n=0

(Ād(n− 1))

+ω
(k)
7 V (t) + ω

(k)
8 V (t− 1) + ω

(k)
9 S

) (14)

f(Ct = 0|T > n, Ān−1) = σ
(
ω10 (

t∑
n=0

Āc(n− 1)) + ω11

t∑
n=0

(Ād(n− 1))
)

(15)

f(Ct = 0|T > n, L̄n−1, Ān−1,X) = σ
(
ω12 (

t∑
n=0

Āc(n− 1)) + ω13 (

t∑
n=0

Ād(n− 1))

+ω14 V (t− 1) + ω15 S
) (16)

where σ(.) the sigmoid function and ω∗ are regression coefficients.

The regression model for prediction is given by:

g(τ, a(t, τ − 1), H̄t) = β1 (

t∑
n=0

Āc(n− 1)) + β2 (

t∑
n=0

Ād(n− 1))

+β3 V (t) + β4 V (t− 1) + β5 S

(17)

E Algorithm Description for R-MSNs

To provide additional clarity on the relationship between the propensity networks and the Seq2Seq
model, the pseudocode in Algorithm 1 describes the training process mentioned in Section 4.3.

We first define function r(.)

(
.;θθθ(.)

)
to be RNN outputs given a vector of weights and hyperparameters

θθθ(.). We refer the reader to Section 3 for more information on the functions in the MSM framework
approximated by RNNs.

Propensity Networks Components of the propensity networks are used to compute the IPTWs
SW(t, τ) and SW ∗(t, τ) as defined in Equations 2 and 3 respectively. The probabilities in the
numerators and denominators are taken to be outputs of the propensity networks as below:

f(An|Ān−1) = rA1(An|Ān−1;θθθA1) (18)

f(An|H̄n) = rA2(An|H̄n;θθθA2) (19)

f(Cn = 0|T > n, Ān−1) = rC1(Ān−1;θθθC1) (20)

f(Cn = 0|T > n, L̄n−1, Ān−1,X) = rC1(L̄n−1, Ān−1,X;θθθC2) (21)

Encoder The encoder is also defined in a similar fashion below, with an additional function to
output the internal states of the LSTM g̃E1(L̄t, Āt,X;θθθE1). The encoder also computes the one-
step-ahead predictions, i.e. g(1, a(t, 0), H̄t) as per Equation 1, which is to define the prediction error
e(i, t, 1) and encoder loss Lencoder – i.e.Equations 4 and 5 respectively.

g(1, a(t, 0), H̄t) = rE(L̄t, Āt,X;θθθE) (22)

ht = r̃E(L̄t, Āt,X;θθθE) (23)
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Decoder The decoder then uses the seq2seq architecture to project encoder states ht forwards in
time, incorporating planned future actions at+τ . This is also combined with the IPTWs to define the
decoder loss Ldecoder in Equation 5.

g(τ, a(t, τ − 1), H̄t) = rD(ht, at+1, . . . , at+τ ;θθθD),∀τ > 1 (24)

Algorithm 1 Training Process for R-MSN
Input: Training/Validation Data L̄1:T , Ā1:T , X
Output: Neural network weights and hyperparameters for:

1) SW(t, τ) networks: θθθA1, θθθA2

2) SW ∗(t, τ) networks: θθθC1, θθθC2

3) Encoder network: θθθE1, θθθE2

4) Decoder network: θθθD1, θθθD2

1:
2: Step 1: Fit Propensity Networks

3: θθθA1 ← optimize

(∑
n,i binary_x_entropy(rA1(An(i)|Ān−1(i);θθθA1), An(i))

)
4: θθθA2 ← optimize

(∑
n,i binary_x_entropy(rA2(An(i)|H̄n(i);θθθA2), An(i))

)
5: θθθC1 ← optimize

(∑
n,i binary_x_entropy(rC1(Ān−1(i);θθθC1(i)), Cn(i))

)
6: θθθC2 ← optimize

(∑
n,i binary_x_entropy(rC2(L̄n−1(i), Ān−1(i),X(i);θθθC2), Cn(i))

)
7:
8: Step 2: Generate IPTWs
9: for patient i = 1 to I do

10: for t = 1 to T do
11: for τ = 1 to τmax do
12: SWi(t, τ)←

∏t+τ
n=t rA1(An(i)|Ān−1(i);θθθA1) / rA2(An(i)|H̄n(i);θθθA2)

13: SW ∗i (t, τ)←
∏t+τ
n=t rC1(Ān−1(i);θθθC1(i)) / rC2(L̄n−1(i), Ān−1(i),X(i);θθθC2)

14: end for
15: end for
16: end for
17:
18: Step 3: Fit Encoder
19: θθθE ← optimize

(
Lencoder

)
, as per Equation 5a

20:
21: Step 4: Compute Encoder States {Used to Initialize Decoder}
22: for patient i = 1 to I do
23: for t = 1 to T do
24: ht(i)← g̃E(L̄t(i), Āt(i),X(i);θθθE)
25: end for
26: end for
27:
28: Step 5: Fit Decoder
29: θθθD ← optimize

(
Ldecoder

)
, as per Equation 5b
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F Hyperparameter Optimization for R-MSN

For the R-MSN, 10,000 simulated paths were used for backpropagation of the network (training data),
and 1,000 simulated paths for hyperparameter optimization (validation data) - with another 1,000 for
out-of-sample testing. Given the differences in state initialization requirements and data batching
of the decoder, we report the hyperparameter optimization settings separately for the decoder. The
optimal parameters of all networks can be found in Table 5.

