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Clinicians are routinely faced with the practical challenge of integrating high-dimensional

data in order to make the most appropriate clinical decision from a large set of possible

actions for a given patient. Current clinical decisions continue to rely on clinical practice

guidelines, which are aimed at a representative patient rather than an individual patient who

may display other characteristics. Unfortunately, if it were necessary to learn everything

from the limited medical data, the problem would be completely intractable because of the

high-dimensional feature space and large number of medical decisions. My thesis aims to

design and analyze algorithms that learn and exploit the structure in the medical data –

for instance, structures among the features (relevance relations) or decisions (correlations).

The proposed algorithms have much in common with the works in online and counterfactual

learning literature but unique challenges in the medical informatics lead to numerous key

differences from existing state of the art literature in Machine Learning (ML) and require

key innovations to deal with large number of features and treatments, heterogeneity of the

patients, sequential decision-making, and so on.
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CHAPTER 1

Introduction

1.1 Motivation

Should a cancer patient get chemotherapy or radiotherapy? Does a hospitalized kidney

disease patient need a dialysis or hemofiltration? How do these different treatment options

impact the wellness of the patient over time? Such treatment planning and management

questions have always been in the heart of daily clinical practice; however, the current

practice is short of rigorous domain-knowledge guidelines that can accurately prescribe a

well-managed plan of treatments for an individual patient over time. Specific examples of

such kind of clinical problems include: deciding on a breast cancer treatment plan, deciding

on a sequence of treatments over time for adults with primary immune thrombocytopenia,

and selecting the right renal replacement therapy for a kidney disease patient whose illness

is progressing. A common trait shared by all those problems is the need to estimate the

response of an individual patient to a specific intervention over time. Accurate treatment

response estimates would indeed allow for more efficient treatment plans that maximize the

long-term clinical benefit for individual patients.

With the unprecedentedly vast availability of modern electronic health records (EHRs)

in most major hospitals and health-care facilities, constructing data-driven models for treat-

ment response has become more viable than ever before. The main focus of existing lit-

erature is on determining the optimal treatment online or estimating the treatment effects

from observational EHR data with the outcomes of the treatments that are not undertaken

(counterfactuals) missing. However, there are structures among the features (relevance re-

lations) or decisions (correlations) in the EHR data. For example, treatments with similar
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chemical composition may have similar effects on the patients, and treatments effects are

only dependent on the relevant features and using irrelevant features could hurt the perfor-

mance of the algorithm significantly. The existing research does not address the structures

in medical data sufficiently in order to make (treatment) decisions.

1.2 Contribution of Dissertation

My dissertation develops novel practical algorithms for learning and exploiting the relevance

relations among the features and correlations in order to estimate treatment effects and make

optimal medical decisions. I answer the following questions:

• Can we develop systematic algorithms in order to estimate personalized treatment

policy from a limited EHR data with high-dimensional feature space?

• What happens if there are many choices for the treatment? Do the correlations among

the treatments help us learn faster?

• What happens if the clinician has the choice of obtaining more information (by ordering

medical tests) by paying a cost (money, inconvenience, etc.) before treatment?

• Can we develop sequential patient recruitment/allocation algorithms to improve the

learning power in Randomized Clinical Trials?

1.2.1 Chapter 2: Global Bandits

Multi-armed bandits (MAB) model sequential decision making problems, in which a learner

sequentially chooses arms with unknown reward distributions in order to maximize its cu-

mulative reward. Most of the prior work on MAB assumes that the reward distributions of

each arm are independent. But in a wide variety of decision problems in medical informatics

including drug dosage control, the expected rewards of different arms are correlated, so that

selecting one arm provides information about the expected rewards of other arms as well.

This chapter (based on [ATS18, ATS15a]) proposes and analyzes a class of models of such

2



decision problems, which we call global bandits. In the case in which rewards of all arms

are deterministic functions of a single unknown parameter, this chapter constructs a greedy

policy that achieves bounded regret, with a bound that depends on the single true parameter

of the problem. Hence, this policy selects suboptimal arms only finitely many times with

probability one. For this case we also obtain a bound on regret that is independent of the true

parameter; this bound is sub-linear, with an exponent that depends on the informativeness

of the arms. This chapter also proposes a variant of the greedy policy that achieves Õ(
√
T )

worst-case and O(1) parameter dependent regret.

1.2.2 Chapter 3: Constructing Effective Policies from Observational Datasets

with Many Features

This chapter (based on [AZF16]) proposes a novel approach for constructing effective per-

sonalized policies when the observed data lacks counter-factual information, is biased and

possesses many features. The approach is applicable in a wide variety of settings from health-

care to advertising to education to finance. These settings have in common that the decision

maker can observe, for each previous instance, an array of features of the instance, the action

taken in that instance, and the reward realized – but not the rewards of actions that were

not taken: the counterfactual information. Learning in such settings is made even more

difficult because the observed data is typically biased by the existing policy (that generated

the data) and because the array of features that might affect the reward in a particular

instance – and hence should be taken into account in deciding on an action in each partic-

ular instance – is often vast. The approach presented here estimates propensity scores for

the observed data, infers counterfactuals, identifies a (relatively small) number of features

that are (most) relevant for each possible action and instance, and prescribes a policy to be

followed. Comparison of the proposed algorithm against state-of-art algorithms on actual

datasets demonstrates that the proposed algorithm achieves a significant improvement in

performance.

3



1.2.3 Chapter 4: Counterfactual Policy Optimization Using Domain Adversar-

ial Neural Networks

This chapter (based on [?,AJS18]) extends the previous chapter on policy optimization from

observational studies. It presents theoretical bounds on estimation errors of counterfactuals

from observational data by making connections to domain adaptation theory. It also presents

a principled way of choosing optimal policies using domain adversarial neural networks.

The experiments on semi-synthetic breast cancer shows that our algorithm significantly

outperforms the existing methods.

1.2.4 Chapter 5: Online Decision Making with Costly Observations

The decision-maker needs to learn simultaneously what observations to make and what

actions to take. This chapter (based on [AS16]) incorporates the information acquisition

decision into an online learning framework. We propose two different algorithms for this

dual learning problem: Sim-OOS and Seq-OOS where observations are made simultaneously

and sequentially, respectively. A regret that is sublinear in time is proved for both cases. The

developed framework and algorithms can be used in medical informatics in which collecting

information prior to making decisions is costly. Our algorithms are validated in a breast

cancer example setting in which we show substantial performance gains for our proposed

algorithms.

1.2.5 Chapter 6: Sequential Patient Allocation for Randomized Controlled Tri-

als

Randomized Controlled Trials (RCTs) have became to gold standard comparing the effect

and value of treatment(s) with respect to control group. Most of the existing RCTs allocate

the patients into treatment groups by simply repeated fair coin tossing. However, we show

that this approach is not optimal when the standard deviations of treatment groups differ.

In this chapter, we formulate this problem as Markov Decision Process (MDP) by assum-

ing a Bayesian prior on the parameters of the treatment outcomes and propose Optimistic

4



Knowledge Gradient (Opt-KG), an approximate solution to MDP, to allocate the patients

into treatment groups so that both estimation error of subgroup-level treatment effects or

convex combination of type-I and type-II errors are minimized. This chapter illustrates our

algorithm and its effectiveness on a synthetic dataset and verifies that Opt-KG significantly

outperforms the repeated fair coin tossing as the deviations of treatment groups differ.
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CHAPTER 2

Global Bandits

2.1 Introduction

Multi-armed bandits (MAB) provide powerful models and algorithms for sequential decision-

making problems in which the expected reward of each arm (action) is unknown. The goal

in MAB problems is to design online learning algorithms that maximize the total reward,

which turns out to be equivalent to minimizing the regret, where the regret is defined as the

difference between the total expected reward obtained by an oracle that always selects the

best arm based on complete knowledge of arm reward distributions, and that of the learner,

who does not know the expected arm rewards beforehand. Classical K-armed MAB [LR85]

does not impose any dependence between the expected arm rewards. But in a wide variety

of examples such as drug dosage, the expected rewards of different arms are correlated, so

that selecting one arm provides information about the expected rewards of other arms as

well. This chapter proposes and analyzes such a MAB model, which we call Global Bandits

(GB).

In GB, the expected reward of each arm is a function of a single global parameter. It

is assumed that the learner knows these functions but does not know the true value of

the parameter. For this problem, this chapter proposes a greedy policy, which constructs

an estimate of the global parameter by taking a weighted average of parameter estimates

computed separately from the reward observations of each arm. The proposed policy achieves

bounded regret, where the bound depends on the value of the parameter. This implies that

the greedy policy learns the optimal arm, i.e., the arm with the highest expected reward, in

finite time. In addition, a worst-case (parameter independent) bound on the regret of the
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greedy policy is obtained. This bound is sub-linear in time, and its time exponent depends

on the informativeness of the arms, which is a measure of the strength of correlation between

expected arm rewards.

GBs encompass the model studied in [MRT09], in which it is assumed that the expected

reward of each arm is a linear function of a single global parameter. This is a special case of

the more general model we consider in this paper, in which the expected reward of each arm

is a Hölder continuous, possibly non-linear function of a single global parameter. On the

technical side, non-linear expected reward functions significantly complicates the learning

problem. When the expected reward functions are linear, then the information one can

infer about the expected reward of arm X by an additional single sample of the reward

from arm Y is independent of the history of previous samples from arm Y .1 However, if

reward functions are non-linear, then the additional information that can be inferred about

the expected reward of arm X by a single sample of the reward from arm Y is biased.

Therefore, the previous samples from arm X and arm Y needs to be incorporated to ensure

that this bias asymptotically converges to 0.

Many applications can be formalized as GBs. An example is clinical trials involving

similar drugs (e.g., drugs with a similar chemical composition) or treatments which may

have similar effects on the patients.

Example 1: Let yt be the dosage level of the drug for patient t and xt be the response

of patient t. The relationship between the drug dosage and patient response is modeled

in [LR78] as xt = M(yt; θ∗) + εt, where M(·) is the response function, θ∗ is the slope if the

function is linear or the elasticity if the function is exponential or logistic, and εt is i.i.d. zero

mean noise. For this model, θ∗ becomes the global parameter and the set of drug dosage

levels becomes the set of arms.

1The additional information about the expected reward of arm X that can be inferred from obtaining
sample reward r from arm Y is the same as the additional information about the expected reward of arm X
that could be inferred from obtaining the sample reward L(r) from arm X itself, where L is a linear function
that depends only on the reward functions themselves.
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2.2 Contribution and Key Results

The main contributions in this chapter can be summarized as follows:

• It proposes a non-linear parametric model for MABs, which we refer to as GBs, and

a greedy policy, referred to as Weighted Arm Greedy Policy (WAGP), which achieves

bounded regret.

• It defines the concept of informativeness, which measures how well one can estimate

the expected reward of an arm by using rewards observed from the other arms, and

then, prove a sublinear in time worst-case regret bound for WAGP that depends on

the informativeness.

• It also proposes another learning algorithm called the Best of UCB and WAGP (BUW),

which fuses the decisions of the UCB1 [ACF02a] and WAGP in order to achieve Õ(
√
T )2

worst-case and O(1) parameter dependent regrets.

2.3 Related Work

There is a wide strand of literature on MABs including finite armed stochastic MAB [LR85,

ACF02a, Aue02, GC11], Bayesian MAB [KOG12, Tho33, AG12a, KKE13, BL13], contextual

MAB [LZ08, Sli14a, AG13] and distributed MAB [TS15a, XTZ15, LZ13]. Depending on the

extent of informativeness of the arms, MABs can be categorized into three: non-informative,

group informative and globally informative MABs.

2.3.1 Non-informative MAB

In this chapter, a MAB is called as non-informative if the reward observations of any arm do

not reveal any information about the rewards of the other arms. Example of non-informative

2O(·) is the Big O notation, Õ(·) is the same as O(·) except it hides terms that have polylogarithmic
growth.
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MABs include finite armed stochastic [LR85, ACF02a] and non-stochastic [ACF95] MABs.

Lower bounds derived for these settings point out to the impossibility of bounded regret.

2.3.2 Group-informative MAB

A MAB is called group-informative if the reward observations from an arm provides infor-

mation about a group of other arms. Examples include linear contextual bandits [LCL10,

CLR11], multi-dimensional linear bandits [APS11,RT10,DHK08,APS12,CK11] and combi-

natorial bandits [CWY13, GKJ12]. In these works, the regret is sublinear in time and in

the number of arms. For example, [APS11] assumes a reward structure that is linear in an

unknown parameter and shows a regret bound that scales linearly with the dimension of the

parameter. It is not possible to achieve bounded regret in any of the above settings since

multiple arms are required to be selected at least logarithmically many times in order to

learn the unknown parameters.

Another related work [MS11] studies a setting that interpolates between the bandit (par-

tial feedback) and experts (full feedback) settings. In this setting, the decision-maker obtains

not only the reward of the selected arm but also an unbiased estimate of the rewards of a

subset of the other arms, where this subset is determined by a graph. This is not possible

in the proposed setting due to the non-linear reward structure and bandit feedback.

2.3.3 Globally-informative MAB

A MAB is called globally-informative if the reward observations from an arm provide in-

formation about the rewards of all the arms [LM14, MRT09]. GB belongs to the class of

globally-informative MAB and includes the linearly-parametrized MAB [MRT09] as a sub-

class. Hence, the results obtained in this chapter reduces to the results of [MRT09] for the

special case when expected arm rewards are linear in the parameter.

Table 2.1 summarizes the GB model and theoretical results, and compares them with the

existing literature in the parametric MAB models. Although GB is more general than the

model in [MRT09], both WAGP and BUW achieves bounded parameter-dependent regret,
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GB (our work) [APS11,RT10,DHK08,APS12,CK11] [MRT09] [FCG11]

Parameter dimension Single Multi Single Multi

Reward functions Non-linear Linear Linear Generalized linear

Worst-case regret BUW: Õ(
√
T ),

WAGP: O(T 1− γ
2 )

Õ(
√
T ) O(

√
T ) Õ(

√
T )

Parameter dependent

regret

BUW: O(1),

WAGP: O(1)

O (log T ) O(1) O
(
(log T )3

)

Table 2.1: Comparison with related works

and BUW is able to achieve the same worst-case regret as the policy in [MRT09]. On the

other hand, although the linear MAB models are more general than GB, it is not possible

to achieve bounded regret in these models.

2.4 Problem Formulation

2.4.1 Arms, Reward Functions and Informativeness

There are K arms indexed by the set K := {1, . . . , K}. The global parameter is denoted by

θ∗, which belongs to the parameter set Θ that is taken to be the unit interval for simplicity

of exposition. The random variable Xk,t denotes the reward of arm k at time t. Xk,t is

drawn independently from a distribution νk(θ∗) with support Xk ⊆ [0, 1]. The expected

reward of arm k is a Hölder continuous, invertible function of θ∗, which is given by µk(θ∗) :=

Eνk(θ∗)[Xk,t], where Eν [·] denotes the expectation taken with respect to distribution ν. This

is formalized in the following assumption.

Assumption 1. (i) For each k ∈ K and θ, θ′ ∈ Θ there exists D1,k > 0 and 1 < γ1,k, such

that

|µk(θ)− µk(θ′)| ≥ D1,k|θ − θ′|γ1,k .

(ii) For each k ∈ K and θ, θ′ ∈ Θ there exists D2,k > 0 and 0 < γ2,k ≤ 1, such that

|µk(θ)− µk(θ′)| ≤ D2,k|θ − θ′|γ2,k .

The first assumption ensures that the reward functions are monotonic and the second

assumption, which is also known as Hölder continuity, ensures that the reward functions are
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smooth. These assumptions imply that the reward functions are invertible and the inverse

reward functions are also Hölder continuous. Moreover, they generalize the model proposed

in [MRT09], and allow us to model real-world scenarios described in Examples 1 and 2, and

propose algorithms that achieve bounded regret.

Some examples of the reward functions that satisfy Assumption 1 are: (i) exponential

functions such as µk(θ) = a exp(bθ) where a > 0, (ii) linear and piecewise linear functions,

and (iii) sub-linear and super-linear functions in θ which are invertible in Θ such as µk(θ) =

aθγ where γ > 0 and Θ = [0, 1].

Proposition 1. Define µ
k

= minθ∈Θ µk(θ) and µk = maxθ∈Θ µk(θ). Under Assumption 1,

the following are true: (i) For all k ∈ K, µk(·) is invertible. (ii) For all k ∈ K and for all

x, x′ ∈ [µ
k
, µk],

|µ−1
k (x)− µ−1

k (x′)| ≤ D̄1,k|x− x′|γ̄1,k

where γ̄1,k = 1
γ1,k

and D̄1,k =
(

1
D1,k

) 1
γ1,k .

Invertibility of the reward functions allows us to use the rewards obtained from an arm

to estimate the expected rewards of other arms. Let γ̄1 and γ2 be the minimum exponents

and D̄1, D2 be the maximum constants, that is

γ̄1 = min
k∈K

γ̄1,k, γ2 = min
k∈K

γ2,k,

D̄1 = max
k∈K

D̄1,k, D2 = max
k∈K

D2,k.

Definition 1. The informativeness of arm k is defined as γk := γ̄1,kγ2,k. The informativeness

of the GB instance is defined as γ := γ̄1γ2.

The informativeness of arm k measures the extent of information that can be obtained

about the expected rewards of other arms from the rewards observed from arm k. As shown

in later sections, when the informativeness is high, one can form better estimates of the

expected rewards of other arms by using the rewards observed from arm k.
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2.4.2 Definition of the Regret

The learner knows µk(·) for all k ∈ K but does not know θ∗. At each time t it selects one

of the arms, denoted by It, and receives the random reward XIt,t. The learner’s goal is to

maximize its cumulative reward up to any time T .

Let µ∗(θ) := maxk∈K µk(θ) be the maximum expected reward and K∗(θ) := {k ∈ K :

µk(θ) = µ∗(θ)} be the optimal set of arms for parameter θ. In addition, let k∗(θ) denote an

arm that is optimal for parameter θ. The policy that selects one of the arms in K∗(θ∗) is

referred to as the oracle policy. The learner incurs a regret (loss) at each time it deviates from

the oracle policy. Define the one-step regret at time t as the difference between the expected

reward of the oracle policy and the learner, which is given by rt(θ∗) := µ∗(θ∗) − µIt(θ∗).

Based on this, the cumulative regret of the learner by time T (also referred to as the regret

hereafter) is defined as

Reg(θ∗, T ) := E

[
T∑
t=1

rt(θ∗)

]
.

Maximizing the reward is equivalent to minimizing the regret. In the seminal work by Lai

and Robbins [LR78], it is shown that the regret becomes infinite as T grows for the classical

K-armed bandit problem. On the other hand, limT→∞Reg(θ∗, T ) < ∞ will imply that the

learner deviates from the oracle policy only finitely many times.

2.5 Weighted-Arm Greedy Policy (WAGP)

A greedy policy called the Weighted-Arm Greedy Policy (WAGP) is proposed in this section.

The pseudocode of WAGP is given in Algorithm 1. The WAGP consists of two phases: arm

selection phase and parameter update phase.

Let Nk(t) denote the number of times arm k is selected until time t, and X̂k,t denote the

reward estimate, θ̂k,t denote the global parameter estimate and wk(t) denote the weight of

arm k at time t. Initially, all the counters and estimates are set to zero. In the arm selection

phase at time t > 1, the WAGP selects the arm with the highest estimated expected reward:

It ∈ arg maxk∈K µk(θ̂t−1) where θ̂t−1 is the estimate of the global parameter calculated at the

12



Algorithm 1 The WAGP

1: Inputs: µk(·) for each arm k
2: Initialization: wk(0) = 0, θ̂k,0 = 0, X̂k,0 = 0, Nk(0) = 0 for all k ∈ K, t = 1
3: while t > 0 do
4: if t = 1 then
5: Select arm I1 uniformly at random from K
6: else
7: Select arm It ∈ arg maxk∈K µk(θ̂t−1) (break ties randomly)
8: end if
9: X̂k,t = X̂k,t−1 for all k ∈ K \ It

10: X̂It,t =
NIt (t−1)X̂It,t−1+XIt,t

NIt (t−1)+1

11: θ̂k,t = arg minθ∈Θ |µk(θ)− X̂k,t| for all k ∈ K
12: NIt(t) = NIt(t− 1) + 1
13: Nk(t) = Nk(t− 1) for all k ∈ K \ It
14: wk(t) = Nk(t)/t for all k ∈ K
15: θ̂t =

∑K
k=1 wk(t)θ̂k,t

16: end while

end of time t− 1.3,4

In the parameter update phase the WAGP updates: (i) the estimated reward of selected

arm It, denoted by X̂It,t, (ii) the global parameter estimate of the selected arm It, denoted

by θ̂It,t, (iii) the global parameter estimate θ̂t, and (iv) the counters Nk(t). The reward of

estimate of arm It is updated as:

X̂It,t =
NIt(t− 1)X̂It,t−1 +XIt,t

NIt(t− 1) + 1
.

The reward estimates of the other arms are not updated. The WAGP constructs estimates

of the global parameter from the rewards of all the arms and combines their estimates using

a weighted sum. The WAGP updates θ̂It,t of arm It in a way that minimizes the distance

between X̂It,t and µIt(θ), i.e., θ̂It,t = arg minθ∈Θ |µIt(θ) − X̂It,t|. Then, the WAGP sets the

global parameter estimate as θ̂t =
∑K

k=1wk(t)θ̂k,t where wk(t) = Nk(t)/t. Hence, the WAGP

gives more weights to the arms with more reward observations since the confidence on their

estimates are higher.

3The ties are broken randomly.

4For t = 1, the WAGP selects a random arm since there is no prior reward observation that can be used
to estimate θ∗.
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2.6 Regret Analysis of the WAGP

2.6.1 Preliminaries for the Regret Analysis

In this subsection, the tools that will be used in deriving the regret bounds for the WAGP

will be defined. Consider any arm k ∈ K. Its optimality region is defined as

Θk := {θ ∈ Θ : k ∈ K∗(θ)}.

Note that Θk can be written as union of intervals in each of which arm k is optimal. Each

such interval is called an optimality interval. Clearly, the following holds:
⋃
k∈KΘk = Θ. If

Θk = ∅ for an arm k, this implies that there exists no global parameter value for which arm

k is optimal. Since there exists an arm k′ such that µk′(θ) > µk(θ) for any θ ∈ Θ for an arm

with Θk = ∅, the greedy policy will discard arm k after t = 1. Therefore, without loss of

generality, it is assumed that Θk 6= ∅ for all k ∈ K. The suboptimality gap of arm k ∈ K given

global parameter θ∗ ∈ Θ is defined as δk(θ∗) := µ∗(θ∗)−µk(θ∗). The minimum suboptimality

gap given global parameter θ∗ ∈ Θ is defined as δmin(θ∗) := mink∈K\K∗(θ∗) δk(θ∗).

Let Θsub(θ∗) be the suboptimality region of the global parameter θ∗, which is defined as

the subset of the parameter space in which none of the arms in K∗(θ∗) is optimal, i.e.,

Θsub(θ∗) := Θ \
⋃

k′∈K∗(θ∗)

Θk′ .

As shown later, the global parameter estimate will converge to θ∗. However, if θ∗ lies close

to Θsub(θ∗), the global parameter estimate may fall into the suboptimality region for a large

number of times, thereby resulting in a large regret. In order to bound the expected number

of times this happens, we define the suboptimality distance as the smallest distance between

the global parameter and the suboptimality region.

Definition 2. For a given global parameter θ∗, the suboptimality distance is defined as

∆min(θ∗) :=

 infθ′∈Θsub(θ∗) |θ∗ − θ′| if Θsub(θ∗) 6= ∅

1 if Θsub(θ∗) = ∅
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Figure 2.1: Illustration of the minimum suboptimality gap and the suboptimality distance.

From the definition of the suboptimality distance it is evident that the proposed policy

always selects an optimal arm in K∗(θ∗) when θ̂t is within ∆min(θ∗) of θ∗. For notational

brevity, we also use ∆∗ := ∆min(θ∗) and δ∗ := δmin(θ∗). An illustration of the suboptimality

gap and the suboptimality distance is given in Fig. 2.1 for the case with 3 arms and reward

functions µ1(θ) = 1−
√
θ, µ2(θ) = 0.8θ and µ3(θ) = θ2, θ ∈ [0, 1].

The notations frequently used in the regret analysis is highlighted in Table 2.2.

2.6.2 Worst-case Regret Bounds for the WAGP

First, we show that parameter estimate of the WAGP converges in the mean-squared sense.

15



K∗(θ∗) set of optimal arms for θ∗
µ∗(θ∗) expected reward of optimal arms
It selected arm at time t

θ̂t global parameter estimate at time t
δ∗ = δmin(θ∗) minimum suboptimality gap
∆∗ = ∆min(θ∗) minimum suboptimality distance
Θk optimality region of arm k
Θsub(θ∗) suboptimality region of θ∗
γ informativeness of the arms

Table 2.2: Frequently used notations in regret analysis

Theorem 1. Under Assumption 1, the global parameter estimate converges to true value of

global parameter in mean-squared sense, i.e., limt→∞ E
[
|θ̂t − θ∗|2

]
= 0.

The following theorem bounds the expected one-step regret of the WAGP.

Theorem 2. Under Assumption 1, we have for WAGP E [rt(θ∗)] ≤ O(t−
γ
2 ).

Theorem 2 proves that the expected one-step regret of the WAGP converges to zero.5

This is a worst-case bound in the sense that it holds for any θ∗. Using this result, the

following worst-case regret bound for the WAGP is derived.

Theorem 3. Under Assumption 1, the worst-case regret of WAGP is

sup
θ∗∈Θ

Reg(θ∗, T ) ≤ O(K
γ
2T 1− γ

2 ).

Note that the worst-case regret bound is sublinear both in the time horizon T and the

number of arms K. Moreover, it depends on the informativeness γ. When the reward

functions are linear or piecewise linear, we have γ = 1, which is an extreme case of our

model; hence, the worst-case regret is O(
√
T ), which matches with (i) the worst-case regret

bound of the standard MAB algorithms in which a linear estimator is used [BC12], and (ii)

the bounds obtained for the linearly parametrized bandits [MRT09].

5The asymptotic notation is only used for a succinct representation, to hide the constants and highlight
the time dependence. This bound holds not just asymptotically but for any finite t.
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2.6.3 Parameter Dependent Regret Bounds for the WAGP

This section shows a bound on the parameter dependent regret of the WAGP. First, several

constants that will appear in the regret bound are introduced.

Definition 3. C1(∆∗) is the smallest integer τ such that τ ≥
(
D̄1K
∆∗

) 2
γ̄1 log(τ)

2
and C2(∆∗) is

the smallest integer τ such that τ ≥
(
D̄1K
∆∗

) 2
γ̄1 log(τ).

Closed form expressions for these constants can be obtained in terms of the glog function

[Kal01], for which the following equivalence holds: y = glog(x) if and only if x = exp(y)
y

.

Then, we have

C1(∆∗) =
⌈1

2

(
D̄1K

∆∗

) 2
γ̄1

glog

(
1

2

(
D̄1K

∆∗

) 2
γ̄1

)⌉
,

C2(∆∗) =
⌈(D̄1K

∆∗

) 2
γ̄1

glog

((
D̄1K

∆∗

) 2
γ̄1

)⌉
, .

Next, we define the expected regret incurred between time steps T1 and T2 given θ∗

as Rθ∗(T1, T2) :=
∑T2

t=T1
E [rt(θ∗)] . The following theorem bounds the parameter dependent

regret of the WAGP.

Theorem 4. Under Assumption 1, the regret of the WAGP is bounded as follows:

(i) For 1 ≤ T < C1(∆∗), the regret grows sublinearly in time, i.e.,

Rθ∗(1, T ) ≤ S1 + S2T
1− γ

2

where S1 and S2 are constants that are independent of the global parameter θ∗, whose exact

forms are given in Appendix 2.8.6.

(ii) For C1(∆∗) ≤ T < C2(∆∗), the regret grows logarithmically in time, i.e.,

Rθ∗(C1(∆∗), T ) ≤ 1 + 2K log

(
T

C1(∆∗)

)
.

(iii) For T ≥ C2(∆∗), the growth of the regret is bounded, i.e.,

Rθ∗(C2(∆∗), T ) ≤ K
π2

3
.

Thus, we have limT→∞Reg(θ∗, T ) <∞, i.e., Reg(θ∗, T ) = O(1).
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Theorem 4 shows that the regret is inversely proportional to the suboptimality distance

∆∗, which depends on θ∗. The regret bound contains three regimes of growth: Initially

the regret grows sublinearly until time threshold C1(∆∗). After this, it grows logarithmically

until time threshold C2(∆∗). Finally, the growth of the regret is bounded after time threshold

C2(∆∗). In addition, since lim∆∗→0C1(∆∗) = ∞, in the worst-case, the bound given in

Theorem 4 reduces to the one given in Theorem 3. It is also possible to calculate a Bayesian

risk bound for the WAGP by assuming a prior over the global parameter space. This risk

bound is given to be O(log T ) when γ = 1 and O(T 1−γ) when γ < 1 (see [ATS15b]).

Theorem 5. The sequence of arms selected by the WAGP converges to the optimal arm

almost surely, i.e., limt→∞ It ∈ K∗(θ∗) with probability 1.

Theorem 5 implies that a suboptimal arm is selected by the WAGP only finitely many

times. This is the major difference between GB and the classical MAB [LR85,ACF02a,RV15],

in which every arm needs to be selected infinitely many times asymptotically by any good

learning algorithm.

Remark 1. Assumption 1 ensures that the parameter dependent regret is bounded. When

this assumption is relaxed, bounded regret may not be achieved, and the best possible regret

becomes logarithmic in time. For instance, consider the case when the reward functions are

constant over the global parameter space, i.e., µk(θ∗) = mk for all θ∗ ∈ [0, 1] where mk is a

constant. This makes the reward functions non-invertible. In this case, the learner cannot

use the rewards obtained from the other arms when estimating the rewards of arm k. Thus,

it needs to learn mk of each arm separately, which results in logarithmic in time regret when

a policy like UCB1 [ACF02a] is used. This issue still exists even when there are only finitely

many possible solutions to µk(θ∗) = x for some x, in which case some of the arms should be

selected at least logarithmically many times to rule out the incorrect global parameters.

2.6.4 Lower Bound on the Worst-case Regret

Theorem 3 shows that the worst-case regret of the WAGP is O(T 1− γ
2 ), which implies that

the regret decreases with γ.
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Theorem 6. For T ≥ 8 and any policy, the parameter dependent regret is lower bounded by

Ω(1) and the worst-case regret is lower bounded by Ω(
√
T ).

The theorem above raises a natural question: Can we achieve both Õ(
√
T ) worst-case

regret (like the UCB based MAB algorithms [ACF02a]) and bounded parameter dependent

regret by using a combination of UCB and WAGP policies? This question in the affirmative

in the next section is answered in affirmative way.

2.7 The Best of the UCB and the WAGP (BUW)

In the this section, the Best of the UCB and the WAGP (BUW), which combines UCB1

and the WAGP to achieve bounded parameter dependent and O(
√
T ) worst-case regrets

is proposed. In the worst-case, the WAGP achieves O(T 1− γ
2 ) regret, which is weaker than

Õ(
√
T ) worst-case regret of UCB1. On the other hand, the WAGP achieves bounded param-

eter dependent regret whereas UCB1 achieves a logarithmic parameter dependent regret. In

this section, an algorithm which combines these two algorithms and achieves both Õ(
√
T )

worst-case regret and bounded parameter dependent regret is proposed.

The main idea for such an algorithm follows from Theorem 4. Recall that Theorem

4 shows that the WAGP achieves O(T 1− γ
2 ) regret when 1 < T < C1(∆∗). If the BUW

could follow the recommendations of UCB1 when T < C1(∆∗) and the recommendations

of the WAGP when T ≥ C1(∆∗), then it will achieve a worst-case regret bound of Õ(
√
T )

and bounded parameter-dependent regret. The problem with this approach is that the

suboptimality distance ∆∗ is unknown a priori. This problem can be solved by using a data-

dependent estimate ∆̃t where ∆∗ > ∆̃t holds with high probability. The data-dependent

estimate ∆̃t is given as

∆̃t = ∆̂t − D̄1K

(
log t

t

) γ̄1
2

where

∆̂t = ∆min(θ̂t) =

 infθ′∈Θsub(θ̂t)
|θ̂t − θ′| if Θsub(θ̂t) 6= ∅

1 if Θsub(θ̂t) = ∅
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Algorithm 2 The BUW

Inputs: T , µk(·) for each arm k.
Initialization: Select each arm once for t = 1, 2, . . . ,K, compute θ̂k,K , Nk(K), µ̂k, X̂k,K for all k ∈ K,

and θ̂K , ∆̂K , ∆̃K , t = K + 1
1: while t ≥ K + 1 do

2: if t < C2

(
max

(
0, ∆̃t−1

))
then

3: It ∈ arg maxk∈K X̂k,t−1 +
√

2 log(t−1)
Nk(t−1)

4: else
5: It ∈ arg maxk∈K µk(θ̂t−1)
6: end if
7: Update X̂It,t, Nk(t), wk(t), θ̂k,t, θ̂t as in the WAGP
8: Solve

∆̂t =

{
infθ′∈Θsub(θ̂t)

|θ̂t − θ′| if Θsub(θ̂t) 6= ∅
1 if Θsub(θ̂t) = ∅

9: ∆̃t = ∆̂t − D̄1K
(

log t
t

) γ̄1
2

10: end while

The pseudo-code for the BUW is given in Fig. 2. The regret bounds for the BUW are

given in the following theorem.

Theorem 7. Under Assumption 1, the worst-case regret of the BUW is bounded as follows:

sup
θ∗∈Θ

Reg(θ∗, T ) ≤ Õ(
√
KT ).

Under Assumption 1, the parameter dependent regret of the BUW is bounded as follows:

(i) For 1 ≤ T < C2(∆∗/3), the regret grows logarithmically in time, i.e.,

Rθ∗(1, T ) ≤

[
8
∑

k:µk<µ∗

log T

δk

]
+K

(
1 + π2

)
.

(ii) For T ≥ C2(∆∗/3), the growth of the regret is bounded, i.e.,

Rθ∗(C2(∆∗/3), T ) ≤ Kπ2.

The BUW achieves the lower bound given in Theorem 7, that isO(1) parameter-dependent

regret and Õ(
√
T ) worst-case regret.
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2.8 Appendices

2.8.1 Preliminaries

In all the proofs given below. Let w(t) = (w1(t), . . . , wK(t)) be the vector of weights and

N (t) = (N1(t), . . . , Nk(t)) be the vector of counters at time t. Then, w(t) = N (t)/t. Since

N (t) depends on the history, they are both random variables that depend on the sequence

of obtained rewards.

2.8.2 Proof of Proposition 1

(i) Let k and θ 6= θ′ be arbitrary. Then, by Assumption 1,

|µk(θ)− µk(θ′)| ≥ D1,k|θ − θ′|γ1,k > 0

and hence µk(θ) 6= µk(θ
′).

(ii) Suppose x = µk(θ) and x′ = µk(θ
′) for some arbitrary θ and θ′. Then, by Assumption

1,

|x− x′| ≥ D1,k|µ−1
k (x)− µ−1

k (x′)|γ1,k .

2.8.3 Preliminary Results

Lemma 1. For the WAGP the following relation between θ̂t and θ∗ holds with probability

one: |θ̂t − θ∗| ≤
∑K

k=1wk(t)D̄1|X̂k,t − µk(θ∗)|γ̄1.

Proof. Before deriving a bound of gap between the global parameter estimate and true

global parameter at time t, let µ̃−1
k (x) = arg minθ∈Θ |µk(θ) − x|. By monotonicity of µk(·)

and Proposition 1, the following holds |µ̃−1
k (x)− µ̃−1

k (x′)| ≤ D̄1|x− x′|γ̄1 . Then,

|θ∗ − θ̂t| = |
K∑
k=1

wk(t)θ̂k,t − θ∗| =
K∑
k=1

wk(t)
∣∣∣θ∗ − θ̂k,t∣∣∣

≤
K∑
k=1

wk(t)|µ̃−1
k (X̂k,t)− µ̃−1

k (µ̃k(θ∗))|

≤
K∑
k=1

wk(t)D̄1|X̂k,t − µk(θ∗)|γ̄1 ,
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where there are two cases for the first inequality to check. The first case is X̂k,t ∈ Xk where

the statement immediately follows. The second case is X̂k,t /∈ Xk, where the global parameter

estimator θ̂k,t is either 0 or 1.

Lemma 2. The one-step regret of the WAGP is bounded by rt(θ∗) = µ∗(θ∗) − µIt(θ∗) ≤

2D2|θ∗ − θ̂t−1|γ2 with probability one, for t ≥ 2.

Proof. Note that It ∈ arg maxk∈K µk(θ̂t−1). Therefore, we have

µIt(θ̂t−1)− µk∗(θ∗)(θ̂t−1) ≥ 0. (2.1)

Since µ∗(θ∗) = µk∗(θ∗)(θ∗), we have

µ∗(θ∗)− µIt(θ∗)

= µk∗(θ∗)(θ∗)− µIt(θ∗)

≤ µk∗(θ∗)(θ∗)− µIt(θ∗) + µIt(θ̂t−1)− µk∗(θ∗)(θ̂t−1)

= µk∗(θ∗)(θ∗)− µk∗(θ∗)(θ̂t−1) + µIt(θ̂t−1)− µIt(θ∗)

≤ 2D2|θ∗ − θ̂t−1|γ2 ,

where the first inequality follows from (2.1) and the second inequality follows from Assump-

tion 1.

Let Gθ∗,θ̂t(x) := {|θ∗−θ̂t| > x} be the event that the distance between the global parameter

estimate and its true value exceeds x. Similarly, let Fk
θ∗,θ̂t

(x) := {|X̂k,t − µk(θ∗)| > x} be

the event that the distance between the sample mean reward estimate of arm k and the true

expected reward of arm k exceeds x.

Lemma 3. For WAGP we have

Gθ∗,θ̂t(x) ⊆
K⋃
k=1

Fk
θ∗,θ̂t

((
x

D̄1wk(t)K

) 1
γ̄1

)

with probability one, for t ≥ 2.
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Proof. Observe that

{|θ∗ − θ̂t| ≤ x}

⊇

{
K∑
k=1

wk(t)D̄1|X̂k,t − µk(θ∗)|γ̄1 ≤ x

}

⊇
K⋂
k=1

{
|X̂k,t − µk(θ∗)| ≤

(
x

wk(t)D̄1K

)1/γ̄1
}
,

where the first inequality follows from Lemma 1. Then,

{|θ∗ − θ̂t| > x} ⊆
K⋃
k=1

{
|X̂k,t − µk(θ∗)| >

(
x

wk(t)D̄1K

)1/γ̄1
}
.

2.8.4 Proof of Theorem 1

Using Lemma 1, the mean-squared error can be bounded as

E
[
|θ∗ − θ̂t|2

]
≤ E

( K∑
k=1

D̄1wk(t)|X̂k,t − µk(θ∗)|γ̄1

)2
 (2.2)

≤ KD̄2
1

K∑
k=1

E
[
w2
k(t)|X̂k,t − µk(θ∗)|2γ̄1

]
,

where the inequality follows from the fact that
(∑K

k=1 ak

)2

≤ K
∑K

k=1 a
2
k for any ak > 0.

Then,

E
[
|θ∗ − θ̂t|2

]
≤ KD̄2

1E

[
K∑
k=1

w2
k(t)E

[
|X̂k,t − µk(θ∗)|2γ̄1|w(t)

]]
(2.3)

≤ KD̄2
1E

[
K∑
k=1

w2
k(t)

ˆ ∞
x=0

Pr(|X̂k,t − µk(θ∗)|2γ̄1 ≥ x|w(t))dx

]
,
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where the second inequality follows from the fundamental theorem of expectation. Then,

the bound on inner expectation is

ˆ ∞
x=0

Pr(|X̂k,t − µk(θ∗)|2γ̄1 ≥ x|w(t))dx

≤
ˆ ∞
x=0

2 exp(−x
1
γ̄1Nk(t)) dx.

= 2γ̄1Γ(γ̄1)Nk(t)
−γ̄1 ,

where Γ(·) is Gamma function. Then,

E[|θ∗ − θ̂t|2] ≤ 2Kγ̄1D̄
2
1Γ(γ̄1)E

[
K∑
k=1

Nk(t)
2−γ̄1

t2

]
≤ 2Kγ̄1D̄

2
1Γ(γ̄1)t−γ̄1 ,

where the last inequality follows from the fact that E[
∑K

k=1N
2−γ̄1

k (t)/t2] ≤ t−γ̄1 for any Nk(t)

since
∑K

k=1Nk(t) = t and γ̄1 ≤ 1.

2.8.5 Proof of Theorem 2

By Lemma 2 and Jensen’s inequality,

E[rt+1(θ∗)] ≤ 2D2E
[
|θ∗ − θ̂t|

]γ2

. (2.4)

Also by Lemma 1 and Jensen’s inequality,

E
[
|θ∗ − θ̂t|

]
≤ D̄1E

[
K∑
k=1

wk(t)E
[
|X̂k,t − µk(θ∗)| |w(t)

]γ̄1

]
, (2.5)

where E[·|·] denotes the conditional expectation. Using Hoeffding’s inequality, for each k ∈ K,

E
[
|X̂k,t − µk(θ∗)| |w(t)

]
=

ˆ 1

x=0

Pr
(
|X̂k,t − µk(θ∗)| > x|w(t)

)
dx

≤
ˆ ∞
x=0

2 exp(−2x2Nk(t)) dx ≤
√

π

2Nk(t)
. (2.6)
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Combining (2.5) and (2.6), the following is obtained:

E[|θ∗ − θ̂t|] ≤ D̄1(
π

2
)
γ̄1
2

1

t
γ̄1
2

E

[
K∑
k=1

wk(t)
1− γ̄1

2

]
. (2.7)

Since wk(t) ≤ 1 for all k ∈ K, and
∑K

k=1wk(t) = 1 for any possible w(t), we have

E[
∑K

k=1wk(t)
1− γ̄1

2 ] ≤ K
γ̄1
2 . Then, combining (2.4) and (2.7), we have

E[rt+1(θ∗)] ≤ 2D̄γ2

1 D2
π

2

γ̄1γ2
2
K

γ̄1γ2
2

1

t
γ̄1γ2

2

.

2.8.6 Proof of Theorem 3

This bound is consequence of Theorem 2 and the inequality given in bound where for γ > 0

and γ 6= 1,
∑T

t=1 1/tγ ≤ 1 + (T 1−γ−1)
1−γ , i.e.,

Reg(θ∗, T ) ≤ 2 +
2D̄γ2

1 D2
π
2

γ1γ2
2 K

γ̄1γ2
2

1− γ̄1γ2

2

T 1− γ̄1γ2
2 .

2.8.7 Proof of Theorem 4

In order to complete the proof, the probability of the event that {It 6∈ K∗(θ∗)} needs to be

bounded. Since at time t + 1, the arm with the highest µk(θ̂t) is selected by the WAGP, θ̂t

should lie in Θ \Θk∗(θ∗) for a suboptimal arm to be selected. Therefore,

{It+1 6∈ K∗(θ∗)}

= {θ̂t ∈ Θ \Θk∗(θ∗)} ⊆ Gθ∗,θ̂t(∆∗). (2.8)

By Lemma 3 and (2.8),

Pr(It+1 6∈ K∗(θ∗))

≤
K∑
k=1

E

[
E

[
I

(
Fk
θ∗,θ̂t

((
∆∗

wk(t)D̄1K

) 1
γ̄1

))
|N (t)

]]

≤
K∑
k=1

2E

[
exp

(
−2

(
∆∗

wk(t)D̄1K

) 2
γ̄1

wk(t)t

)]

≤ 2K exp

(
−2

(
∆∗
D̄1K

) 2
γ̄1

t

)
, (2.9)
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where I(·) is indicator function which is 1 if the statement is correct and 0 otherwise, the

first inequality follows from a union bound, the second inequality is obtained by using the

Chernoff-Hoeffding bound, and the last inequality is obtained by using Lemma 4. Then,

Pr(It+1 6∈ K∗(θ∗)) ≤ 1/t for t > C1(∆∗) and Pr(It+1 6∈ K∗(θ∗)) ≤ 1/t2 for t > C2(∆∗).

The bound in the first regime is the result of Theorem 3. The bounds in the second and

third regimes are obtained by summing the probability given in (2.9) from C1(∆∗) to T and

C2(∆∗) to T , respectively.

2.8.8 Proof of Theorem 5

Let (Ω,F , P ) denote probability space, where Ω is the sample set and F is the σ-algebra

that the probability measure P is defined on. Let ω ∈ Ω denote a sample path. Then, the

following needs to be proved: There exists event N ∈ F such that P (N) = 0 and if ω ∈ N c,

then limt→∞ It(ω) ∈ K∗(θ∗). Define the event Et := {It 6= k∗(θ∗)}. We show in the proof of

Theorem 4 that
∑T

t=1 P (Et) <∞. By Borel-Cantelli lemma,

Pr(Et infinitely often) = Pr(lim sup
t→∞

Et) = 0.

Define N := lim supt→∞ Et, where Pr(N) = 0. Then,

N c = lim inf
t→∞

Ec
t ,

where Pr(N c) = 1− Pr(N) = 1, which means that It ∈ K∗(θ∗) for all but a finite number of

time t.