Settings for Propensity Networks and Encoder Hyperparameter optimization was performed
using 50 iterations of random search, using the hyperparameter ranges in Table 3, and networks
were trained using the ADAM optimizer [20]. For each set of sampled, simulation trajectories were
grouped into B minibatches and networks were trained for a maximum of 100 epochs. LSTM state
sizes were also defined in relation to the number of inputs for the network C.

Table 3: Hyperparameter Search Range for Propensity Networks and Encoder

Hyperparameter Search Range
Hyperparameter Search Iterations 50
Dropout Rate 0.1 , 0.2 , 0.3, 0.4, 0.5
State Size 0.5C, 1C, 2C, 3C, 4C
Minibatch Size 64, 128, 256
Learning Rate 0.01, 0.005, 0.001
Max Gradient Norm 0.5, 1.0, 2.0

Settings for Decoder To train the decoder, the data was reformatted into sequences of
(ht, {Lt+1, . . . ,Lt+τmax

}, {At, . . . ,At+τmax
,X}), such that each patient i max Ti contributions

to the training dataset. Given the T -fold increase in the number of rows in the overall dataset, we
made a few modifications to the range of hyperparameter search, including increasing the size of
minibatches and reducing the learning rate and number of iterations of hyperparameter search. The
full range of hyperparameter search can be found in Table 4 and networks are trained for maximum
of 100 epochs as well.

Table 4: Hyperparameter Search Range for Decoder

Hyperparameter Search Range
Iterations of Hyperparameter Search 20
Dropout Rate 0.1 , 0.2 , 0.3, 0.4, 0.5
State Size 1C, 2C, 4C, 8C, 16C
Minibatch Size 256, 512, 1024
Learning Rate 0.01, 0.005, 0.001, 0.0001
Max Gradient Norm 0.5, 1.0, 2.0, 4.0

Table 5: Optimal Hyperparameters for R-MSN

Dropout Rate State Size Minibatch Size Learning Rate Max Norm
Propensity Networks
f(An|Ān−1) 0.1 6 (3C) 128 0.01 2.0
f(An| ¯̂Hn) 0.1 16 (4C) 64 0.01 1.0
f(Cn = 0|T > n, Ān−1) 0.2 4 (2C) 128 0.01 0.5
f(Ct = 0|T > n, L̄n−1, Ān−1,X) 0.1 16 (4C) 64 0.01 2.0

Prediction Networks
Encoder 0.1 16 (4C) 64 0.01 0.5
Decoder + Memory Adapter 0.1 16 (8C) 512 0.001 4.0
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G Hyperparameter Optimization for BTRC

The parameters of the BTRC were optimized using the maximum-a-posteriori (MAP) estimation,
using the same prior for global parameters and approach defined in [35]. While the model was
replicated as faithfully to the specifications as possible, two slight modifications were made to adapt
it to our problem. Firstly, the sparse GP approximations were avoided to ensure that we had as
much accuracy as possible - using Gaussian Process with full covariance matrices for the random
effects components. Secondly, as our dataset was partitioned to ensure that patient observed in the
training set were not present in the test set, this means that any patient-specific parameters learned
would not be used in the testing set itself. As such, to avoid optimizing on the test set, we adopt
the standard approach for prediction in generalized linear mixed models [25], using the average
population parameters, i.e. the global MAP estimate, for prediction.

Hyperparameter optimization was performed using grid search on the optimizer settings defined in 6,
and was performed for a maximum of 5000 epochs per configuration. As convergence was observed
to be slow for a number of settings, we also trained a reduced form of the full BTRC model without
the "shared" parameters (indicated by ’-’ in Table7) to reduce the number of parameters of the model.
The optimal global hyperparameters and optimizer settings can be found in Table 7.

Table 6: Hyperparameter Grid for BTRC

Hyperparameter Search Range
Minibatch Size 2, 5, 10, 100, 500
Learning Rate 10−1, 10−2, 10−3, 10−4, 10−5

Table 7: MAP Estimates for BTRC

BTRC R-BTRC
χ̄chemo, χ̄radio (-1.3729433, 0.065) (-1.162, 0.007)
ᾱchemo, ᾱradio,
ᾱ

(0)
chemo, ᾱ

(0)
radio

(0.760, 0.367),
(0.207, 0.490)

(0.547, 0.367),
( -, -)

β̄chemo,β̄radio,
β̄

(0)
chemo, β̄

(0)
radio

(0.595, 0.367),
(0.204, 0.368)

(0.429, 0.368),
( -, -)

γ̄ -0.27 -0.262
ω̄ -0.928 -
l̄g 1.223 -
κ̄ 0.786 0.867
l̄v 1.092 1.151
σ̄2 0.036 0.042
Learning Rate 0.001 0.001
Minibatch Size 100 100
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