2.8.9 Proof of Theorem 6

Consider a problem instance with two arms with reward functions µ1(θ) = θγ and µ2(θ) =

1− θγ, where γ is an odd positive integer and rewards are Bernoulli distributed with X1,t ∼

Ber(µ1(θ)) and X2,t ∼ Ber(µ2(θ)). Then, optimality regions are Θ1 = [2−
1
γ , 1] and Θ2 =

[0, 2−
1
γ ]. Note that γ2 = 1 and γ1 = 1/γ for this case. It can be shown that

|µk(θ)− µk(θ′)| ≤ D2|θ − θ′|

|µ−1
k (x)− µ−1

k (x′)| ≤ D̄1|x− x′|1/γ
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Let θ∗ = 2−
1
γ . Consider following two cases with θ∗1 = θ∗+ ∆ and θ∗2 = θ∗−∆. The optimal

arm is 1 in the first case and 2 in the second case. In the first case, one step loss due to

choosing arm 2 is lower bounded by

(θ∗ + ∆)γ − (1− (θ∗ + ∆)γ)

= 2(θ∗ + ∆)γ − 1

= 2((θ∗)γ +

(
γ

1

)
(θ∗)γ−1∆ +

(
γ

2

)
(θ∗)γ−2∆2 + . . .)− 1

≥ 2γ2
1−γ
γ ∆.

Similarly, in the second case, the loss due to choosing arm 1 is 2γ2
1−γ
γ ∆+

∑γ
i=2

(
γ
i

)
(θ∗)(γ−i)(−∆)i.

Let A1(∆) = 2γ2
1−γ
γ ∆ +

∑γ
i=2

(
γ
i

)
(θ∗)(γ−i)(−∆)i.

Define two processes ν1 = Ber(µ1(θ∗+∆))⊗Ber(µ2(θ∗+∆)) and ν2 = Ber(µ1(θ∗−∆))⊗

Ber(µ2(θ∗ − ∆)) where x ⊗ y denotes the product distribution of x and y. Let Prν denote

probability associated with distribution ν. Then, the following holds:

Reg(θ∗ + ∆, T ) + Reg(θ∗ −∆, T )

≥ A1(∆)
T∑
t=1

(
Prν⊗t1

(It = 2) + Prν⊗t2
(It = 1)

)
, (2.10)

where ν⊗t is the t times product distribution of ν. Using well-known lower bounding tech-

niques for the minimax risk of hypothesis testing [TZ09], the following holds:

Reg(θ∗ + ∆, T ) + Reg(θ∗ −∆, T ) (2.11)

≥ A1(∆)
T∑
t=1

exp(−KL(ν⊗t1 , ν⊗t2 )), (2.12)

where

KL(ν⊗t1 , ν⊗t2 ) = t
(

KL(Ber(µ1(θ∗ + ∆)),Ber(µ1(θ∗ −∆))

+ KL(Ber(µ2(θ∗ + ∆)),Ber(µ2(θ∗ −∆))
)
. (2.13)

Define A2 = (1−exp(
−4D2

2∆2T

(θ∗−∆)γ(1−(θ∗−∆)γ)
))(θ∗−∆)γ(1−(θ∗−∆)γ).By using the fact KL(p, q) ≤
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(p−q)2

q(1−q) [RZ10], we can further bound (2.12) by

Reg(θ∗ + ∆, T ) + Reg(θ∗ −∆, T )

≥ A1(∆)
T∑
t=1

exp

(
− 4D2t∆

2

(θ∗ −∆)γ(1− (θ∗ −∆)γ)

)
≥ A1(∆)

A2

4D2∆2

where A2 ∈ (0, 1) for any ∆ ∈ (0,max(θ∗, 1−θ∗)). Hence, the lower bound for the parameter

dependent regret is Ω(1). In order to show the lower bound for the worst-case regret, observe

that

Reg(θ∗ + ∆, T ) + Reg(θ∗ −∆, T )

≥ 2γ2
1−γ
γ A2

4D2∆
+

γ∑
i=2

(
γ

i

)
(−∆)i−2(θ∗)γ−i.

By choosing ∆ = 1√
T

, it is shown that for large T , A2 = 0.25(1 − exp(−16D2
2)). Hence,

worst-case lower bound is Ω(
√
T ).

2.8.10 Proof of Theorem 7

Without loss of generality, assume that a unique arm is optimal for θ̂t and θ∗. First, the

following is shown: |θ̂t − θ∗| = ε implies |∆̂t −∆∗| ≤ ε. There are four possible cases for ∆̂t:

• θ∗ and θ̂t lie in the same optimality interval of the optimal arm, and ∆∗ and ∆̂t are

computed with respect to the same endpoint of that interval.

• θ∗ and θ̂t lie in the same optimality interval and ∆∗ and ∆̂t are computed with respect

to the different endpoints of that interval.

• θ∗ and θ̂t lie in adjacent optimality intervals.

• θ∗ and θ̂t lie in non-adjacent optimality intervals.

In the first case, |θ̂t − θ∗| = |∆̂t − ∆∗| = ε. In the second case, ∆̂t can not be larger

than ∆∗ + ε since in that case θ̂t would be computed with respect to the same endpoint of
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that interval. Similarly, ∆̂t can not be smaller than ∆∗ − ε since in that case θ∗ would be

computed with respect to the same endpoint of that interval. In the third and fourth cases,

since |θ̂t− θ∗| = ε, ∆̂t ≤ ε−∆∗, and hence the difference between ∆̂t and ∆∗ is smaller than

ε.

Second, the following is shown: |∆̂t −∆∗| < D̄1

(
2K log t

t

) γ̄1
2 holds with high probability.

Pr

(
|∆̂t −∆∗| ≥ D̄1

(
K log t

t

) γ̄1
2

)

≤ Pr

(
|θ̂t − θ∗| ≥ D̄1

(
K log t

t

) γ̄1
2

)

≤
K∑
k=1

2E

exp

−2

D̄1K
(

log t
t

) γ̄1
2

D̄1Kwk(t)

 2
γ̄1

Nk(t)

∣∣∣∣∣Nk(t)


≤

K∑
k=1

2E
[
exp

(
−2wk(t)

1− 2
γ̄1 log t

) ∣∣∣∣wk(t)]
≤ 2Kt−2, (2.14)

where the second inequality follows from Lemma 3 and Chernoff-Hoeffding inequality and

third inequality by Lemma 4. Then, at time t, with probability at least 1 − 2Kt−2, the

following holds:

∆∗ − 2D̄1K

(
log t

t

) γ̄1
2

≤ ∆̃t. (2.15)

Also, note that if t ≥ C2(∆∗/3), then 2D̄1K
(

log t
t

) γ̄1
2 ≤ 2∆∗

3
. Thus, for t ≥ C2(∆∗/3), we

have ∆∗/3 ≤ ∆̃t. Note that the BUW follows UCB1 only when t < C2(∆̃t). From the above,

we know that C2(∆̃t) ≤ C2(∆∗/3) when t ≥ C2(∆∗/3) with probability at least 1 − 2Kt−2.

This implies that the BUW follows the WAGP with probability at least 1 − 2Kt−2 when

t ≥ C2(∆∗/3).

It is known from Theorem 4 that the WAGP selects an optimal action with probability

at least 1 − 1/t2 when t > C2(∆∗). Since C2(∆∗/3) > C2(∆∗), when the BUW follows the

WAGP, it will select an optimal action with probability at least 1−1/t2 when t > C2(∆∗/3).
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Let Igt denote the action that selected by algorithm g ∈ {BUW,WAGP,UCB1}, rgt (θ∗) =

µ∗(θ∗) − µIgt (θ∗) denote the one-step regret, and Rg
θ∗

(T1, T2) denote the cumulative regret

incurred by algorithm g from T1 to T2. Then, when T < C2(∆∗/3), the regret of the BUW

can be written as

RBUW
θ∗ (1, T ) ≤

T∑
t=1

rUCB1
t (θ∗) + 2Kt−2

≤ RUCB1
θ∗ (1, T ) +

2Kπ2

3
.

Moreover, when T ≥ C2(∆∗/3),

RBUW
θ∗ (C2(∆∗/3), T )

≤
T∑

t=C2(∆∗/3)

rWAGP
t (θ∗) + 2Kt−2

≤ RWAGP
θ∗ (C2(∆∗/3), T ) +

2Kπ2

3

This concludes the parameter-dependent regret bound.

The worst-case bound can be proven by replacing δk = µ∗ − µk = 1/
√
TK log T for all

k 6∈ K∗(θ∗) for the regret bound given above.

2.8.11 Auxiliary Lemma

Lemma 4. For γ < 0, δ > 0, the following bound holds for any wk with 0 ≤ wk ≤ 1 and∑K
k=1wk = 1:

K∑
k=1

exp(−δwγk) ≤ K exp(−δ)
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Proof. Let kmax = arg maxk wk. Then,

max
wk:
∑K
k=1 wk=1, 0≤wk≤1

K∑
k=1

exp (−δwγk)

= max
wk:
∑K
k=1 wk=1, 0≤wk≤1

exp

(
log

(
K∑
k=1

exp (−δwγk)

))

≤ max
wk:
∑K
k=1 wk=1, 0≤wk≤1

exp

(
max
k∈K

(−δwγk) + logK

)
≤ K max

wk:
∑K
k=1 wk=1, 0≤wk≤1

exp
(
−δwγkmax

)
≤ K exp(−δ).
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CHAPTER 3

Constructing Effective Policies from Observational

Datasets with Many Features

3.1 Introduction

The “best” treatment for the current patient must be learned from the treatment(s) of

previous patients. However, no two patients are ever exactly alike, so the learning process

must involve learning the ways in which the current patient is alike to previous patients

– i.e., has the same or similar features – and which of those features are relevant to the

treatment(s) under consideration. This already complicated learning process is further com-

plicated because the history of previous patients records only outcomes actually experienced

from treatments actually received – not the outcomes that would have been experienced

from alternative treatments – the counterfactuals. And this learning process is complicated

still further because the treatments received by previous patients were (typically) chosen

according to some protocol that might or might not be known but was almost surely not

random – so the observed data is biased.

This chapter proposes a novel approach to addressing such problems. An algorithm that

learns a nonlinear policy to recommend an action for each (new) instance is proposed. During

the training phase, our algorithm learns the action-dependent relevant features and then uses

a feedforward neural network to optimize a nonlinear stochastic policy the output of which

is a probability distribution over the actions given the relevant features. When the trained

algorithm is applied to a new instance, it chooses the action which has the highest probability.

Our algorithm is evaluated in actual data in which our algorithm is significantly superior to

existing state-of-the-art algorithms. The proposed methods and the algorithms are widely
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Table 3.1: Success rates of two treatments for kidney stones [BPC13]

Overall Small stones Large stones

Open Surgery 78%(273/350) 93%(81/87) 73%(192/263)

Percutaneous

Nephrolithotomy

83%(289/350) 87%(234/270) 69%(55/80)

applicable to an enormous range of settings in many medical informatics. In the medical

context, typical features are items available in the electronic health record (laboratory tests,

previous diagnoses, demographic information, etc.), typical actions are choices of treatments

(perhaps including no treatment at all), and typical rewards are recovery rates or 5-year

survival rates.

For a simple but striking example from the medical context, consider the problem of

choosing the best treatment for a patient with kidney stones. Such patients are usually

classified by the size of the stones: small or large; the most common treatments are Open

Surgery and Percutaneous Nephrolithotomy. Table 1 summarizes the results. Note that

Open Surgery performs better than Percutaneous Nephrolithotomy for patients with small

stones and for patients with large stones but Percutaneous Nephrolithotomy performs better

overall.1 Of course this would be impossible if the subpopulations that received the two

treatments were identical – but they were not. And in fact the policy that created these

subpopulations by assigning patients to treatments is not known a priori. The patients are

distinguished by a vast array of features in addition to the size of stones – age, gender,

weight, kidney function tests, etc. – but relevant features are not known. And of course

result of the treatment actually received by each patient is known – but what the result of

the alternative treatment would have been (the counterfactual) is not known.

Three more points should be emphasized. Although Table 3.1 shows only two actions,

in fact there are a number of other possible actions for kidney stones: they could be treated

using any of a number of different medications, they could be treated by ultrasound, or

1This is a particular instance of Simpson’s Paradox.
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they could not be treated at all. This is important for several reasons. The first is that a

number of existing methods assume that there are only two actions (corresponding to treat

or not-treat); but as this example illustrates, in many contexts (and in the medical context

in particular), it is typically the case that there are many actions, not just two – and, as

the papers themselves note, these methods simply do not work when there are more than

two actions; see [JSS16]. The second is that the features that are relevant for predicting

the success of a particular action typically depend on the action: different features will be

found to be relevant for different actions. (The treatment of breast cancer, as discussed

in [YDS16], illustrates this point well. The issue is not simply whether or not to apply

a regime of chemotherapy, but which regime of chemotherapy to apply. Indeed, there are

at least six widely used regimes of chemotherapy to treat breast cancer, and the features

that are relevant for predicting success of a given regime are different for different regimes.)

The third is that this chapter goes much further than the existing literature by allowing for

nonlinear policies. To do this, the algorithm uses a feedforward neural network, rather than

relying on familiar algorithms such as POEM [SJ15a]. To determine the best treatment,

the bias in creating the populations, the features that are relevant for each action and the

policy must all be learned. The proposed methods are adequate to this task.

3.2 Related Work

From a conceptual point of view, the paper most closely related to this chapter – at least

among recent papers – is perhaps [JSS16] which treats a similar problem: learning relevance

in an environment in which the counterfactuals are missing, data is biased and each instance

may have many features. The approach taken there is somewhat different from ours in that,

rather than identifying the relevant features, they transfer the features to a new represen-

tation space. (This process is referred as domain adaptation [JSS16].) A more important

difference from this chapter is that it assumes that there are only two actions: treat and

don’t treat. As discussed in the Introduction, the assumption of two actions is unrealistic; in

most situations there will be many (possible) actions. It states explicitly that the approach
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taken there does not work when there are more than two actions and offers the multi-action

setting as an obvious but difficult challenge. One might think of this chapter as “solving”

this challenge – but the “solution” is not at all a routine extension. Moreover, in addition to

this obvious challenge, there is a more subtle – but equally difficult – challenge: when there

are more than two actions, it will typically be the case that some features will be relevant for

some actions and not for others, and – as discussed in the Introduction – it will be crucial

to learn which features are relevant for which actions.

From a technical point of view, this chapter is perhaps most closely related to [SJ15a]

in that we use similar methods (IPS-estimates and empirical Bernstein inequalities) to learn

counterfactuals. However, it does not treat observational data in which the bias is unknown

and does not learn/identify relevant features. Another similar work on policy optimization

from observational data is [SLL10].

The work in [WA15] treats the related (but somewhat different) problem of estimating

individual treatment effects. The approach there is through causal forests as developed

by [AI15], which are variations on the more familiar random forests. However, the emphasis

in this work is on asymptotic estimates, and in the many situations for which the number

of (possibly) relevant features is large the datasets will typically not be large enough that

asymptotic estimates will be of more than limited interest. There are many other works

focusing on estimating treatment effects; some include [TAG12,AS17,?].

More broadly, our work is related to methods for feature selection and counterfactual in-

ference. The literature on feature selection can be roughly divided into categories according

to the extent of supervision: supervised feature selection [SSG12,WES03], unsupervised fea-

ture selection [DB04,HCN05] and semi-supervised feature selection [XKL10]. However, this

chapter does not fall into any of these categories; instead we need to select features that are

informative in determining the rewards of each action. This problem was addressed in [TS14]

but in an online Contextual Multi-Armed Bandit (CMAB) setting in which experimentation

is used to learn relevant features. This chapter treats the logged CMAB setting in which

experimentation is impossible and relevant features must be learned from the existing logged

data. As already noted, there are many circumstances in which experimentation is impossi-
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ble. The difference between the settings is important – and the logged setting is much more

difficult – because in the online setting it is typically possible to observe counterfactuals,

while in the current logged setting it is typically not possible to observe counterfactuals, and

because in the online setting the decision-maker controls the observations so whatever bias

there is in the data is known.

With respect to learning, feature selection methods can be divided into three categories

– filter models, wrapper models, and embedded models [TAL14]. This chapter is most

similar to filter techniques in which features are ranked according to a selected criterion

such as a Fisher score [DHS12], correlation based scores [SSG12], mutual information based

scores [KS96, YL03, PLD05], Hilbert-Schmidt Independence Criterion (HSIC) [SSG12] and

Relief and its variants [KR92, RK03]) etc., and the features having the highest ranks are

labeled as relevant. However, these existing methods are developed for classification problems

and they cannot easily handle datasets in which the rewards of actions not taken are missing.

The literature on counterfactual inference can be categorized into three groups: di-

rect, inverse propensity re-weighting and doubly robust methods. The direct methods

compute counterfactuals by learning a function mapping from feature-action pair to re-

wards [Pre76, WA15]. The inverse propensity re-weighting methods compute unbiased esti-

mates by weighting the instances by their inverse propensity scores [SJ15a,JS16]. The dou-

bly robust methods compute the counterfactuals by combining direct and inverse propensity

score reweighing methods to compute more robust estimates [DLL11, JL16]. With respect

to this categorization, the techniques developed here might be view as falling into doubly

robust methods.

This chapter can be seen as building on and extending the work of [SJ15a,SJ15c], which

learn linear stochastic policies. This chapter goes much further by learning a non-linear

stochastic policy.
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3.3 Data

Logged contextual bandit data is the data for which the features of each instance, the action

taken and the reward realized in that instance are known – but not the reward that would

have been realized had a different action been taken. The assumption in this chapter is that

the data has been logged according to some policy and so the data is biased. Each data

point consists of a feature, an action and a reward. A feature is a vector (x1, . . . , xd) where

each xi ∈ Xi is a feature type. The space of all feature types is F = {1, . . . , d}, the space of

all features is X = Πd
i=1Xi and the set of actions is A. Another assumption in this chapter

is that that the sets of feature types and actions are finite; write bi = |Xi| for the cardinality

of Xi and A = {1, 2, . . . , k} for the set of actions. For x ∈ X and S ⊂ F , write xS for the

restriction of x to S; i.e. for the vector of feature types whose indices lie in S. It will be

convenient to abuse notation and view xS both as a vector of length |S| or as a vector of

length d = |F| which is 0 for feature types not in S. A reward is a real number; rewards

lie in the interval [0, 1]. In some cases, the reward will be either 1 or 0 (success or failure;

good or bad outcome); in other cases the reward may be interpreted as the probability of a

success or failure (good or bad outcome).

We are given a data set

Dn = {(X1, A1, R
obs
1 ), . . . , (Xn, An, R

obs
n )}

The j-th instance/data point (Xj, Aj, R
obs
j ) is generated according to the following process:

1. The instance is described by a feature vector Xj that arrives according to the fixed

but unknown distribution Pr(X ); Xj ∼ Pr(X ).

2. The action taken was determined by a policy that draws actions at random according to

a (possibly unknown) probability distribution p0(A|Xj) on the action space A. (Note

that the distribution of actions taken depends on the vector of features).

3. Only the reward of the action actually performed is recorded into the dataset, i.e.,

Robs
j ≡ Rj(Aj).
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4. For every action a, either taken or not taken, the reward Rj(a) ∼ Φa(·|Xj) that would

have been realized had a actually been taken is generated by a random draw from an

unknown family {Φa(·|x)}x∈X ,a∈A of reward distributions with support [0, 1].

The logging policy corresponds to the choices made by the existing decision-making proce-

dure and so will typically create a biased distribution on the space of feature-action pairs.

This chapter makes two natural assumptions about the rewards and the logging policy;

taken together they enable us to generate unbiased estimates of the variables of the interest.

The first assumption guarantees that there is enough information in the data-generating

process so that counterfactual information can be inferred from what is actually observed.

Assumption 2. (Common support) p0(a|x) > 0 for all action-feature pairs (a,x).

The second assumption is that the logging policy depends only on the observed features

– and not on the observed rewards.

Assumption 3. (Unconfoundness) For each feature vectorX, the rewards of actions {R(a)}a∈A

are statistically independent of the action actually taken; {R(a)} ⊥⊥ A
∣∣X.

These assumptions are universal in the counterfactual inference literature – see [JSS16,

AI15] for instance – although they can be criticized on the grounds that their validity cannot

be determined on the basis of what is actually observed.

3.4 The Algorithm

It seems useful to begin with a brief overview; more details and formalities follow below.

The proposed algorithm consists of a training phase and an execution phase; the training

phase consists of three steps.

A. In the first step of the training phase, the algorithm either inputs the true propensity

scores (if they are known) or uses the logged data to estimate propensity scores (when

the true propensity scores are not known); this (partly) corrects the bias in the logged

data.
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B. In the second step of the training phase, the algorithm uses the known or estimated

propensity scores to compute, for each action and each feature, an estimate of relevance

for that feature with respect to that action. The algorithm then retains the more relevant

features – those for which the estimate is above a threshold – and discards the less relevant

features – those for which the estimate is below the threshold. (For reasons that will be

discussed below, the threshold used depends on both the action and the feature type.)

C. In the third step of the training phase, the algorithm uses the known or estimated propen-

sity scores and the features identified as relevant, and trains a feedforward neural network

model to learn a non-linear stochastic policy that minimizes the ”corrected” cross entropy

loss.

In the execution phase, the algorithm is presented with a new instance and uses the

policy derived in the training phase to recommend an action for this new instance on the

basis of the relevant features of that instance.

3.4.1 True Propensities

This chapter begins with the setting in which propensities of the randomized algorithm are

actually tracked and available in the dataset. This is often the case in the advertising context,

for example. In this case, for each j, set p0,j = p0(Aj|Xj), and write P 0 = [p0,j]
n
j=1; this is

the vector of true propensities.

3.4.2 Relevance

It might seem natural to define the set S of feature types to be irrelevant (for a particular

action) if the distribution of rewards (for that action) is independent of the features in S,

and to define the set S to be relevant otherwise. In theoretical terms, this definition has

much to recommend it. In operational terms, however, this definition is not of much use.

That is because finding irrelevant sets of feature types would require many observations (to

determine the entire distribution of rewards) and intractable calculations (to examine all sets
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of feature types). Moreover, this notion of irrelevance will often be too strong because our

interest will often be only in maximizing expected rewards (or more generally some statistical

function of rewards), as it would be in the medical context if the reward is five-year survival

rate, or in the advertising or financial settings, if the reward is expected revenue or profit

and the advertiser or firm is risk-neutral.

Given these objections, this chapter takes an alternative approach. This chapter first

defines a measure of how relevant a particular feature type is for the expected reward of a

particular action, learn/estimate this measure from observed data, retain features for which

this measure is above some endogenously derived threshold (the most relevant features) and

discard other features (the least relevant features). Of course, this approach has drawbacks.

Most obviously, it might happen that two feature types are individually not very relevant

but are jointly quite relevant. However, as shown empirically, this approach has the virtue

that it works: the proposed algorithm on the basis of this approach is demonstrably superior

to existing algorithms.

3.4.2.1 True Relevance

To begin formalizing the measure of relevance, fix an action a, a feature vector x and a

feature type i. Define expected rewards and marginal expected rewards as follows:

r̄(a,x) = E [R(a)|X = x]

r̄(a,xi) = EX−i [r̄(a,X)

∣∣∣∣X i = xi]

r̄(a) = EX [r̄(a,X)] (3.1)

Define the true relevance of feature type i for action a by

g(a, i) = E [` (r̄(a,Xi)− r̄(a))] , (3.2)

where the expectation is taken with respect to the arrival probability distribution of Xi and

`(·) denotes the loss metric. (Keep in mind that the true arrival probability distribution of

Xj is unknown and must be estimated from the data.) The results hold for an arbitrary loss
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function, assuming only that it is strictly monotonic and Lipschitz; i.e. there is a constant

B such that |`(r)− `(r′)| ≤ B|r − r′|. These conditions are satisfied by a large class of

loss functions including l1 and l2 losses. The relevance measure g expresses the weighted

difference between the expected reward of a given action conditioned on the feature type i

and the unconditioned expected reward; g(a, i) = 0 exactly when feature type i does not

affect the expected reward of action a.2

g is referred to as true relevance because it is computed using the true arrival distribution

– but the true arrival distribution is unknown. Hence, even when the true propensities are

known, relevance must be estimated from observed data. This is the next task.

3.4.2.2 Estimated Relevance

In this subsection, estimates of relevance based on observed data (continuing to assume

that true propensities are known) are derived. To do so, this chapter first shows how to

estimate r̄(a) and r̄(a, xi) for xi ∈ Xi, i ∈ F and a ∈ A from available observational data.

An obvious way to do this is through classical supervised learning based estimators; most

obviously, the sample mean estimators for r̄(a) and r̄(a, xi). However using straightforward

sample mean estimation would be wrong because the logging policy introduces a bias into

observations. Following the idea of Inverse Propensity Scores [RR83], this bias is corrected

by using Importance Sampling.

Write N(a), N(xi), N(a, xi) for the number of observations (in the given data set) with

action a, with feature xi, and with the pair consisting of action a and feature xi, respectively.

Rewrite our previous definitions as:

r̄(a, xi) = E(X,A,Robs)∼p0

[
I(A = a)Robs

p0(A|X)

∣∣∣∣Xi = xi

]
r̄(a) = E(X,A,Robs)∼p0

[
I(A = a)Robs

p0(A|X)

]
(3.3)

where I(·) is the indicator function.

2Other measures of relevance have been used in the feature selection literature (e.g., especially Pearson
correlation [Hal99] and mutual information [YL03]) – but not for relevance of actions.
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Let J (xi) denote the time indices in which feature type-i is xi, i.e., J (xi) = {j ⊆

{1, 2, . . . , n} : Xi,j = xi}. The Importance Sampling approach provides unbiased estimates

of r̄(a) and r̄(a, xi) as

R̂(a, xi;P 0) =
1

N(xi)

∑
j∈J (xi)

I(Aj = a)Robs
j

p0,j

,

R̂(a;P 0) =
1

n

n∑
j=1

I(Aj = a)Robs
j

p0,j

, (3.4)

(The propensities P 0 are included in the notation as a reminder that these estimators are

using the true propensity scores.)

Define the estimated relevance of feature type i for action a as

Ĝ(a, i;P 0) =
1

n

∑
xi∈Xi

N(xi)`
(
R̂(a, xi;P 0)− R̂(a;P 0)

)
. (3.5)

3.4.2.3 Thresholds

By definition, Ĝ is an estimate of relevance so the obvious way to select relevant features is

to set a threshold τ , identify a feature i as relevant for action a exactly when Ĝ(a, i;P 0) > τ ,

retain the features that are relevant according to this criterion and discard other features.

However, this approach is a bit too naive for (at least) two reasons. The first is that

the proposed empirical estimate of relevance Ĝ may in fact be far from the true relevance

g. The second is that some features may be highly (positively or negatively) correlated with

the remaining features, and hence convey less information. To deal with these objections,

thresholds τ(a, i) are constructed as a weighted sum of an empirical estimate of the error

in using Ĝ instead of g and the (average absolute) correlation of feature type i with other

feature types.

To define the first term an empirical (data-dependent bound) on |Ĝ − g| is needed. To

derive such a bound, the empirical Bernstein inequality [MP09, AMS09] can be used. (Our

bound depends on the empirical variance of the estimates.)

To simplify notation, define random variables U(a;P 0) ≡ I(A=a)Robs

p0(A|X)
and Uj(a;P 0) ≡
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I(Aj=a)Rj
p0,j

. The sample means and variances are:

E(X,A,Robs)∼p0
[U(a;P 0)] = r̄(a),

E(X,A,Robs)∼p0
[U(a;P 0)

∣∣Xi = xi] = r̄(a, xi)

Û(a;P 0) = R̂(a;P 0)

=
1

n

n∑
j=1

Uj(a;P 0),

Û(a, xi;P 0) = R̂(a, xi;P 0)

=
1

N(xi)

∑
j∈J (xi)

Uj(a;P 0),

Vn(a;P 0) =
1

n− 1

n∑
j=1

(
Uj(a;P 0)− Û(a;P 0)

)2

,

Vn(a, xi;P 0) =
1

N(xi)− 1

∑
j∈J (xi)

(
Uj(a;P 0)− Û(a, xi;P 0)

)2

.

The weighted average sample variance is:

V̄n(a, i;P 0) =
∑
xi∈Xi

N(xi)Vn(a, xi;P 0)

n
(3.6)

The proposed empirical (data-dependent) bound is given in Theorem 8.

Theorem 8. For every n > 0, every δ ∈
[
0, 1

3

]
, and every pair, (a, i) ∈ (A,D), with

probability at least 1− 3δ we have:

|Ĝ(a, i;P 0)− g(a, i)| ≤ B

( √
2bi ln(3/δ)V̄n(a, i;P 0)

n

+

√
2 ln(3/δ)Vn(a;P 0)

n

+
M (bi + 1) ln 3/δ

n

)

+

√
2 (ln 1/δ + bi ln 2)

n
,

where M = maxa∈Amaxx∈X 1/p0(a|x).

The error bound given by Theorem 8 consists of four terms: The first term arises from

estimation error of R̂(a, xi). The second term arises from estimation error of R̂(a). The third
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term arises from estimation error of feature arrival probabilities. The fourth term arises from

randomness of the logging policy.

Now write ρi,j for the Pearson correlation coefficient between two feature types i and j.

(Recall that ρi,j = +1 if i, j are perfectly positively correlated, ρi,j = −1 if i, j are perfectly

negatively correlated, and ρi,j = 0 if i, j are uncorrelated.) Then the average absolute

correlation of feature type i with other features is(
1

d− 1

)( ∑
j∈F\{i}

|ρi,j|
)

Now define the thresholds as

τ(a, i) = λ1

√
biV̄n(a, i;P 0)

n
+ λ2

(
1

d− 1

)( ∑
j∈F\{i}

|ρi,j|
)

where λ1, λ2 are weights (hyper-parameters) to be chosen. Notice that the first term is the

dominant term in the error bound given in Theorem 8, and is used to set a higher bar for

the feature types that are creating the logging policy bias. The statistical distributions of

those features within the the action population and the whole population will be different.

By setting the threshold as above, the proposed approach trades-off between three objective:

(1) selecting the features that are relevant for the rewards of the actions, (2) eliminating the

features which create the logging policy bias, (3) minimizing the redundancy in the feature

space.

3.4.2.4 Relevant Feature Types

Finally, the set of feature types that are identified as relevant for an action a is given by

R̂(a) =
{
i : Ĝ(a, i; P0) > τ(a, i)

}
(3.7)

Set R̂ =
[
R̂(a)

]
a∈A

. Let fa denote a d dimensional vector whose jth element is 1 if j is

contained in the set R(a) and 0 otherwise.
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Figure 3.1: Neural network architecture

3.4.3 Policy Optimization

We now build on the identified family of relevant features to construct a policy. By definition,

a (stochastic) policy is a map h : X → 4(A) which assigns to each vector of features a

probability distribution h(·|x) over actions.

A familiar approach to the construction of stochastic policies is to use the POEM algo-

rithm [SJ15a]. POEM considers only linear stochastic policies; among these, POEM learns

one that minimizes risk, adjusted by a variance term. Our approach is substantially more

general because we consider arbitrary non-linear stochastic policies. This chapter uses a

novel approach that uses a feedforward neural network to find a non-linear policy that min-

imizes the loss, adjusted by a regularization term. Note that this chapter allows for very

general loss and regularization terms so that our approach includes many policy optimizers.

If one restricted to a neural network with no hidden layers and a specific regularization term,

one would recover POEM.

This chapter proposes a feedforward neural network for learning a policy h∗(·|x); the

architecture of our neural network is depicted in Fig. 3.1. The proposed feedforward neural

network consists of policy layers (Lp hidden layers with h
(l)
p units in the lth layer) that use

the output of the concatenation layer to generate a policy vector Φ(x, a), and a softmax
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layer that turns the policy vector into a stochastic policy.

For each action a, the concatenation layer takes the feature vector x as an input and

generates a action-specific representations φ(x, a) according to:

xR̂(a) = x� fa

φ(x, a) = [xR̂(ã)I(ã = a)]ã∈A

Note that the action-specific representation φ(x, a) is a d× k dimensional vector where only

the parts corresponding to action a is non-zero and equals to xR̂(ã). For each action a, the

policy layers uses the action-specific representation φ(x, a) generated by the concatenation

layers and generates the output vector Φ(x, a) according to:

Φ(x, a) = ρ
(
. . . ρ

(
W

(p)
1 φ(x, a) + b

(p)
1

)
. . .+ b

(p)
Lp

)
whereW

(p)
l and b

(p)
l are the weights and bias vectors of the lth layer accordingly. The outputs

of the policy layers are used to generate a policy by a softmax layer:

h(a|x) =
exp(wTΦ(x, a))∑

a′∈A exp(wTΦ(x, a′))
.

Then, the parameters of the policy are chosen in order to minimize an objective of the

following form: Loss(h∗;D) + λ3R(h∗;D); where Loss(h∗;D) is the loss term, R(h∗;D) is

a regularization term and λ3 > 0 represents the trade-off between loss and regularization.

The loss function can be either the negative IPS estimate or the corrected cross entropy loss

introduced in the next section. Depending on the choice of the loss function and regularizer,

our policy optimizer can include a wide-range of objectives including the POEM objective

[SJ15a].

In the next subsection, a new objective is proposed, which we refer to as the Policy Neural

Network (PONN) objective.

3.4.4 Policy Neural Network (PONN) objective

The proposed PONN objective is motivated by the cross-entropy loss used in the standard

multi-class classification setting. In the usual classification setting, usual loss function used
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to train the neural network is the standard cross entropy:

L̂ossc(h) =
1

n

n∑
j=1

∑
a∈A

−Rj(a) log h(a|Xj).

However, this loss function is not applicable in our setting, for two reasons. The first is that

only the rewards of the action taken by the logging policy are recorded in the dataset, not

the counterfactuals. The second is that the bias is corrected in the dataset by weighting

the instances by their inverse propensities. Hence, the following modified cross entropy loss

function is used:

L̂ossb(h;P 0) =
1

n

n∑
j=1

∑
a∈A

−Rj(a) log h(a|Xj)I(Aj = a)

p0,j

=
1

n

n∑
j=1

−Robs
j log h(Aj|Xj)

p0,j

. (3.8)

Note that this loss function is an unbiased estimate of the expected cross entropy loss, that

is E(X,A,R)∼p0

[
L̂ossb(h

∗;P 0)
]

= E
[
L̂ossc(h

∗)
]
. Our neural network is trained to minimize

the regularized loss by Adam optimizer:

h∗ = arg min
h∈H

L̂ossb(h; P̂ 0) + λ3R(h),

where R(h) is the regularization term to avoid overfitting and λ3 is the hyperparameter to

trade-off between the loss and regularization.

3.4.5 Unknown Propensities

As noted, in most settings the logging policy is unknown and hence the actual propensities are

also unknown so propensities must be estimated from the dataset and estimated propensities

are used to correct the bias. In general, this can be accomplished by any supervised learning

technique.

In this chapter propensities are estimated by fitting the multinomial logistic regression

model:

ln(Pr (A = a)) = βT0,aX − lnZ (3.9)
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where Z =
∑

a∈A exp
(
βT0,aX

)
. The estimated propensities are

p̂0,j ≡
exp(βT0,AjXj)

Zj

where we have written Zj =
∑

a∈A exp(βT0,aXj). Write P̂ 0 = [p̂0,j]
n
j=1 for the vector of

estimated propensities

In principle, these estimated propensities could be used in place of known propensities

and proceed exactly as we have done above. However, there are two problems with doing

this. The first is that if the estimated propensities are very small (which might happen

because the data was not completely representative of the true propensities), the variance of

the estimate Ĝ will be too large. The second is that the thresholds we have constructed when

propensities are known may no longer be appropriate when propensities must be estimated.

To avoid the first problem, this chapter follows [Ion08] and modifies the estimated

rewards by truncating the importance sampling weights. This leads to “truncated” estimated

rewards as follows:

R̂m(a, xi; P̂ 0) =
1

N(xi)

∑
j∈J (xi)

min

(
I(Aj = a)

p̂0,j

,m

)
Robs
j ,

R̂m(a; P̂ 0) =
1

n

n∑
j=1

min

(
I(Aj = a)

p̂0,j

,m

)
Robs
j .

Given these “truncated” estimated rewards, define a “truncated” estimator of relevance by

Ĝm(a, i; P̂ 0) =
∑
xi∈Xi

N(xi)

n
l
(
R̂m(a, xi; P̂ 0)− R̂m(a; P̂ 0)

)
From this point on, our algorithm proceeds exactly as before, using the “truncated”

estimator Ĝm instead of Ĝ.

Note that R̂m(a, xi; P̂ 0) and R̂m(a; P̂ 0) are not unbiased estimators of r̄(a, xi) and r̄(a).

The bias is due to using estimated truncated propensity scores which may deviate from true

propensities. Let bias(R̂m(a; P̂ 0)) denote the bias of R̂m(a; P̂ 0), which is given by

bias(R̂m(a; P̂ 0)) = r̄(a)− E
[
R̂m(a; P̂ 0)

]
.
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Algorithm 3 Training Phase of the Algorithm PONN-B

1: Input: λ1, λ2, λ3, Lr, Lp, h
r
i , h

a
j

Step A: Estimate propensities using a logistic regression

2: Compute β0,a for each a by training Logistic regression model from (3.9).

3: Set p̂0,j = exp(βT0,AjXj)/Zj with Zj =
∑

a∈A exp(βT0,aXj).

Step B: Identify the relevant features

4: Compute R̂(a, xi; P̂ 0), R̂(a; P̂ 0), V̄n(a, i; P̂ 0), ρi,l for each a, xi, i, l.

5: Compute Ĝ(a, i; P̂ 0) for each action-feature type pair.

6: Solve R̂(a) from (3.7).

Step C: Policy Optimization

7: while until convergence do

8:

(
w,W (l)

p

)
← Adam

(
D(n),w,W (l)

p

)
9: end while

Output of Training Phase: Policy h∗, Features R̂

Algorithm 4 Execution Phase of the Algorithm PONN-B

1: Input: Instance with feature X

2: Set â(X) = arg maxa∈A h
∗(a|X)

Output of Execution phase: Recommended action â(X)

3.5 Pseudo-code for the Algorithm PONN-B

Below, the pseudo-code for the proposed algorithm which we call PONN-B (because it uses

the PONN objective and Step B) is exactly as discussed above. The first three steps con-

stitute the offline training phase; the fourth step is the online execution phase. Within the

training phase the steps are: Step A: Input propensities (if they are known) or estimate

them using a logistic regression (if they are not known). Step B: Construct estimates of

relevance (truncated if propensities are estimated), construct thresholds (using given hyper-

parameters) and identify the relevant features as those for which the estimated relevance is

above the constructed thresholds. Step C: Use the Adam optimizer to train neural network

parameters. In the execution phase: Input the features of the new instance, apply the opti-
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mal policy to find a probability distribution over actions, and draw a random sample action

from this distribution.

3.6 Extension: Relevant Feature Selection with Fine Gradations

The proposed algorithm might be inefficient when there are many features of a particular

type – in particular, if one or more feature types are continuous. In that setting, the proposed

algorithm can be modified to create bins that consist of similar feature values and treat all

the values in a single bin identically. In order to conveniently formalize this problem, each

feature space is assumed to be bounded, that is, Xi = [0, 1]. In this case, the feature space

is partitioned into subintervals (bins), view features in each bin as identical, and apply the

proposed algorithm to the finite set of bins.3 To offer a theoretical justification for this

procedure,similar features is assumed to yield similar expected rewards. this is formalized

as a Lipschitz condition.

Assumption 4. There exists L > 0 such that for all a ∈ A, all i ∈ F and all xi ∈ Xi, we

have |r̄(a, xi)− r̄(a, x̃i)| ≤ L|xi − x̃i|.

(In the Multi-Armed Bandit literature [Sli14b,TS14] this assumption is commonly made

and sometimes referred to as similarity.)

For convenience, each feature type Xi is partitioned into s equal subintervals (bins) of

length 1/s. If s is small, the number of bins is small so, given a finite data set, the number

of instances that lie in each bin is relatively large; this is useful for estimation. However,

when s is small the size 1/s of each bin is relatively large so the (true) variation of expected

rewards in each bin is relatively large. Because we are free to choose the parameter s, this

can balanced to trade-off implicit between choosing few large bins or choosing many small

bins; a useful trade-off is achieved by taking s =
⌈
n1/3

⌉
. So begin by fixing s =

⌈
n1/3

⌉
and partition each Xi = [0, 1] into s intervals of length 1/s. Write Ci for the sets in the

3The binning procedure loses the ordering in the interval [0, 1]. If this ordering is in fact relevant to the
feature, then the binning procedure loses some information that a different procedure might preserve. We
leave this for future work.
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partition of Xi and write ci for a typical element of Ci. For each sample j, let ci,j denote

the set in which the feature xi,j belongs. Let J (ci) be the set of indices for which xi,j ∈ ci;

J (ci) = {j ∈ {1, 2, . . . , n} : Xi,j ∈ ci}. We define truncated IPS estimate as

r̄m(a, ci; P̂ 0) = E
[
U(a; P̂ 0)|Xi ∈ ci

]
= E

[
min

(
I(A = a)

p̂0(A|X)
,m

)
Robs

∣∣∣∣Xi ∈ ci
]
,

R̂m(a, ci; P̂ 0) =
1

N(ci)

∑
j∈J (ci)

min

(
I(Aj = a)

p̂0,j

,m

)
Robs
j ,

where N(ci) = |J (ci)|. In this case, define estimated information gain as

Ĝm(a, i) =
∑
ci∈Ci

N(ci)

n
l
(
R̂m(a, ci; P̂ 0)− R̂m(a; P̂ 0)

)
.

Define the following sample mean and variance :

Û(a, ci; P̂ 0) = R̂m(a, ci; P̂ 0) =
1

N(xi)

∑
j∈J (ci)

Uj(a; P̂ 0),

Vn(a, ci; P̂ 0) =
1

n− 1

∑
j∈J (ci)

(Uj(a, ci; P̂ 0)− Û(a, ci; P̂ 0))2.

Let V̄n(a, i; P̂ 0) =
∑

ci∈Ci
N(ci)Vn(a,ci;P̂ 0)

n
denote the weighted average sample variance.

Theorem 9. For every n ≥ 1 and δ ∈
[
0, 1

3

]
, if s =

⌈
n1/3

⌉
, then with probability at least

1− 3δ we have, for all pairs (a, i) ∈ (A,D),

|Ĝm(a, i; P̂ 0)− g(a, i)| ≤ B

(√
4 ln 3/δ

n1/3

(√
V̄n(a, i; P̂ 0) +

√
Vn(a; P̂ 0)

)
+

L

n1/3

+
∣∣∣bias(R̂m(a; P̂ 0))

∣∣∣+ E
∣∣∣bias(R̂m(a,Xi; P̂ 0))

∣∣∣)

+
4mB ln 3/δ +

√
2 ln 1/δ + ln 2

n2/3
.

There are two main differences between Theorem 8 and Theorem 9. The first is that the

estimation error is decreasing as n1/3 (Theorem 9) rather than as n1/2 (Theorem 8). The

second is that there is an additional error in Theorem 9 arising from the Lipschitz bound.

Theorem 9 suggests a different choice of thresholds, namely:

τ(a, i) = λ1n
−1/3

√
Vn(a, i; P̂ 0) + λ2

(
1

d− 1

) ∑
l∈F\{i}

|ρi,l|

 .
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3.7 Numerical Results

This section describes the performance of our algorithm on some real datasets. Note that

it is difficult (perhaps impossible) to validate and test the algorithm on the basis of actual

logged CMAB data unless the counterfactual action rewards for each instance are available

– which would (almost) never be the case. One way to validate and test our algorithm is to

use an alternative accepted procedure to infer counterfactuals and to test the prediction of

our algorithm against this alternative accepted procedure. This is the route we follow in the

experiments below.

3.7.1 Dataset

In this subsection, our algorithm is applied to the choice of recommendations of chemotherapy

regimen for breast cancer patients. Our algorithm is evaluated on a dataset of 10,000 records

of breast cancer patients participating in the National Surgical Adjuvant Breast and Bowel

Project (NSABP) by [YDS16]. Each instance consists of the following information about the

patient: age, menopausal, race, estrogen receptor, progesterone receptor, human epidermal

growth factor receptor 2 (HER2NEU), tumor stage, tumor grade, Positive Axillary Lymph

Node Count(PLNC), WHO score, surgery type, Prior Chemotherapy, prior radiotherapy

and histology. The treatment is a choice among six chemotherapy regimes AC, ACT, AT,

CAF, CEF, CMF. The outcomes for these regimens were derived based on 32 references

from PubMed Clinical Queries. The rewards for these regimens were derived based on 32

references from PubMed Clinical Queries; this is a medically accepted procedure. The details

are given in [YDS16].

3.7.2 Comparisons

We compare the performance of our algorithm (PONN-B) with

• PONN is PONN-B but without Step B (feature selection).
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• POEM is the standard POEM algorithm [SJ15a].

• POEM-B applies Step B of our algorithm, followed by the POEM algorithm.

• POEM-L1 is the POEM algorithm with the addition of L1 regularization.

• Multilayer Perceptron with L1 regularization (MLP-L1) is the MLP algorithm

on concatenated input (X, A) with L1 regularization.

• Logistic Regression with L1 regularization (LR-L1) is the separate LR algorithm

on input X on each action a with L1 regularization.

• Logging is the logging policy performance.

(In all cases, the objective is optimized with the Adam Optimizer.)

3.7.2.1 Simulation Setup

Artificially biased dataset is generated by the following logistic model. First weights for

each label are drawn from an multivariate Gaussian distribution, that is θ0,y ∼ N (0, κI).

Then, the logistic model is used to generate an artificially biased logged off-policy dataset

Dn =
(
Xj, Aj, R

obs
j

)n
j=1

by first drawing an action Aj ∼ p0(·|Xj), then setting the observed

reward as Robs
j ≡ Rj(Aj). (We use κ = 0.25.) This bandit generation process makes the

learning very challenging as the generated off-policy dataset has less number of observed

labels.

The dataset is randomly divided into 70% training and 30% testing sets. All algorithms

are trained for various parameter sets on the training set, the hyper parameters are selected

based on the validation set and performance is tested on the testing set. Our algorithm are

trained with Lr = 2 representation layers, and Lp = 2 policy layers with 50 hidden units

for representation layers and 100 hidden units (sigmoid activation) with policy layers. All

algorithms are implemented/trained in a Tensorflow environment using Adam Optimizer.

For j-th instance in testing data, let h∗g denote the optimized policy of algorithm g. Let

Jtest denote the instances in testing set and Ntest = |Jtest| denote number of instances in
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Metric Accuracy Improvement

PONN-B 74.12%± 1.25% -

PONN 62.81%± 1.85% 30.41%

POEM-B 55.39%± 0.36% 41.98%

POEM 52.78%± 0.50% 45.19%

POEM-L1 52.72%± 0.55% 45.26%

MLP-L1 61.47%± 0.50% 55.05%

LR-L1 51.96%± 0.43% 46.12%

Logging 18.20% + 1.30% 68.36%

Table 3.2: Performance in the Breast Cancer Experiment

testing dataset. Define (absolute) accuracy of an algorithm g as

Acc(g) =
1

Ntest

∑
j∈Jtest

∑
a∈A

h∗g(a|Xj)Rj(a).

The parameters are selected from the sets λ∗1 ∈ [0.005, 0.1], λ∗2 ∈ [0, 0.01] and λ∗3 ∈

[0.0001, 0.1] so that loss given in (3.8) estimated from the samples in the validation set is

minimized. In the testing dataset, the full dataset is used to compute the accuracy of each

algorithm.

In each case, the average of the iterations are reported with 95% confidence intervals over

25 iterations.

3.7.2.2 Results

Table 3.2 describes absolute accuracy and the Improvement Scores of the our algorithm. The

proposed algorithm achieves significant Improvement Scores with respect to all benchmarks.

There are two main reasons for these improvements. The first is that using Step B (feature

selection) reduces over-fitting; this can be seen by the improvement of PONN-B over PONN

and by the fact that PONN-B improves more over POEM (which does not use Step B) than

over POEM-B (which does use feature selection). The second is that PONN-B allows for
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Figure 3.2: Effect of the hyperparameter on the accuracy of our algorithm

non-linear policies, which reduces model misspecification.

Note that proposed action-dependent relevance discovery is also important for inter-

pretability. The selected relevant features given by our algorithm with λ1 = 0.03 is as

follows: age, tumor stage, tumor grade for AC treatment action, age, tumor grade, lymph

node status for ACT treatment action, menopausal status and surgery type for CAF treat-

ment action, age and estrogen receptor for CEF treatment action and estrogen receptor and

progesterone receptor for CMF treatment action.

Figure 3.2 shows the accuracy of our algorithm for different choices of the hyper parameter

λ1. As expected – and seen in Figure 3.2 – if λ1 is too small then there is overfitting; if it is

too large then a lot of relevant features are discarded.

3.8 Appendix

Here the proofs of Theorems 8 and 9 are provided. It is convenient to begin by recording

some technical lemmas; the first two are in the literature; proofs for the other two are given

here.

Lemma 5 (Theorem 1, [AMS09]). Let X1, X2, . . . , Xn be i.i.d. random variables taking
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their values in [0, b]. Let µ = E[X1] be their common expected value. Consider the empirical

sample mean X̄n and variance Vn defined respectively by

X̄n =

∑n
i=1Xi

n
and Vn =

∑n
i=1(Xi − X̄n)2

n
. (3.10)

Then, for any n ∈ N and δ ∈ (0, 1), with probability at least 1− δ,

|X̄n − µ| ≤
√

2Vn log 3/δ

n
+

3b log 3/δ

n
. (3.11)

For two probability distributions P and Q on a finite set A = {1, 2, . . . , a}, let

‖P −Q‖1 =
a∑
i=1

|P (i)−Q(i)| (3.12)

denote the L1 distance between P and Q.

Lemma 6. [WOS03] Let A = {1, 2, . . . , a}. Fix a probability distribution P on A and draw

n independent samples Xn = X1, X2, . . . , Xn from A according to the distribution P . Let P̂

be the empirical distribution of Xn. Then, for all ε > 0,

Pr(‖P − P̂ ‖1 ≥ ε) ≤ (2a − 2)e−ε
2n/2. (3.13)

The next two lemmas are auxiliary results used in the proof of Theorem 9.

Lemma 7. Let P 0 = [p0(a|x)] be the actual propensities and P̂ 0 = [p̂0(a|x)] be the estimated

propensities. Assume that p̂0(a|x) > 0 for all a,x. The bias of the truncated IS estimator

with propensities P̂ 0 is:

bias(R̂m(a; P̂ 0)) =
n∑
j=1

E

[
r̄(a,Xj)

n

((
1− p0,j

p̂0,j

)
I
(
p̂0,j ≥ m−1

)
+ (1− p0,jm) I

(
p̂0,j ≤ m−1

))]
.
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Proof of Lemma 7 The proof is similar to [JS16]. Then,

r̄(a) =
1

n

n∑
j=1

EXj∼Pr(X )r̄(a,Xj),

E(R̂m(a; P̂ 0)) =
1

n

n∑
j=1

E(Xj ,Aj ,Rj)∼p0

[
min

(
I(Aj = a)

p̂0(Aj|Xj)
,m

)
Rj

]

=
1

n

n∑
j=1

E(Xj ,Aj)∼p0

[
min

(
I(Aj = a)

p̂0(a|Xj)
,m

)
r̄(a,Xj)

]

=
n∑
j=1

EXj∼Pr(X )

[
r̄(a,Xj)

n
min

(
1

p̂0(a|Xj)
,m

)
p0(a|Xj)

]
.

It follows that

bias(R̂m(a;P )) =
n∑
j=1

EXj∼Pr(X )

[
r̄(a,Xj)

n

(
1−min

(
1

p̂0(a|Xj)
,m

)
p0(a|Xj)

)]
. (3.14)

Dividing (3.14) into the case for which p̂0(a|Xj) ≥ m−1 and the case for which p̂0(a|Xj) <

m−1 and then combining the results yields the desired conclusion.

To state Lemma 8, first define the expected relevance gain with truncated IPS reward

using propensities P̂ 0 to be

gm(a, i; P̂ 0) = E
[∣∣∣r̄m(a,Xi; P̂ 0)− r̄m(a; P̂ 0)

∣∣∣]
where

r̄m(a; P̂ 0) = E(R̂m(a; P̂ 0))

= E(X,A,R)∼p0

[
min

(
I(A = a)

p0(A|X)
,m

)
R

]
,

r̄m(a, xi; P̂ 0) = E(R̂m(a, xi; P̂ 0))

= E(X,A,R)∼p0

[
min

(
I(A = a)

p0(A|X)
,m

)
R

∣∣∣∣Xi = xi

]
.

Lemma 8. The following holds:

|gm(a, i; P̂ 0)− g(a, i)| ≤ B
(
E
[∣∣∣bias(R̂m(a,Xi; P̂ 0))

∣∣∣]+
∣∣∣bias(R̂m(a; P̂ 0))

∣∣∣) .
Proof of Lemma 8 This follows immediately by iterated expectations:∣∣∣∣E(`(E(R̂m(a,Xi; P̂ 0))− E(R̂m(a; P̂ 0))

)
− ` (r̄(a, xi)− r̄(a))

)∣∣∣∣
≤ BE

(∣∣∣∣E(R̂m(a,Xi; P̂ 0))− r̄(a,Xi)

∣∣∣∣)+ B|E(R̂m(a; P̂ 0))− r̄(a)|. (3.15)
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Proof of Theorem 8 Recall that the true relevance metric is g(a, i) = E [|r̄(a, xi)− r̄(a)|] =∑
xi∈Xi Pr(Xi = xi)l(r̄(a, xi) − r̄(a)). For any action a ∈ A and xi ∈ Xi, the error between

the estimated relevance metric and the relevance metric can be bounded as

|Ĝ(a, i;P 0)− g(a, i)| =

∣∣∣∣ ∑
xi∈Xi

N(xi)

n
`
(
R̂(a, xi;P 0)− R̂(a;P 0)

)
−
∑
xi∈Xi

N(xi)

n
` (r̄(a, xi)− r̄(a))

+
∑
xi∈Xi

N(xi)

n
` (r̄(a, xi)− r̄(a))

−
∑
xi∈Xi

Pr(Xi = xi)` (r̄(a, xi)− r̄(a))

∣∣∣∣
≤

∑
xi∈Xi

N(xi)

n

(
`
(
R̂(a, xi;P 0)− R̂(a;P 0)

)
− ` (r̄(a, xi)− r̄(a))

)
+
∑
xi∈Xi

(
N(xi)

n
− Pr(Xi = xi)

)
` (r̄(a, xi)− r̄(a))

≤ B
∑
xi∈Xi

N(xi)

n

∣∣∣R̂(a, xi;P 0)− r̄(a, xi)
∣∣∣+B

∣∣∣R̂(a;P 0)− r̄(a)
∣∣∣

+
∑
xi∈Xi

∣∣∣∣N(xi)

n
− Pr(Xi = xi)

∣∣∣∣ .
Each term is bounded separately. Applying Lemma 6, with probability at least 1− δ,

∑
xi∈Xi

∣∣∣∣Pr(Xi = xi)−
N(xi)

n

∣∣∣∣ ≤
√

2 ln 2bi/δ

n

=

√
2 (bi ln 2 + ln 1/δ)

n
. (3.16)

Using Lemma 5 see that, with probability at least 1− δ,∑
xi∈Xi

N(a, xi)

n

∣∣∣R̂(a, xi;P 0)− r̄(a, xi)
∣∣∣

≤
∑
xi∈Xi

N(a, xi)

n

(√
2Vn(a, xi;P 0) ln 3/δ

N(a, xi)
+

3M ln 3/δ

N(a, xi)

)

≤
√

2biVn(a, xi;P 0) ln 3/δ

n
+

3Mbi ln 3/δ

n
, (3.17)
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where the the second inequality follows from an application of Jensen’s inequality. Similarly,

using Lemma 5, see that with probability at least 1− δ,∣∣∣R̂(a;P 0)− r̄(a)
∣∣∣ ≤√2Vn(a;P 0) ln 3/δ

n
+

3M ln 3/δ

n
. (3.18)

The desired result now follows by combining (3.16, 3.17 and 3.18).

Proof of Theorem 8 Let

g̃m(a, i) =
∑
ci∈Ci,n

Pr(Xi ∈ ci)`(r̄m(a, ci)− r̄m(a)).

Then, decompose the error into

|Ĝm(a, i; P̂ 0)− g(a, i)| ≤ |Ĝm(a, i; P̂ 0)− gm(a, i; P̂ 0)|+ |gm(a, i; P̂ 0)− g(a, i)|

≤ |Ĝm(a, i; P̂ 0)− g̃m(a, i; P̂ 0)|

+ |g̃m(a, i; P̂ 0)− gm(a, i; P̂ 0)|

+ |gm(a, i; P̂ 0)− g(a, i)|. (3.19)

The first term (3.19) can be bounded by Theorem 8 by setting sn =
⌈
n1/3

⌉
≤ n1/3 + 1, i.e.,

|Ĝm(a, i; P̂ 0)− g̃m(a, i; P̂ 0)| ≤
√

4B2 ln 3/δ

n1/3

(√
V̄n(a, i; P̂ 0) +

√
Vn(a; P̂ 0)

)
+

4mB ln 3/δ +
√

2 ln 1/δ + ln 2

n2/3
.

The third term in (3.19) is the bias of the estimation due to estimated propensity scores

and truncation, i.e.,

|gm(a, i; P̂ 0)− g(a, i)| ≤ B
(
E
[∣∣∣bias(R̂m(a,Xi); P̂ 0)

∣∣∣]+
∣∣∣bias(R̂m(a); P̂ 0)

∣∣∣) .
The second term in (3.19) can be bounded

gm(a, i; P̂ 0) = E
[
`(r̄m(a,Xi; P̂ 0)− r̄m(a; P̂ 0))

]
= E

[
`(r̄m(a,Xi; P̂ 0)− r̄m(a, ci; P̂ 0) + r̄m(a, ci; P̂ 0)− r̄m(a; P̂ 0))

]
≤ E

[
`

(
L

n1/3
+ r̄m(a, ci; P̂ 0)− r̄m(a; P̂ 0)

)]
≤ LB

n1/3
+ E

[
`(r̄m(a, ci; P̂ 0)− r̄m(a; P̂ 0))

]
.
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where the first inequality follows from Assumption 4 and the second inequality follows from

smoothness assumption on the loss function l(·), i.e.,

l

(
L

n1/3
+ r̄m(a, ci; P̂ 0)− r̄m(a; P̂ 0)

)
− l
(
r̄m(a, ci; P̂ 0)− r̄m(a; P̂ 0)

)
≤ LB

n1/3
.
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CHAPTER 4

Counterfactual Policy Optimization Using

Domain-Adversarial Neural Networks

4.1 Introduction

The choice of a particular policy or plan of action involves consideration of the costs and

benefits of the policy/plan under consideration and also of alternative policies/plans that

might be undertaken. Examples abound; to mention just a few: Which course of treatment

will lead to the most rapid recovery? Which mode of advertisement will lead to the most

orders? Which investment strategy will lead to the greatest returns? Obtaining information

about the costs and benefits of alternative plans that might have been undertaken is a

counterfactual exercise. One possible way to estimate the counterfactual information is by

conducting controlled experiments. However, controlled experiments are expensive, involve

small samples, and are frequently not available. It is therefore important to make decisions

entirely on the basis of observational data in which the actions/decisions taken in the data

have been selected by an existing logging policy. Because the existing logging policy creates

a selection bias, learning from observational studies is a challenging problem. This chapter

presents theoretical bounds on estimation errors for the evaluation of a new policy from

observational data and a principled algorithm to learn the optimal policy. The proposed

methods and algorithms are widely applicable (perhaps with some modifications) to an

enormous range of settings in healthcare applications. In the medical context, features

are the information included in electronic health records, actions are choices of different

treatments, and outcomes are the success of treatment.

Theoretical results developed in this chapter show that true policy outcome is at least
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Literature Propensities known Objective Actions Solution

[SJS17] no ITE estimation 2 Balancing representations

[AS17] no ITE estimation 2 Risk based empirical Bayes

[BL09] yes policy optimization > 2 Rejection sampling

[SJ15b,SJ15c] yes policy optimization > 2 IPS reweighing

Ours no policy optimization > 2 Balancing representations

Table 4.1: Comparison with the related literature

as good as the policy outcome estimated from the observational data minus the product of

the number of actions with the H-divergence between the observational and randomized

data. These theoretical bounds are different than ones derived in [SJ15b] because ours

do not require the propensity scores to be known. These theoretical results are used to

develop algorithm to learn balanced representations for each instance such that they are

indistinguishable between the randomized and observational distribution and also predictive

of the decision problem at hand. The developed algorithm is evaluated on the breast cancer

dataset.

4.2 Related Work

Roughly speaking, work on counterfactual learning from observational data falls into two

categories: estimation of Individualized Treatment Effect (ITE) [JSS16, SJS17, AS17] and

Policy Optimization [SJ15b, SJ15c]. The work on ITE’s aims to estimate the expected

difference between outcomes for treated and control patients, given the feature vector; this

work focuses on settings with only two actions (treat/don’t treat) - and notes that the

approaches derived do not generalize well to settings with more than two actions. The work

on policy optimization aims to find a policy that maximizes the expected outcome (minimizes

the risk). The policy optimization objective is somewhat easier than ITE objective in the

sense that one can turn the ITE to action recommendations but not the other way around.

In many healthcare applications, there are much more than 2 actions; one is more interested

in learning a good action rather than learning outcomes of each action for each instance.

The work on ITE estimation that is most closely related to this chapter focuses on
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learning balanced representations [JSS16, SJS17]. These papers develop neural network al-

gorithms to minimize the mean squared error between predictions and actual outcomes in

the observational data and also the discrepancy between the representations of the factual

and counterfactual data. As these papers note, there is no principled approach to extend

them to more than two treatments. Other recent works in ITE estimation include tree-based

methods [Hil11, AI15, WA15] and Gaussian processes [AS17]. The last is perhaps the most

successful, but the computational complexity is O(n3) (where n is the number of instances)

so it is not easy to apply to large observational studies.

In the policy optimization literature, the work most closely related to this chapter is

[SJ15b, SJ15c] where they develop the Counterfactual Risk Minimization (CRM) principle.

The objective of the CRM principle is to minimize both the estimated mean and variance

of the Inverse Propensity Score (IPS) instances; to do so the authors propose the POEM

algorithm. The algorithm developed in this chapter differs from POEM in several ways:

(i) POEM minimizes an objective over the class of linear policies; ours allow for arbitrary

policies, (ii) POEM requires the propensity scores to be available in the data; our algorithm

addresses the selection bias without using propensity scores, (iii) POEM addresses selection

bias by re-weighting each instance with the inverse propensities; our algorithm addresses

the selection bias by learning representations. Another related paper on policy optimization

is [BL09] which requires the propensity scores to be known and addresses the selection bias

via rejection sampling. (For a more detailed comparison see Table 4.1.)

The off-policy evaluation methods include IPS estimator [RR83,SLL10], self normalizing

estimator [SJ15c], direct estimation, doubly robust estimator [DLL11, JL16] and matching

based methods [HR06a]. The IPS and self-normalizing estimators address the selection bias

by re-weighting each instance by their inverse propensities. The doubly robust estimation

techniques combine the direct and IPS methods and generate more robust counterfactual

estimates. Propensity Score Matching (PSM) replaces the missing counterfactual outcomes

of the instance by the outcome of an instance with the closest propensity score.

Theoretical bounds developed in this chapter have strong connection with the domain

adaptation bounds given in [BBC07, BCK08]. In particular, this chapter shows that the
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expected policy outcome is bounded below by the estimate of the policy outcome from

the observational data minus the product of the number of actions with the H-divergence

between the observational and randomized data. The algorithm developed in this chapter

is based on domain adaptation as in [GUA16]. Other domain adaptation techniques include

[ZSM13,Dau09].

4.3 Problem Setup

4.3.1 Observational Data

Denote by A the set of k actions, by X the s-dimensional space of features and by Y ⊆ R

the space of outcomes. We assume that an outcome can be identified with a real number

and normalize so that outcomes lie in the interval [0, 1]. In some cases, the outcome will

be either 1 or 0 (success or failure); in other cases the outcome may be interpreted as the

probability of success or failure. The potential outcome model described in the Rubin-

Neyman causal model [Rub05] is followed; that is, for each instance x ∈ X , there are k-

potential outcomes: Y (0), Y (1), . . . , Y (k−1) ∈ Y , corresponding to the k different actions. The

fundamental problem in this setting is that only the outcome of the action actually performed

is recorded in the data: Y = Y T . (This is called bandit feedback in the machine learning

literature [SJ15b].) In this chapter, we focus on the setting in which the action assignment

is not independent of the feature vector, i.e., A 6⊥⊥ X; that is, action assignments are not

random. This dependence is modeled by the conditional distribution γ(a, x) = P (A = a|X =

x), also known as the propensity score.

In this chapter, the following common assumptions are made:

• Unconfoundedness: Potential outcomes (Y (0), Y (1), . . . , Y (k−1)) are independent of

the action assignment given the features, that is (Y (0), Y (1), . . . , Y (k−1)) ⊥⊥ A|X.

• Overlap: For each instance x ∈ X and each action a ∈ A, there is a non-zero

probability that a patient with feature x received the action a: 0 < γ(a, x) < 1 for all

a, x.
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These assumptions are sufficient to identify the optimal policy from the data [IW09,Pea17].

The dataset is

Dn = {(xi, ai, yi)}ni=1

where each instance i is generated by the following stochastic process:

• Each feature-action pair is drawn according to a fixed but unknown distribution DS,

i.e, (xi, ai) ∼ DS.

• Potential outcomes conditional on features are drawn with respect to a distribution P ;

that is, (Y
(0)
i , Y

(1)
i , . . . , Y

(k−1)
i ) ∼ P(·|X = xi, A = ai).

• Only the outcome of the action actually performed is recorded in the data, that is,

yi = Y
(ai)
i .

Denote the marginal distribution on the features by D; i.e., D(x) =
∑

a∈ADS(x, a).

4.3.2 Definition of Policy Outcome

A policy is a mapping h from features to actions. In this chapter, the goal is learning a policy

h that maximizes the policy outcome, defined as:

V (h) = Ex∼D
[
E
[
Y (h(X))|X = x

]]
.

We denote by ma(x) = E
[
Y (a)|X = x

]
the expected outcome of action a on an instance

with feature x. Based on these definitions, the policy outcome of h can be re-written as

V (h) = Ex∼D
[
mh(x)(x)

]
. Estimating V (h) from the data is a challenging task because the

counterfactuals are missing and there is a selection bias.

4.4 Counterfactual Estimation Bounds

In this section, a criterion that we will use to learn a policy h∗ the maximizes the outcome

is provided. The selection bias in our dataset is handled by mapping the features to rep-

resentations are relevant to policy outcomes and are less biased. Let Φ : X → Z denote

65



a representation function which maps the features to representations. The representation

function induces a distribution over representations Z (denoted by DΦ) and ma as follows:

PDΦ(B) = PD(Φ−1(B)),

mΦ
a (z) = Ex∼D[ma(x)|Φ(x) = z],

for any B ⊂ Z such that Φ−1(B) is D-measurable. That is, the probability of of an event B

according to DΦ is the probability of the inverse image of the event B according to D. The

learning setting is defined by our choice of the representation function and hypothesis class

H = {h : Z → A} of (deterministic) policies.

Recall that DS is the source distribution that generated feature-action samples in our

observational data. Define the target distribution DT by DT (x, a) = (1/k)D(x). Note that

DS represents an observational study in which the actions are not randomized, while DT

represents a clinical study in which actions are randomized. Let DΦ
S and DΦ

T denote the

source and target distributions induced by the representation function Φ over the space

Z × A, respectively. Let DΦ denote the marginal distribution over the representations and

write V Φ(h) for the induced policy outcome of h, that is, V Φ(h) = Ez∼DΦ

[
mΦ
h(z)(z)

]
.

For the remainder of the theoretical analysis, suppose that the representation function

Φ is fixed. The missing counterfactual outcomes can be addressed by importance sampling.

Let V Φ
S (h) and V Φ

T (h) denote the expected policy outcome with respect to distributions DS

and DT , respectively. They are given by

V Φ
S (h) = E(z,a)∼DΦ

S

[
mΦ
a (z)1(h(z) = a)

1/k

]
,

V Φ
T (h) = E(z,a)∼DΦ

T

[
mΦ
a (z)1(h(z) = a)

1/k

]
.

where 1(·) is an indicator function if the statement is true and 0 otherwise. The next

proposition shows that value function of a policy h evaluated on the target distribution is

unbiased. We note that though only the value function evaluated on observational data,

VS(h) can be estimated.

Proposition 2. Let Φ be a fixed representation function. Then: V Φ
T (h) = V Φ(h).
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Proof. It follows that

V Φ
T (h) = Ez∼DΦ

[∑
a∈A

1/k
mΦ
a (z)1(h(z) = a)

1/k

]
= Ez∼DΦ

[
mΦ
h(z)(z)

]
= V Φ(h).

As noted above a Monte-Carlo estimator for V Φ
T (h) is not possible since the observational

dataset does not have samples from the target distribution - only has samples from the

source distribution. However, domain adaptation theory can be used to bound the difference

between V Φ
S (h) and V Φ

T (h) in terms of H-divergence. In order to do that, let us introduce a

distance metric between distributions. For any policy h ∈ H, let Ih denote the characteristic

set that contains all representation-action pairs that is mapped to label a under function h,

i.e., Ih = {(z, a) : h(z) = a}.

Definition 4. Suppose D, D′ be probability distributions over Z ×A such that every char-

acteristic set Ih of h ∈ H is measurable with respect to both distributions. Then, the H

-divergence between distributions D and D′ is

dH(D,D′) = sup
h∈H

∣∣∣P(z,a)∼D(Ih)− P(z,a)∼D′ (Ih)
∣∣∣ .

The H-divergence measures the difference between the behavior of policies in H when

examples are drawn from D, D′; this plays an important role in theoretical bounds. In the

next lemma, a bound on the difference between V Φ
S (h) and V Φ

T (h) is established based on

the H-divergence between source and target.

Lemma 9. Let h ∈ H and let Φ be a representation function. Then

V Φ(h) ≥ V Φ
S (h)− kdH(DΦ

T ,DΦ
S )
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Proof. The proof is similar to [BBC07,BCK08]. The following inequality holds:

V Φ
S (h) = E(z,a)∼DΦ

S

[
ma(z)

1/k
1(h(z) = a)

]
≤ E(z,a)∼DΦ

T

[
ma(z)

1/k
1(h(z) = a)

]
+ k

∣∣∣P(z,a)∼DΦ
T
(Ih)− P(z,a)∼DΦ

S
(Ih)

∣∣∣
≤ V Φ(h) + kdH(DΦ

S ,DΦ
T )

where the first inequality holds because ma(z)
1/k
≤ k for all pairs (z, a) and outcomes lie in the

interval [0, 1].

Lemma 9 shows that the true policy outcome is at least as good as the policy outcome in

the observational data minus the product of the number of actions times the H-divergence

between the observational and randomized data. (So, if the divergence is small, a policy

that is found to be good with respect to the observational data is guaranteed to be a good

policy with respect to the true distribution.)

Definition 5. Let Φ be a representation function such that Φ(xi) = zi. The Monte-Carlo

estimator for the policy outcome in source data is given by:

V̂ Φ
S (h) =

1

n

n∑
i=1

yi1(h(zi) = ai)

1/K
.

In order to provide uniform bounds on the Monte-Carlo estimator for an infinitely large

class of recommendation functions, we need to first define a complexity term for a class H.

For ε > 0, a policy class H and integer n, the growth function is defined as

N∞(ε,H, n) = sup
z∈Zn

N (ε,H(z), ‖ · ‖∞),

where H(z) = {(h(z1), . . . , h(zn)) : h ∈ H} ⊂ Rn, Zn is the set of all possible n representa-

tions and for A ⊂ Rn the number N (ε, A, ‖ · ‖∞) is the cardinality |A0| of the smallest set

A0 ⊆ A such that A is contained in the union of ε-balls centered at points in A0 in the metric

induced by ‖·‖∞. (This is often called the covering number.) SetM(n) = 10N∞(1/n,H, 2n).

The following result provides an inequality between the estimated and true V Φ
S (h) for all

h ∈ H.
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Lemma 10. [MP09] Fix δ ∈ (0, 1), n ≥ 16. Then, with probability 1 − δ, we have for all

h ∈ H:

V Φ
S (h) ≥ V̂ Φ

S (h)−
√

18 ln(M(n)/δ)

n
− 15 ln(M(n)/δ)

n

In order to provide a data dependent bound on the estimation error between V (h) and

V̂S(h), we need to provide data-dependent bounds on the H-divergence between source and

target distributions. However, we aren’t given samples from the target data so we need

to generate (random) target data. Let D̂Φ
S = {(Zi, Ai)}ni=1 denote the empirical distri-

bution of the source data. From the empirical source distribution, target data can be

generated by simply sampling the actions uniformly, that is, D̂Φ
T = {(Zi, Ãi)}ni=1 where

Ãi ∼ Multinomial([1/K, . . . , 1/K]). Then, we have D̂Φ
S ∼ DΦ

S and D̂Φ
T ∼ DΦ

T . Then, define

the empirical probability estimates of the characteristic functions as

P(z,a)∼D̂Φ
S
(Ih) =

1

n

n∑
i=1

1(h(Zi) = Ai),

P(z,a)∼D̂Φ
T
(Ih) =

1

n

n∑
i=1

1(h(Zi) = Ãi).

Then, one can compute empirical H-divergence between two samples D̂Φ
S and D̂Φ

T by

dH(D̂Φ
T , D̂Φ

S ) = sup
h∈H

∣∣∣P(z,a)∼D̂Φ
T
(Ih)− P(z,a)∼D̂Φ

S
(Ih)

∣∣∣ . (4.1)

In the next lemma, we provide estimation bounds between the empirical H-divergence and

true H-divergence.

Lemma 11. Fix δ ∈ (0, 1), n ≥ 16. Then, with probability 1− 2δ, we have for all h ∈ H:

dH(DΦ
T ,DΦ

S ) ≥ dH(D̂Φ
T , D̂Φ

S )

− 2

[√
18 ln(M(n)/δ)

n
− 15 ln(M(n)/δ)

n

]

Proof. Define β(δ, n) =
√

18 ln(M(n)/δ)
n

− 15 ln(M(n)/δ)
n

. By [MP09], with probability 1 − δ, we

have for each hypothesis h ∈ H,

P(z,a)∼DΦ
T
(Ih) ≥ P(z,a)∼D̂Φ

T
(Ih)− β(δ, n)

P(z,a)∼DΦ
S
(Ih) ≤ P(z,a)∼D̂Φ

S
(Ih) + β(δ, n)
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Hence, by union bound, the following equation holds for all h ∈ H with probability 1− 2δ:∣∣∣P(z,a)∼DΦ
T
(Ih)− P(z,a)∼DΦ

S
(Ih)

∣∣∣
≥
∣∣∣P(z,a)∼D̂Φ

T
(Ih)− P(z,a)∼D̂Φ

S
(Ih)− 2β(δ, n)

∣∣∣
The inequality still holds by taking supremum over H with 1− 2δ, that is,

dH(DΦ
T ,DΦ

S )

≥ sup
h∈H

∣∣∣P(z,a)∼D̂Φ
T
(Ih)− P(z,a)∼D̂Φ

S
(Ih)− 2β(δ, n)

∣∣∣
≥ dH(D̂Φ

T , D̂Φ
S )− 2β(δ, n).

where the last inequality follows from the triangle inequality.

Finally, by combining Lemmas 9,10 and 11,a data-dependent bound on the counterfactual

estimation error is obtained.

Theorem 10. Fix δ ∈ (0, 1), n ≥ 16. Let Φ be the representation function and let H be the

set of policies. Then, with probability at least 1− 3δ, we have for all h ∈ H:

V Φ(h) ≥ V̂ Φ
S (h)− kdH(D̂Φ

S , D̂Φ
T )

− 3k

[√
18 ln(M(n)/δ)

n
− 15 ln(M(n)/δ)

n

]
This result extends the result provided in [SJS17] since their theoretical bounds are

restricted to two-action problems and extends the result in [SJ15b] since they require the

propensity scores to be known. The result provided in Theorem 10 is constructive and

motivates our optimization criteria.

4.5 Counterfactual Policy Optimization (CPO)

Theorem 10 motivates a general framework for designing policy learning from observational

data with bandit feedback. A learning algorithm following this criterion solves:

Φ̂, ĥ = arg max
Φ,h

V̂ Φ
S (h)− λdH(D̂Φ

S , D̂Φ
T ),
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Figure 4.1: Neural network model based on [GUA16]

where λ > 0 is the trade-off parameter between the empirical policy outcome in the source

data and the empirical H-divergence between the source and target distributions. This

optimization criterion seeks to find a representation function where the source and the target

domain are indistinguishable. Computing the empiricalH-divergence between the source and

target distributions is known to be NP-hard [GUA16], but we can use recent developments

in domain adversarial neural networks to find a good approximation.
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Algorithm 5 Procedure: Generate− Batch

1: Input: Data: Dn, Batch size: m

2: Sample U = {u1, . . . , um} ⊂ N = {1, . . . , n}.

3: Set source set S = {(xui , aui , yui , di = 0)}mi=1.

4: Sample V = {v1, . . . , vm} ⊂ N \ U .

5: Set T = ∅

6: for i = 1, . . . , m: do

7: Sample ãi ∼ Multinomial([1/K, . . . , 1/K]).

8: T = T ∪ {(xvi , ãi, di = 1)}.

9: end for

10: Output: S, T .

4.5.1 Domain Adversarial Neural Networks

This chapter follows the recent work in domain adversarial training of neural networks [GUA16].

For this, only samples from observed data is needed - sometimes referred to as source data

(DS) - and unlabeled samples from an ideal dataset - referred to as target data (DT ). As

mentioned, there are no samples from ideal dataset. Hence, target dataset needs to be gen-

erated from source dataset by batch sampling. Given a batch size of m, instances from the

source data D are sampled uniformly randomly and their domain variable set to 0, d = 0,

indicating this is the source data. Then, additional m instances are uniformly randomly

sampled excluding the instances from the source data, are randomly assigned to one of the

treatments by a Multinomial distribution, Multinomial([1/k, . . . , 1/k]); finally, their domain

variable are set to 1, d = 1, indicating this is the target data. The batch generation procedure

is depicted in Algorithm 5.

The algorithm, referred to as Domain Adverse training of Counterfactual POLicy train-

ing (DACPOL), consists of three blocks: representation, domain and policy blocks. In the

representation block, DACPOL seeks to find a map Φ : X → Z combining two objectives:

(i) high predictive power on the outcomes, (ii) low predictive power on the domain predic-

tion. Let Fr denote a parametric function that maps the patient features to representations,

72



that is, zi = Fr(xi; θr) where θr is the parameter vector of the representation block. The

representations are input to both survival and policy blocks. Let Fp denote the mappings

from representation-action pair (zi, ai) to probabilities over the actions q̂i = [q̂i,0, . . . , q̂i,K−1],

i.e., q̂i = Fp(zi, ai; θp) where θp is the parameter vector of the policy block. For an instance

with features xi and action ai, an element in output of policy block q̂i,a is the probability of

recommending action a for subject i. The estimated policy outcome in source data is then

given by

V̂ Φ
S (h) =

1

n

n∑
i=1

yiqai
1/k

.

Although theory developed above applies only to deterministic policies, DACPOL allows

for stochastic policies in order to make the optimization problem tractable. This is not

optimal; however, as shown later in our numerical results, this approach is still able to

achieve significant gains with respect to benchmark algorithms. Let Gd be a mapping from

representation-action pair (zi, ai) to probability of the instances generated from target, i.e.,

p̂i = Gd(zi, ai; θd) where θd is the parameters of the domain block.

Note that the last layer of the policy block is a softmax operation, which has exponential

terms. Instead of directly maximizing V̂S(h), we use a modified cross-entropy loss to make

the optimization criteria more robust. The policy loss is then

Lip(θr, θs) =
−yi log(qi,ai)

1/k

At the testing stage, we can then convert these probabilities to action recommendations

simply by recommending the action with highest probability qi,a. We set the domain loss

to be the standard cross entropy loss between the estimated domain probability pi and the

actual domain probability di; this is the standard classification loss used in the literature

and is given by

Lid(θr, θs) = di log(pi) + (1− di) log pi.

The DACPOL aims to find the saddle point that optimizes the weighted sum of the

73



Algorithm 6 Training Procedure: DACPOL

Input: Data: D, Batch size: m, Learning rate: µ

(S, T ) = Generate-Batch(D,m).

for until convergence do

Compute LSp (θr, θs) = 1
|S|
∑

i∈S Lip(θr, θs)

Compute LSd (θr, θd) = 1
|S|
∑

i∈S Lid(θr, θd)

Compute LTd (θr, θd) = 1
|T |
∑

i∈T Lid(θr, θd)

Compute Ld(θr, θd) = LSd (θr, θd) + LTd (θr, θd)

θr → θr − µ
(
∂LSs (θr,θs)

∂θr
− λ∂Ld(θr,θd)

∂θr

)
θp ← θp − µ

∂LSp (θr,θs)

θs

θd ← θd − µ∂Ld(θr,θd)
θd

end for

survival and domain loss. The total loss is given by

E(θr, θs, θd) =
∑
i∈S

Lis(θr, θs)

−λ

(∑
i∈S

Lid(θr, θd) +
∑
i∈T

Lid(θr, θd)

)

where λ > 0 is the trade-off between survival and domain loss. The saddle point is(
θ̂r, θ̂s

)
= arg min

θr,θp
E(θr, θp, θ̂d),

θ̂d = arg max
θd
E(θ̂r, θ̂p, θd).

The training procedure of the DACPOL is depicted in Algorithm 6. The neural network

architecture is depicted in Figure 4.1.

For a test instance with covariates x∗, DACPOL computes the action recommendations

with the following procedure: it first computes the representations by z∗ = Gr(x
∗; θr), then

computes the action probabilities q∗ = Fp(z
∗, θp). It finally recommends the action with

Â(x∗) = arg maxa∈A q
∗
a.
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4.6 Numerical Results

This section describes the performance of our algorithm. Note that it is difficult (almost

impossible) to test and validate the algorithm on real data with missing counterfactual

survival outcomes. In this chapter, we provide results both on a semi-synthetic breast cancer

(description can be found in 3.7.1).

4.6.1 Experimental Setup

Artificially biased dataset Dn = {(Xi, Ai, Yi)} is generated by the following procedure: (i)

first random weights W ∈ Rs×k with wj,a ∼ N (0, σI) are drawn where σ > 0 is a parameter

used to generate datasets with different selection bias levels, (ii) actions are generated in the

data according to the logistic distribution A ∼ exp(xTwa)/(
∑

a∈A exp(xTwa)).

For the breast cancer data set, we generate a 56/24/20 split of the data to train, validate

and test our DACPOL. The hyperparameter list in our validation set is 10γ/2 with γ ∈

[−4,−3,−2,−1, 0, 0.5, 0.75, 1, 1.5, 2, 3]. 100 different datasets are generated by following the

procedure described above. Average of the metrics together with 95% confidence levels are

reported.

The performance metric used to evaluate our algorithm in this paper is loss, which is

defined to be 1− accuracy; accuracy is defined as the fraction of test instances in which the

recommended and best action match. Note that the accuracy metric can be evaluated since

we have the ground truth outcomes in the testing set, but of course the ground truth outcomes

are not used by any algorithm in the training and validation test. In the experiments, we use

1-1-2 representation/domain/outcome fully-connected layers. The neural network is trained

by back propagation via Adam Optimizer [KB14] with an initial learning rate of .01. We

begin with an initial learning rate µ and tradeoff parameter λ and use iterative adaptive

parameters to get our result; along the way we decrease the learning rate µ and increases

the tradeoff parameter. This is standard procedure in training domain adversarial neural

networks [GUA16]. The DACPOL is implemented in the Tensorflow environment.
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4.6.2 Benchmarks

We compare performance of DACPOL with two benchmarks

• POEM [SJ15b] is a linear policy optimization algorithm which minimizes the empirical

risk of IPS estimator and variance.

• IPS is POEM without variance regularization.

Both IPS and POEM deal with the selection bias in the data by using the propensity scores.

Note that DACPOL does not require the propensity scores to be known in order to address

the selection bias. Hence, in order to make fair comparisons, we estimate the propensity

scores from the data, and use these estimates in IPS and POEM.

4.6.3 Results

4.6.3.1 Comparisons with the benchmarks

Table 4.2 shows the discriminative performance of DACPOL (in which we optimize λ) and

DACPOL(0) (in which we set λ = 0) with the benchmark algorithms. The experiments are

conducted in breast cancer data in which actions generated by logistic model with σ = 0.3.

As seen from the table, DACPOL outperforms the benchmark algorithms in terms of the

loss metric defined above. The empirical gain with respect to POEM algorithm has three

sources: (i) DACPOL does not need propensity scores, (ii) DACPOL optimizes over all

policies not just linear policies, (iii) DACPOL trades off between the predictive power and

bias introduced by the features. (the last source of gain is illustrated in the next subsection

with a toy example.)

4.6.3.2 Domain Loss and Policy Loss

The hyperparameter λ controls the domain loss in the training procedure. As λ increases,

the domain loss in training DACPOL increases; eventually source and target become in-

distinguishable, the representations become balanced, and the loss of DACPOL reaches a
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Algorithm Breast Cancer

DACPOL .292± .006

DACPOL(0) .321± .006

POEM .394± .004

IPS .397± .004

Table 4.2: Loss Comparisons for Breast Cancer Dataset; Means and 95% Confidence Intervals

minimum. If λ is increased beyond that point, the DACPOL classifies the source as the

target and the target as the source, representations become unbalanced, and the the loss of

DACPOL increases again. Figure 4.2 illustrates this effect for the breast cancer dataset.
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Figure 4.2: The effect of domain loss in DACPOL performance

4.6.3.3 The effect of selection bias in DACPOL

In this subsection, we show the effect of the selection bias in the performance of our algorithm

by varying the parameter σ in our data generation process: a larger value of σ creates more

biased data. Figure 4.3 shows two important points: (i) as the selection bias increases, the

loss of DACPOL increases, (ii) as the selection bias increases, domain adversarial training

becomes more efficient, and hence the improvement of DACPOL over DACPOL(0) increases.
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Figure 4.3: The effect of selection bias in DACPOL performance

4.6.3.4 Empirical Gains with respect to CRM

In this subsection, we show an advantage of our CPO principle over the CRM principle: selec-

tion bias from irrelevant features is less important. This happens because our representation

optimization is able to remove the effect of the irrelevant features in the outputted represen-

tations and then uses only the relevant features to directly estimate the policy outcome as if

it had access to randomized data. However, the performance of the CRM principle (whose

objective is to maximize the IPS estimator minus the variance of the policy outcome) de-

creases with additional irrelevant features, because the inverse propensities due to irrelevant

features become large, and hence the variance of the IPS estimator will also become large.

To see this, we use a toy example. We begin with 15 relevant features x. We then generate

d additional irrelevant features z ∼ N (0, I). We create a logging policy that depends only

on the irrelevant features using the logistic distribution. As d increases, the selection bias

also increases. As Figure 4.4 shows, POEM is more sensitive than DACPOL to this increase

in the selection bias.
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CHAPTER 5

Online Decision Making with Costly Observations

5.1 Introduction

In numerous real-world settings, acquiring useful information is often costly. In health-

care applications, the decision-maker performs costly research/experimentation to learn

valuable information. However, classical contextual Multi-Armed Bandit (MAB) formula-

tions ( [CLR11,Sli11,LPP10,DHK11,LZ07]) have not previously considered these important

informational costs and are thus unable to provide satisfactory performance in such settings.

This chapter presents new and powerful methods and algorithms for Contextual MAB with

Costly Observations (CMAB-CO). The experiments on breast cancer dataset show that al-

gorithms achieve significant performance gains with respect to benchmarks.

A major challenge in these settings is the learning of both optimal observations and

actions. Current MAB methods could potentially be modified to address this issue by com-

bining the choice of the context to observe and the action to be taken as a single meta-action

and folding the costs of observations in the rewards. However, the regret of such an approach

can be shown to be exponential in the number of actions and the number of possible context

states; therefore, it is so inefficient as to be impractical for any realistic problem. Therefore

there is a strong need for the development of new algorithms that achieve better performance.

To overcome the limitations and challenges discussed above, we propose an alternative

approach. We formalize the CMAB-CO problem and show that this problem can be reduced

to a two stage Markov Decision Process (MDP) problem with a canonical start state. We

propose two different algorithms for this learning problem: Sim-OOS and Seq-OOS where

observations are made simultaneously and sequentially, respectively. These algorithms build
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upon the UCRL2 algorithm of ( [JOA10]) to efficiently learn optimal observations and ac-

tions. We show that both Sim-OOS and Seq-OOS algorithms achieve a regret that is sublin-

ear in time. These algorithm thus perform well when the number of observations is small, and

it represents a significant improvement over existing algorithms, which would be exponential

in the number of observations as well as actions.

The main contributions in this chapter can be summarized as follows:

• We formalize the CMAB-CO problem as a fixed stage MDP.

• We propose two algorithms under two assumptions: simultaneous and sequential ob-

servation selection. We show sublinear in time regret bounds for both algorithms.

• We use a breast cancer dataset and show that we can achieve up to significant im-

provement in performance with respect to benchmarks.

In the medical context, the observations might consist of different types of (costly) medical

tests (e.g., blood tests, MRI, etc.), actions might consist of choices of treatment, and rewards

might consist of 5 year survival rates. Hence, an important aspect of the decision-making is

which medical tests to conduct and which treatment option to recommend.

5.2 Related Work

This chapter contributes to multiple strands of literature, including MAB, MDP and bud-

geted learning.

5.2.1 MAB Literature

This chapter relates to various strands of research in the MAB literature ( [TS15c, TS15b,

TYS17,STS16,CLR11,Sli11,LPP10,DHK11,LZ07]). For example, [TS15c] focuses on learn-

ing the optimal actions by discovering relevant information. However, this work does not

consider the costs associated with gathering information and is thus unable to provide satis-

factory performance in the considered setting. The CMAB-CO problem is similar to combi-
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natorial semi-bandits since multiple actions (observations and real actions) are selected and

the rewards of all selected actions (observation cost and real action rewards) are selected in

our setting. However, combinatorial semi-bandits do not utilize the observed states when

taking the action.

This chapter is also very related to online probing ( [ZBG13]). However, the goal in (

[ZBG13]) is to learn the optimal observations and a single best function that maps observed

features to labels in order to minimize the loss and the observation cost jointly. Unlike in the

considered CMAB-CO setting, an adversarial setup is assumed and a complete loss feedback

(the loss associated with all the various actions) is obtained at each stage.

5.2.2 MDP literature

The CMAB-CO problem which we consider can be formalized as a two-stage MDP ( [JOA10,

OA07,OVW16]) with a canonical start state. The action set available in the start state is the

set of observations. Following an observation action in the start state, the decision-maker

moves to a new state (which consists of the realized states of the selected observations)

from which the decision-maker selects a real action and moves back to the start state. The

reward in the first step is the observation cost (negative) and the second step is the random

reward obtained by taking the real action. Stemming from this and building upon the

UCRL2 algorithm of ( [OA07, JOA10]), efficient algorithms are constructed by exploiting

the structure of the CMAB-CO problem: sparse observation probabilities, known costs.

There are also large strands of work in signal processing community studying Partially

Observable Markov Decision Process (POMDP) [ZLM14,ZM17]. The goal in these works is

to estimate joint probability distribution over the variables. The goal in this chapter on the

other hand is to use the estimated variables to make observation and action decisions.

5.2.3 Budgeted Learning

The CMAB-CO problem is also similar to budgeted learning as the decision-maker’s goal

there is to adaptively choose which features to observe in order to minimize the loss. For
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example, ( [CSS11, HK12]) adaptively choose the features of the next training example in

order to train a linear regression model while having restricted access to only a subset of the

features. However, these problems do not consider information costs and are restricted to

batch learning.

Another related work is adaptive submodularity ( [GK10]) which aims to maximize re-

wards by selecting at most m observations/actions. However, their approach assumes that

observation states are statistically independent and rewards have a sub-modular structure

in observations.

5.3 Contextual Multi-armed Bandits with Costly Observations

5.3.1 Problem Formulation

In this subsection, we present our problem formulation and illustrate it with a specific ex-

ample from in the medical context. Let D = {1, 2, . . . , D} be a finite set of observations

(types of medical tests such as MRI, mamogram, ultrasound etc.). Each observation i ∈ D

is in a (initially unknown) particular state from a finite set of Xi of possible values (de-

scribing the outcomes of the medical tests such as the BIRADS score associated with a

mamogram). Let X = ∪i∈DXi represent the set of all possible state vectors. The state

vector is φ = (φ[1], φ[2], . . . , φ[D]) , where φ[i] is the state of observation i, which represents

the context in the CMAB formulation. We assume that the state vector is drawn accord-

ing to a fixed but unknown distribution. Write φ to denote a random state vector and

p(φ) = Pr(φ = φ) to denote the probability of state vector φ being drawn. In the medical

context, p(·) models a joint probability over the results of the medical tests.

We assume that only the states of the observations that are selected by the decision-maker

are revealed in each time instance. Let ψ denote a partial state vector, which only contains

the state of a subset of the selected observations. For example, for selected observations
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I ⊆ D, the partial state vector is ψ = (ψ[1], ψ[2], . . . , ψ[D]) with

ψ[i] =


φ[i] if i ∈ I

? if i /∈ I

where ? denotes our symbol for missing observation states. Denote dom(ψ) = {i ∈ D : ψ[i] 6=

?} as the domain of ψ (i.e., the set of the medical test outcomes realized in ψ). Let Ψ+(I) =

{ψ : dom(ψ) = I} denote the set of all possible partial state vectors with observations from

I (i.e., the set of all possible medical test outcomes of I). Let Ψ = ∪I⊆DΨ+(I) denote the

set of all possible partial state vector states. We say ψ is consistent with φ if they are equal

everywhere in the domain of ψ, i.e., ψ[i] = φ[i] for all i ∈ dom(ψ). In this case, we write

φ ∼ ψ. If ψ and ψ′ are both consistent with some φ, and dom(ψ) ⊆ dom(ψ′), we say ψ is a

substate of ψ′. In this case, we write ψ′ � ψ.

We illustrate these definitions on a simple example. Let φ = (−1, 1, 1) be a state vector,

and ψ1 = (−1, ?,−1) and ψ2 = (−1, ?, ?) be partial state vectors. Then, all of the following

claims are true:

φ ∼ ψ2, ψ1 � ψ2, dom(ψ1) = {1, 3}.

A MAB setting is considered with costly observations where the following sequence of the

events is taking place at each time t:

• The environment draws a state vector φt according to unknown distribution p(·). The

state vector is initially unknown to the decision-maker.

• The decision-maker is allowed to select at most m observation at time t, denoted as

It, with paying a known cost of ci ∈ [0, 1] for each observations i in the set It. We

assume that the decision-maker has an upper bound m on the maximum number of

observations that can be made at each time t. Let P≤m(D) denote the subset of the

observations with cardinality less than m, i.e., P≤m(D) = {I ⊆ D : |I| ≤ m}. The

partial state vector ψt from the observations It is revealed to the decision-maker, while

the remainder of the states remain unknown to the decision-maker.
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• Based on its available information ψt, the decision-maker takes an action at from a

finite set of actions A = {1, 2, . . . , A} and observes a random reward rt with support

[0, 1] and E [rt|At = a, ψt = ψ] = r̄(a, ψ) where r̄ : A × Ψ → [0, 1] is an unknown

expected reward function.

We write p(ψ) = Pr(φ ∼ ψ) to denote the marginal probability of ψ being realized.

Observe that
∑

ψ∈Ψ+(I) p(ψ) = 1 for any I.

The policy π for selecting observations and associated actions consists of a set of obser-

vations I and an adaptive action strategy h : Ψ+(I)→ A, which maps each possible partial

state vectors from I to actions (e.g., a policy consists of a subset of medical tests I to be

conducted and treatment recommendation for each possible test results). The expected gain

of the policy π = {I, h} is given by

V (π) = β
∑

ψ∈Ψ+(I)

p(ψ)r̄(h(ψ), ψ)−
∑
i∈I

ci, (5.1)

where β > 1 is the gain parameter, which balances the trade-off between the rewards and

observation costs. The expected gain of the policy π is the expected reward of π minus the

observation cost incurred by π. Without loss of generality, we assume that decision-maker is

allowed to make at most m observations. Let Πm denote the set of all possible policies with

at most m observations. The oracle policy is given by π∗ = arg maxπ=(I,h)∈Πm V (π).

The expected gain of the oracle policy is given by V ∗ = V (π∗). Note that the oracle is

different than the oracle used in the contextual bandit literature. To illustrate the difference,

define r̄∗(ψ) = r̄(a∗(ψ), ψ) = maxa∈A r̄(a, ψ) to be the expected reward of the best action

when the partial state vector is ψ. We refer to the policy that selects observations I and

the best actions a∗(ψ) for all ψ ∈ Ψ+(I) as the fixed I-oracle policy. The expected reward

of the fixed I-oracle policy is given by

V ∗(I) = β
∑

ψ∈Ψ+(I)

p(ψ)r̄∗(ψ)−
∑
i∈I

ci.

It can be shown that the oracle policy π∗ = (I∗, h∗) is given by h∗(ψ) = arg maxa∈A r̄(a, ψ)

and I∗ = arg maxI∈P≤m(D) V
∗(I). Note that V ∗ = V ∗(I∗). Therefore, the oracle defined in

our setting achieves the best expected reward among all the fixed I-oracle policies.
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Consider an adaptive policy π1:T = [It, ht]Tt=1, which takes observation-action It, observes

ψt, uses this observation to take an action at = ht(ψt) and receives the reward of rt. The

cumulative reward of π1:T is
∑T

t=1

(
βrt −

∑
i∈It ci

)
. The T -time regret of the policy π1:T =

[It, ht]Tt=1 is given by

Regπ1:T
T = TV ∗ −

T∑
t=1

(
βrt −

∑
i∈It

ci

)
.

The goal here is to compute the policy π1:T to minimize this regret by selecting at most m

observations.

Current online learning methods could be modified to address the CMAB-CO problem

by defining a set of meta-actions that comprises all the combinations of observation subsets

and actions taken based on these observations, and then applying a standard MAB algorithm

(such as the UCB algorithm [ACF02b]) by considering these meta-actions to be the action

space. While this algorithm is straightforward to implement, it scales linearly with the total

number of policies |Π| =
∑
I∈P≤m(D)A

|Ψ+(I)|. This is exponential in the number of state

vectors. This makes such algorithms computationally infeasible and suboptimal (compared

to the lower bound) even when the numbers of actions and partial states is small. This poor

scaling performance is due to the fact that the algorithm does not take into account that

selecting an action yields information for many policies.

5.3.2 Simultaneous Optimistic Observation Selection (Sim-OOS) Algorithm

To address the above mentioned limitations of such MAB algorithms, a new algorithm, which

we refer to as Simultaneous Optimistic Observation Selection (Sim-OOS) is developed. Sim-

OOS operates in rounds k = 1, 2, . . .. Let tk denote time at the beginning of round k.

The decision-maker keeps track of the estimates of the mean rewards and the observation

probabilities. Note that when the partial state vector ψt from observation set It is revealed,

the decision-maker can use this information to not only update the observation probability

estimate of ψt but also update the observation probability estimate of all substates of ψt.

However, the decision-maker cannot update the mean reward estimate of pairs of at and

substates of ψt since this would result in a bias on the mean reward estimates. Therefore,
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Algorithm 7 Simultaneous Optimistic Observation Selection (Sim-OOS)

Input: m, [ci]i∈D, conf1(n, t), conf2(n, t), β.

Initialize: E(dom(ψ), ψ)← ∅ for all ψ ∈ Ψ.

Initialize: E(I)← ∅ for all I ∈ P≤m(D).

Initialize: E(a, ψ)← ∅ for all a ∈ A and ψ ∈ Ψ.

for rounds k = 1, 2, . . . do

conf1,k(a, ψ)← conf1(Nk(a, ψ), tk).

conf2,k(I)← conf2,k(Nk(I), tk).

r̂k(a, ψ) = 1
Nk(a,ψ)

∑
τ∈Ek(a,ψ) rτ for all a ∈ A and ψ ∈ Ψ.

p̂k(ψ) = Nk(dom(ψ),ψ)
Nk(dom(ψ))

for all ψ ∈ Ψ.

ĥk(ψ)← arg maxa∈A r̂k(a, ψ) + conf1,k(a, ψ)

Solve the convex optimization problem given in (5.3) for all I ∈ P≤m(D)

Set V̂k(I) as the maximizer.

Îk ← arg maxI∈P≤m(D) V̂k(I).

νk(a, ψ)← 0 for all a and ψ ∈ Ψ.

while ∀(a, ψ) : νk(a, ψ) < max(1, Nk(a, ψ)) do.

Select observations Îk, observe the partial state vector ψt.

Select action at = ĥk(ψt), observe reward rt.

Update νk(at, ψt)← νk(at, ψt) + 1.

for ψ : ψt � ψ do

Ek+1(dom(ψ), ψ)← Ek+1(ψ, dom(ψ)) ∪ t.

Ek+1(dom(ψ))← Ek+1(dom(ψ)) ∪ t.

end for

Ek+1(at, ψt)← Ek+1(a, ψ) ∪ t.

t← t+ 1.

end while

end for

at each round k, we define Ek(a, ψ) = {τ < tk : aτ = a, ψτ = ψ}, Ek(I) = {τ < tk : I ⊆ Iτ}

and Ek(ψ, I) = {τ < tk : I ⊆ Iτ , ψτ � ψ} if ψ ∈ Ψ+(I) and Ek(ψ, I) = ∅ if ψ /∈ Ψ+(I).
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We define the following counters: Nk(I, ψ) = |Ek(I, ψ)|, Nk(I) = |Ek(I)|, Nk(a, ψ) =

|Ek(a, ψ)|. In addition to these counters, we also keep counters of partial state-action pair

visits in a specific round k. Let νk(a, ψ) denote the number of times action a is taken

when partial state ψ is observed in round k. Furthermore, we can express the mean reward

estimate and observation probability estimates as follows:

r̂k(a, ψ) =
1

Nk(a, ψ)

∑
τ∈Ek(a,ψ)

rτ ,

p̂k(ψ) =
Nk(dom(ψ), ψ)

Nk(dom(ψ))

provided that Nk(a, ψ) > 0 and Nk(dom(ψ)) > 0. Since these estimates can deviate from

their true mean values, we need to add appropriate confidence intervals when optimizing the

policy. In the beginning of each round k, the Sim-OOS computes the policy of round k by

solving an optimization problem given in (5.2). The optimization problem with the mean

reward estimate and observation probability estimates is given by

maximize
π={I,h},p̃,r̃

β
∑

ψ∈Ψ+(I)

p̃(ψ)r̃(h(ψ), ψ)−
∑
i∈I

ci

subject to |r̃(a, ψ)− r̂k(a, ψ)| ≤ conf1,k(a, ψ), ∀(a, ψ),∑
ψ∈Ψ+(I)

|p̃(ψ)− p̂k(ψ)| ≤ conf2,k(I),

∑
ψ∈Ψ+(I)

p̃(ψ) = 1, ∀I ∈ P≤m(D), (5.2)

where conf1,k(a, ψ) and conf2,k(I) are the confidence bounds on the estimators at time

tk. We will set these confidence bounds later in order to achieve provable regret guarantees

with high probability. Let π̂k = {Îk, ĥk} denote the policy computed by the Sim-OOS.

The Sim-OOS follows policy π̂k in round k. At time t in round k (tk ≤ t ≤ tk+1), the

Sim-OOS selects Îk and observes the partial state vector ψt from observations Ik and on

the basis of this, it takes an action ĥk(ψt). Round k ends when one of the visits to the

partial state vector-action pair in round k is the same as Nk(a, ψ) (the total observations

of the partial state-action pair from previous rounds k′ = 1, . . . , k − 1). This ensures that
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the optimization problem given in (5.2) is only solved when the estimates and confidence

bounds are improved.

The optimization problem in (5.2) can be reduced to a set of convex optimization

problems which can be solved efficiently in polynomial time complexity ( [BV04]) (the

details of this reduction are discussed in the supplementary material). In round k, let

r̂∗k(ψ) = maxa∈A r̂k(a, ψ)+conf1,k(a, ψ) be the optimistic reward of value of the partial state

vector ψ in round of k. The optimistic gain of a fixed I-oracle in round k, denoted by V̂k(I),

is defined as the maximizer of the following optimization problem:

maximize
[p̃(ψ)]ψ∈Ψ+(I)

β
∑

ψ∈Ψ+(I)

p̃(ψ)r̂∗k(ψ)−
∑
i∈I

ci

subject to
∑

ψ∈Ψ+(I)

|p̃(ψ)− p̂k(ψ)| ≤ conf2,k(I),

∑
ψ∈Ψ+(I)

p̃(ψ) = 1. (5.3)

At any time t of round k, it can be shown that the optimization in (5.2) can be solved as:

ĥk(ψ) = arg maxa∈A r̂k(a, ψ) + conf1,k(a, ψ) and Îk = arg maxI∈P≤m(D) V̂k(I). Then, define

V̂ ∗k = V̂k(Îk).

The pseudocode for the Sim-OOS is given in Algorithm 7. It can be easily shown that the

computational complexity of the Sim-OOS algorithm for T instances isO (A poly(Ψtot) log T ).

5.3.3 Regret Bounds for the Sim-OOS algorithm

In this subsection, we provide distribution-independent regret bounds for the Sim-OOS al-

gorithm. Let ψtot =
∑
I∈P≤m(D) |Ψ+(I)| denote the number of all possible states (all possible

results from at most m distinct medical tests).

Theorem 11. Suppose β = 1. For any 0 < δ < 1, set

conf1(n, t) = min

(
1,

√
log (20ΨtotAt5/δ)

2 max (1, n)

)
and

conf2(n, t) = min

(
1,

√
10Ψtot log (4t/δ)

max (1, n)

)
.
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Then, with probability at least 1− δ, the regret of the Sim-OOS satisfies

RegSim-OOS
T = O

((√
A+

√
|P≤m(D)|

)√
ΨtotT log (T/δ)

)
.

The UCRL2 ( [JOA10]) is designed for general MDP problems and achieves a regret of

Õ
(√

Ψ2
totAT

)
. Hence, these regret results are better than those obtained by UCRL2. This

is an important result since it demonstrates that the Sim-OOS can effectively exploit the

structure of our CMAB-CO problem to achieve efficient regret bounds which scale better

than these that can be obtained for general MDP problems.

We illustrate this bound using the same example above. Suppose |Xi| = X for all i ∈ D

andm = D. The upper bound given in Theorem 11 is in the order of Õ
(√∑D

m=1X
m2DT +

√∑D
m=1X

mAT

)
.

The Sim-OOS algorithm performs well for smaller values of which is the case in the

medical setting, as it is for instance the case in breast cancer screening, in which imaging

tests are limited to a small set: mammogram, MRI and ultrasound ( [SBB07]). In this

context, the observations are usually selected sequentially. To address such settings, we next

propose the Seq-OOS algorithm that selects observations sequentially.

5.4 Multi-armed Bandits with Sequential Costly Observations

5.4.1 Problem Formulation

Our current setting assumes that decision-maker makes all the observations simultaneously.

If the decision-maker is allowed to make observations sequentially, she can use the partial

state from already selected observations to inform the selection of future observations. For

example, in the medical settings, although a positive result in a medical test is usually

followed by additional medical test for validity, a negative result in a medical test is not

usually followed by additional medical tests. Since any resulting simultaneous observation

policy can be achieved by a sequential observation policy, the oracle defined with sequential

observations achieves higher expected reward than that with simultaneous observations. At

each time t, the following sequence of events is taking place:
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i The decision-maker has initially no observations. In phase 0, we denote the empty partial

state as ψ0,t = ψ0 where dom(ψ0) = ∅.

ii At each phase l ∈ L = {1, . . . ,m}, if the partial state is ψl,t and observation il,t ∈

(D \ dom(ψl,t)) ∪ ∅ is made, the resulting partial state is ψl+1,t where ψl+1,t = ψl,t ∪

(il,t, φt(il,t)) if il,t 6= ∅ and ψl+1,t = ψl,t otherwise.

iii The decision-maker takes an action at when either observation il,t = ∅ is made or the

final phase m is reached and observes a random reward rt.

Let Ψ+(ψ, i) be the set of resulting partial state when observation i is made at previous

partial state of ψ, i.e., Ψ+(ψ, i) = {ψ′ : ∃x, ψ′ = ψ ∪ (i, x)}. In this section, we define

p(ψ′|ψ, i) as the probability of resulting partial state ψ′ when the observation i is made at

previous partial state of ψ, which is referred to as partial state transition probability. For all

ψ′ ∈ Ψ+(ψ, i), the partial state transition probability is defined as p(ψ′|ψ, i) = Pr(Φ(i) =

ψ′(i)|Φ ∼ ψ) if i ∈ D \ dom(ψ) and p(ψ′|ψ, i) = 0 otherwise. In the medical example, this is

the probability of observing test i’s result as ψ′(i) given the previous test results (records)

ψ. We define p(ψ|ψ, ∅) = 1 and p(ψ′|ψ, ∅) = 0 for all ψ′ 6= ψ. Let P = [p(ψ′|ψ, i)] denote

partial state transition probability matrix.

A sequential policy π = {g, h} consists of observation function g and action function h

where g : Ψ→ D ∪ ∅ and h : Ψ→ A (e.g., g(ψ) refers to the next medical test applied on a

patient with previous records (test results) ψ and h(ψ) refers to treatment recommendation

for a patient with previous records(test results) ψ). A sequential policy π = {g, h} works

as follows. Decision-maker keeps making observations g(ψ) until either m observations are

made or an empty observation g(ψ) = ∅ is picked and takes an action h(ψ) in a terminal

state ψ where terminal partial states of policy π is the state with either cardinality m or

with g(ψ) = ∅.

We illustrate these definitions in a medical example. Assume that there are 2 different

tests with possible outcomes of positive (+) and negative (−) result and 3 different possible

treatments. Suppose that a sequential policy π = (g, h) with g(∅) = {1}, g({(1,+)}) =

{2}, g({(1,−)}) = ∅, h({(1,+), (2,+)}) = a1, h({(1,+), (2,−)}) = a2, h({(1,−)}) = a3.
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Figure 5.1: Illustration of sequential policy

Basically, this policy initially picks the medical test 1 for all patients (g(∅) = {1}). If the

result of the medical test 1 is positive (+), the policy picks medical test 2 (g({(1,+)}) = {2}).

On the other hand, if the result of medical test 1 is negative (−), the policy does not make

any additional test. In this example, terminal partial states of policy π are ψ3, ψ4, ψ5. This

is illustrated in Figure 5.1.

Given a sequential policy π, let ψl denote the random partial state in phase l and cl =

cg(ψl) denote the random cost in phase l by making observation g(ψl). Note that cl is random

since partial state in phase l is random. Similarly, let rm denote random reward revealed

by taking action am = h(ψm) in terminal partial state. Then, for each sequential policy

π = (g, h), we define a value function for l = 0, . . . ,m:

F π
l (ψ) = Eπ

[
βrm −

m−1∑
τ=l

cτ

∣∣∣∣ψl = ψ
]
, (5.4)

where expectation is taken with respect to randomness of the states and rewards under

policy π. In the terminal phase, we define value function as F π
m(ψ) = r̄(h(ψ), ψ). The

optimal value function is defined by F ∗l (ψ) = supπ F
π
l (ψ). A policy π∗ is said to be optimal
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if F π∗
0 (ψ) = F ∗0 (ψ). It is also useful to define partial state-observation optimal value function

for l = 0, . . . ,m− 1 :

Q∗l (ψ, i) = E
[
−ci + F ∗l+1(ψl+1)|ψl = ψ, il = i

]
= −ci +

∑
ψ′∈Ψ+(ψ,i)

p(ψ′|ψ, i)F ∗l+1(ψ′).

A sequential policy π∗ = (g∗, h∗) is optimal if and only if g∗(ψ) = arg maxi∈(D∪∅) Q
∗
|dom(ψ)|(ψ, i),

h∗(ψ) = arg maxa∈A r̄(a, ψ).

Consider a sequential learning algorithm π1:T = (gt, ht)
T
t=1. The algorithm makes ob-

servation il,t = g(ψl,t) and realizes a cost cl,t in phase l of time t and then selects action

at = ht(ψm,t) and realizes a random reward rt, which realizes a reward of rt −
∑m−1

l=0 cl,t. To

quantify the performance of sequential learning algorithm, we define cumulative regret of

sequential learning algorithm π1:T up to time T as

Regπ1:T
T = TF ∗0 −

T∑
t=1

(
rt −

m−1∑
l=0

cl,t

)

where F ∗0 = F ∗0 (ψ0) and ψ0 = ∅ denotes empty state. In the next subsection, we propose a

sequential learning algorithm, which aims to minimize regret.

5.4.2 Sequential Optimistic Observation Selection (Seq-OOS)

In addition to observation sets that are tracked by Sim-OOS, Seq-OOS keeps track of the

following sets at each round k : Ek(ψ, i) = {τ < tk : ∃l ∈ L, ψl,τ = ψ, il,t = i}, Ek(ψ, i, ψ′) =

{τ < tk : ∃l ∈ L, ψl,τ = ψ, il,τ = i, ψl+1,τ = ψ′}. Let Nk(ψ, i) = |Ek(ψ, i)| and Nk(ψ, i, ψ
′) =

|Ek(ψ, i, ψ′)|. In addition to these counters, we also keep counters of visits in partial state-

action pairs and state-observation pairs in a particular round k. Let νk(ψ, i) denote the

number of times observation i is made when partial state ψ is realized in round k. We

can express the estimated transition probabilities as p̂k(ψ
′|ψ, i) = Nk(ψ,i,ψ′)

Nk(ψ,i)
, provided that

Nk(ψ, i) > 0.

The Seq-OOS works in rounds k = 1, . . .. In the beginning of round k (tk denotes time of

beginning of round k), the Seq-OOS solves Optimistic Dynamic Programming (ODP), which
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takes the estimates P̂ k = [p̂k(ψ
′|ψ, i)] and R̂k = [r̂k(a, ψ)] as an input and outputs a policy

πk. The ODP first orders the partial states with respect to size of their domains. Let Ψl

denote partial states with l observations, which is defined by Ψl = {ψ : | dom(ψ)| = l} (e.g.,

all possible results from l distinct medical tests). Since the decision-maker is not allowed to

make any more observations for any state ψ ∈ Ψm, estimated value of state ψ is computed

by F̂m,k(ψ) = maxa∈A r̂k(a, ψ) + conf1,k(a, ψ) where conf1,k(a, ψ) is the confidence interval

for partial state-action pair in round k. The action and observation functions on partial

state ψ ∈ Ψm computed by ODP is given by ĝk(ψ) = ∅ and ĥk(ψ) = arg maxa∈A r̂k(a, ψ) +

conf1,k(a, ψ). After computing value and policy in partial states ψ ∈ Ψm, the ODP solves

convex optimization problem to compute optimistic value function for each partial state-

observation pair ψ ∈ Ψm−1 and i ∈ D \ dom(ψ). Let Q̂m−1,k(ψ, i) denote optimistic value

function for making observation i in partial state ψ in round k of phase m− 1, which is the

solution of the following convex optimization problem :

maximize
[p̃(·|ψ,i)]

− ci +
∑

ψ′∈Ψ+(ψ,i)

p̃(ψ′|ψ, i)F̂m,k(ψ′)

subject to
∑

ψ′∈Ψ+(ψ,i)

|p̃(ψ′|ψ, i)− p̂k(ψ′|ψ, i)| ≤ conf2,k(ψ, i),

∑
ψ′∈Ψ+(ψ,i)

p̃(ψ′|ψ, i) = 1. (5.5)

Note that the variables (F̂m,k(ψ
′)) used in the convex optimization problem given in (5.5)

is computed in the previous step by the ODP. The optimistic value of the empty obser-

vation ∅ in partial state ψ in round k is computed by Q̂m−1,k(ψ, ∅) = maxa∈A βr̂k(a, ψ) +

conf1,k(a, ψ). Based on the optimistic value of partial state-observation pairs
[
Q̂m,k(ψ, i)

]
,

the ODP computes the optimistic value of partial state ψ and action and observation func-

tion of partial state ψ ∈ Ψm−1 as F̂m−1,k(ψ) = maxi∈(D\dom(ψ))∪∅ Q̂m−1,k(ψ, i), ĥk(ψ) =

arg maxa∈A βr̂k(a, ψ) + conf1,k(a, ψ), ĝk(ψ) = arg maxi∈(D\dom(ψ))∪∅ Q̂m−1,k(ψ, i). These com-

putations are repeated for l = m− 2, . . . , 0 to find the complete policy π̂k.

Given π̂k = (ĝk, ĥk), at each time t of round k (tk−1 ≤ t ≤ tk), the Seq-OOS follows

the policy π̂k. Basically, if the state at phase l is ψl,t, the Seq-OOS decides to make the

observation il,t = ĝk(ψl,t) and observes the state ψl+1,t. If the state is ψl,t at phase l < m

94



and observation il,t = ĝk(ψl,t) computed by the ODP is empty set, i.e., ĝk(ψl,t) = ∅, then

Seq-OOS takes action ĥk(ψl,t). If it is a terminal phase, i.e., l = m, Seq-OOS takes an action

ĥk(ψm,t).

5.4.3 Regret Bounds of the Seq-OOS

The analysis of the regret of the Seq-OOS exhibits similarities to the analysis of the regret

of the Sim-OOS. The Seq-OOS has at most m + 1 phases in which it makes observations

sequentially followed by an action while Sim-OOS has 2 phases in which it makes simultane-

ous observations at once followed by an action. The difference is that we need to decompose

the regret of the Seq-OOS into regret due to phases with suboptimal observations and regret

due to suboptimal actions. Let Ψmax = maxψ maxi∈D |Ψ+(ψ, i)|. The next theorem bounds

the distribution-independent regret.

Theorem 12. Suppose β = 1. For 0 < δ < 1, set

conf1(n, t) = min

(
1,

√
log (20ΨtotAt5/δ)

2 max (1, n)

)

and

conf2(n, t) = min

(
1,

√
10Ψmax log (4DΨtott/δ)

max (1, n)

)
.

Then, with probability at least 1− δ, regret of the Seq-OOS satisfies

RegSeq-OOS
T = O

((
m
√

ΨmaxD +
√
A
)√

ΨtotT log (T/δ)
)

.

The difference in the regret bounds of Sim-OOS and Seq-OOS is because Sim-OOS esti-

mates the observation probabilities p(ψ) for each ψ ∈ Ψ whereas Seq-OOS estimates obser-

vation transition probabilities p(·|ψ, i) for each ψ ∈ Ψ and i ∈ D.

Now, we illustrate and compare the regret bounds on our algorithms. Suppose that

|Xi| = X for all i ∈ D and m = D. In this case, we have the distribution independent regret

of O
(

2D
√
AXDT log T/δ

)
for Sim-OOS and O

(
D
√
D2DXD+1AT log T/δ

)
for Seq-OOS
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Figure 5.2: Performance of Sim-OOS and Seq-OOS

with probability at least 1 − δ. Our algorithms become computationally feasible when XD

is small.

5.5 Illustrative Results

We evaluate the Sim-OOS and Seq-OOS on a breast cancer dataset (description can be

found in 3.7.1). For each instance, the following information about the patient are used:

age, estrogen receptor, tumor stage, WHO score. The treatment is a choice among six

chemotherapy regimens of which only 4 of them are used: AC, ACT, CAF, CEF. We generate

200000 instances by randomly selecting a sample from the breast cancer dataset. In each

instance, we set the observations as D = {age, estrogen receptor, tumor stage,WHOScore},

and the rewards as 1 if the treatment with the highest outcome is given to the patient and

0 otherwise. For the experimental results, we set β = 100 and m = 3.

We compare Sim-OOS and Seq-OOS algorithms with a contextual bandit algorithm that

observes realization of all observation states φ by paying cost of
∑D

i=1 ci, referred to as

Contextual-UCB. We define the following metric of Gain of our algorithms ,which make

observations It and receives reward of rt by taking action at at each time t, over T time

steps by Gain = 1
T

∑T
t=1

[
βrt −

∑
i∈It ci

]
.

Performance of the Sim-OOS and Seq-OOS with Different Costs: We consider

that the cost of each observation ci = c. We illustrate gain of Sim-OOS, Seq-OOS and
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Contextual-UCB algorithms for increasing values of cost c. As Figure 1 illustrate, the gain of

the Sim-OOS and Seq-OOS algorithm decreases as the observation cost increases. However,

it should be noted that these algorithms learn the best simultaneous and sequential policies

while simultaneously taking actions irrespective of the costs of observation. These figures

show that when the observation cost is increasing, the Sim-OOS and Seq-OOS achieves

better gains than Contextual-UCB by observing less information, hence paying less cost.

Therefore, the slope of the gain-cost curve of the Sim-OOS and Seq-OOS illustrated in

Figure 5.2 decreases as the observation cost increases.

5.6 Proofs

Reduction of (5.2) to convex optimization problem : For notational convenience,

we drop the subscript k in this argument. The result of maximization can be found by

fixing the observations I and p̃(·), and then maximizing with respect to action-function.

Let h∗I,p̃ denote the action function which maximizes (5.2). It is easy to see that h∗I,p̃(ψ) =

ĥ∗(ψ) = arg maxa∈A r̂(a, ψ)+conf1,k(a, ψ). By fixing h to ĥ∗ in (5.2), we obtain the following

optimization problem:

maximize
I

∑
ψ∈Ψ+(I)

p̃(ψ)r̂∗(ψ)−
∑
i∈I

ci

subject to
∑

ψ∈Ψ+(I)

|p̃(ψ)− p̂k(ψ)| ≤ conf2,k(I),

∑
ψ∈Ψ+(I)

p̃(ψ) = 1, ∀I ∈ P≤m(D), (5.6)

We solve (5.6) by first fixing I and then optimizing the parameters p̃, which results in

optimization problem given in (5.3). Denote the result of the optimization problem V̂ (I).

Then, the optimal observations can be found as Î = arg maxI∈P≤m(D) V̂
∗(I).

Proof of Theorem 11

We are going to define some notation before presenting the proofs. Let Nt(a, ψ) = |{τ <

t + 1 : aτ = a, ψτ = ψ}| and N t = [Nt(a, ψ)] denote matrix whose elements are the number

of times of partial state-action pair is observed. Let K denote the total number of rounds
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until time T and k(t) denote the round time t belongs to. Let τk denote the length of round

k, i.e., τk = tk+1 − tk. Based on these, we have the following: NT (a, ψ) =
∑K

i=1 νk(a, ψ),

Nk(a, ψ) =
∑k−1

i=1 νk(a, ψ).

For round k, let Pk be set of observation/transition probabilities matrices and Rk be the

set of mean rewards of partial state-action pairs, which satisfy the constraints in optimization

problem of (5.2). We define the expected gain of action a of state ψ as the expected reward

of action a minus the observation cost of state as µ(a, ψ) = r̄(a, ψ)−
∑

i∈dom(ψ) ci.

In round of k, let r̃k(a, ψ) = r̂k(a, ψ) + conf1,k(a, ψ) be the optimistic reward estimate

of action-partial state pair (a, ψ). Let p̃k(ψ) is the maximizer of the optimization problem

given in (5.3) (optimistic observation probability estimate of partial state ψ). Based on this,

we define

µ̃k(a, ψ) = r̃k(a, ψ)−
∑

i∈dom(ψ)

ci

P̃ k = [p̃k(ψ)]ψ∈Ψ+(Îk) , P k = [p(ψ)]ψ∈Ψ+(Îk)

P̂ k = [p(ψ)]ψ∈Ψ+(Îk) , µ̃k =
[
µ̃k(ĥk(ψ), ψ)

]
ψ∈Ψ+(Îk)

µk =
[
µk(ĥk(ψ), ψ)

]
ψ∈Ψ+(Îk)

, νk =
[
νk(ĥk(ψ), ψ)

]
ψ∈Ψ+(Îk)

We define optimistic reward in round k as Ṽ ∗k , which is the result of the optimization

problem in (5.2). Based on definitions above, Ṽ ∗k = 〈P̃ k, µ̃k〉 where 〈·, ·〉 denotes the dot

product between two vectors.

Also, let ek,ψ be unit vector with size of |Ψ+(Îk)| with the index representing state

ψ is being equal to 1 and 0 else. Let Bk denote the event that optimistic rewards and

observation probabilities satisfy the constraints of the optimization problem in (5.2), i,e.,

Bk =
(

(P̂ k, R̂k) ∈ (Pk,Rk)
)

and B̄k is the complement of the event Bk. Also, we denote

I (Bk) as the indicator being equal to 1 if event Bk happens. Observe that when event Bk

happens, we have Ṽ ∗k ≥ V ∗ with probability 1.

The main steps of the proof is to decompose the regret in the regimes where confidence

intervals are achieved and violated. We show that regret is small when the confidence inter-
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vals are achieved. We also show that confidence bounds are satisfied with high probability.

By combining these two results, we prove our regret bounds.

Step 1 (Regret Decomposition) : We have

RegSim-OOS
T = TV ∗ −

T∑
t=1

(
rt −

∑
i∈It

ci

)

=
∑
a∈A

∑
ψ∈Ψ

NT (a, ψ) (V ∗ − µ(a, ψ))

+
∑
a∈A

∑
ψ∈Ψ

NT (a, ψ)r̄(a, ψ)−
T∑
t=1

rt

=
K∑
k=1

∑
a∈A

∑
ψ∈Ψ

νk(a, ψ) (V ∗ − µ(a, ψ)) I(Bk) (5.7)

+
K∑
k=1

∑
a∈A

∑
ψ∈Ψ

νk(a, ψ) (V ∗ − µ(a, ψ)) I(B̄k)

+
∑
a∈A

∑
ψ∈Ψ

NT (a, ψ)r̄(a, ψ)−
T∑
t=1

rt

Given the set of observations Îk and action function ĥk(·), νk(·, ·) is only non-zero for the

form of action-partial state (ĥk(ψ), ψ)ψ∈Ψ+(Îk). Therefore, equation (5.7) can be further

decomposed into

K∑
k=1

∑
a∈A

∑
ψ∈Ψ

νk(a, ψ) (V ∗ − µ(a, ψ)) I(Bk)

a

≤
K∑
k=1

∑
ψ∈Ψ+(Îk)

νk(ĥk(ψ), ψ)
(
Ṽ ∗k − µ̃k(ĥk(ψ), ψ)

)
I(Bk)

+
K∑
k=1

∑
ψ∈Ψ+(Îk)

νk(ĥk(ψ), ψ)
(
µ̃k(ĥk(ψ), ψ)− µ(ĥk(ψ), ψ)

)
I(Bk)

b
=

K∑
k=1

τk〈(P̃ k − P k), µ̃k〉I(Bk)

+
K∑
k=1

∑
ψ∈Ψ+(Îk)

νk(ĥk(ψ), ψ)〈(P k − ek,ψ), µ̃k〉I(Bk)

+
K∑
k=1

〈vk, (µ̃k − µk)〉I(Bk).

99



where (a) follows from Ṽ ∗k ≥ V ∗ when event Bk happens and (b) follows from ρ̃m(k) −

µ̃k(ĥk(ψ), ψ) = 〈P̃ k, µ̃k〉 − 〈ek,ψ, µ̃k〉 = 〈(P̃ k − P k), µ̃k〉 + 〈(P k − ek,ψ), µ̃k〉. Then, regret

decomposition is

RegSim-OOS
T

≤
∑
a∈A

∑
ψ∈Ψ

NT (a, ψ)r̄(a, ψ)−
T∑
t=1

rt (5.8)

+
K∑
k=1

∑
a∈A

∑
ψ∈Ψ

νk(a, ψ) (V ∗ − µ(a, ψ)) I(B̄k) (5.9)

+
K∑
k=1

τk〈(P̃ k − P k), µ̃k〉I(Bk) (5.10)

+
K∑
k=1

∑
ψ∈Ψ+(Îk)

νk(ĥk(ψ), ψ)〈(P k − ek,ψ), µ̃k〉I(Bk) (5.11)

+
K∑
k=1

〈vk, (µ̃k − µk)〉I(Bk) (5.12)

Step 2 (Regret due to randomness of the rewards) : Observe that

E

[
T∑
τ=1

rτ

∣∣∣∣NT

]
=
∑
a∈A

∑
ψ∈Ψ

NT (a, ψ)r̄(a, ψ). (5.13)

Given counts in observations of state-action pairs NT , the random variables rt(at) are inde-

pendent over time t. Then,

Pr

(
T∑
τ=1

rτ ≤
∑
a∈A

∑
ψ∈Ψ

NT (a, ψ)r̄(a, ψ)−
√
T

2
log

4T

δ

∣∣∣∣NT

)
c

≤ exp

(
−2

1

2T
log

(
4T

δ

)
T

)
≤ δ

4T
,

where (c) follows from Hoeffding’s inequality. Therefore, the equation (5.8) is bounded with

probability 1− δ
4T

by

∑
a∈A

∑
ψ∈Ψ

NT (a, ψ)r̄(a, ψ)−
T∑
t=1

rt ≤
√
T

2
log

4T

δ
.
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Step 3 (Regret due to Failure of Confidence Intervals): In this step, consider the

regret of the episodes in which B̄k. Define Pt,Rt as the set of plausible observation/transition

probability matrices and set of plausible mean rewards of partial state-action pairs using the

estimates of time step t and P̂ t and R̂t as the estimates in time step t. Then,

K∑
k=1

∑
a∈A

∑
ψ∈Ψ

νk(a, ψ) (V ∗ − µ(a, ψ)) I
(
B̄k
)

≤ 2
K∑
k=1

∑
a∈A

∑
ψ∈Ψ

νk(a, ψ)I
(
B̄k
)

≤ 2
K∑
k=1

tkI
(
B̄k
)
≤ 2

T∑
t=1

tI
((
P̂ t, R̂t

)
/∈ (Pt,Rt)

)
≤ 2
√
T + 2

T∑
t=bT 1/4c+1

tI
((
P̂ t, R̂t

)
/∈ (Pt,Rt)

)

Then,

Pr

 T∑
t=bT 1/4c+1

tI
((
P̂ t, R̂t

)
/∈ (Pt,Rt)

)
> 0


≤ Pr

(
∃t :

⌊
T 1/4

⌋
+ 1 ≤ t ≤ T s.t.

(
P̂ t, R̂t

)
/∈ (Pt,Rt)

)
≤

T∑
t=bT 1/4c+1

Pr
((
P̂ t, R̂t

)
/∈ (Pt,Rt)

) d

≤
T∑

t=bT 1/4c+1

δ

5t5

≤ δ

5T 5/4
+

ˆ ∞
bT 1/4c+1

δ

5t5
dt ≤ δ

5T 5/4
+

δ

20T
≤ δ

4T

where (d) follows from Lemma 13.

Therefore, with probability at least 1− δ
4T

, we have

K∑
k=1

∑
a∈A

∑
ψ∈Ψ

νk(a, ψ) (V ∗ − µ(a, ψ)) I
(
B̄k
)
≤ 2
√
T

Step 4 (Regret due to estimation error of transition probabilities): We start
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with some more definitions and observations. For any k, we have

〈(P̃ k − P k), µ̃k〉 = 〈(P̃ k − P̂ k), µ̃k〉+ 〈(P̂ k − P k), µ̃k〉
e

≤ (‖(P̃ k − P̂ k)‖1 + ‖P̂ k − P̂ k‖1)‖µ̃k‖∞

≤

√
160Ψtot log 4T/δ

max(1, Nk(Îk))
(5.14)

where (e) holds when event Bk happens and follows from ‖µ̃k‖∞ < 2. Let lengths of the

rounds with Îk = I be denoted as the sequence (τ1(I), τ2(I), . . . , τK(I)(I)) where K(I) is the

number of rounds with Îk = I, i.e., K(I) = |{1 ≤ k ≤ K : Îk = I}| and nk(I) =
∑k−1

i=1 τi(I)

is the number of times observations I are made in the rounds (τ1(I), τ2(I), . . . , τk−1(I)). We

have Nk(I) ≥ nk(I) since Nk(I) is the number of the observations that contain I are made.

We have also T =
∑
I∈P≤m(D) nK(I)(I). Then, equation (5.10) is bounded by

K∑
k=1

τk〈(P̃ k − P k), µ̃k〉I(Bk)

≤
√

160Ψtot log 4T/δ
K∑
k=1

τk√
max

(
1, Nk(Îk)

)
≤
√

160Ψtot log 4T/δ
∑

I∈P≤m(D)

K(I)∑
k=1

τk(I)√
max (1, nk(I))

f

≤ (1 +
√

2)
√

160Ψtot log 4T/δ
∑

I∈P≤m(D)

√
NK(I)(I)

g

≤ (1 +
√

2)
√

160Ψtot|P≤m(D)|T log 4T/δ

where (f) follows from Lemma 15 and (g) from Jensen’s inequality.

Step 5(Regret due to randomness due to transition probabilities): Let Xt =

〈(P k(t) − ek(t),ψt), µ̃k(t)〉I(Bk(t)). The term (5.11) can be written as

K∑
k=1

∑
ψ∈Ψ+(Îk)

νk(ĥk(ψ), ψ)〈(P k − ek,ψ)µ̃k〉I(Bk) =
T∑
t=1

Xt.
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Observe that

E [Xt|(I1, ψ1, a1, r1), . . . , (It−1, ψt−1, at−1, rt−1), It]

= 〈E
[
P k(t) − ek(t),ψt

]
, µ̃k(t)〉I(Bk(t)) = 0

and

|Xt| ≤
(
‖P k(t)‖1 + ‖ek(t),ψt‖1

)
‖µ̃k(t)‖∞I(Bk(t)) ≤ 4.

By Azuma-Hoeffding bound, we have

Pr

(
T∑
t=1

Xt ≥ 4
√

2T log 4T/δ

)
≤ δ

4T
.

With probability at least 1− δ
4T

, we have

K∑
k=1

∑
ψ∈Ψ+(Îk)

νk(ĥk(ψ), ψ) (P k − ek,ψ)T µ̃kI(Bk)

≤ 4
√

2T log 4T/δ.

Step 6(Regret due to estimation error of rewards): Observe that when Bk

happens,

µ̃k(ĥk(ψ), ψ)− µ(ĥk(ψ), ψ) = r̃k(ĥk(ψ), ψ)− r̄(ĥk(ψ), ψ)

= r̃k(ĥk(ψ), ψ)− r̂k(ĥk(ψ), ψ)

+ r̂k(ĥk(ψ), ψ)− r̄(ĥk(ψ), ψ)

≤ |r̃k(ĥk(ψ), ψ)− r̂k(ĥk(ψ), ψ)|

+ |r̂k(ĥk(ψ), ψ)− r̄(ĥk(ψ), ψ)|

≤

√
2 log (20ΨtotAt5/δ)

Nk(ĥk(ψ), ψ)

Therefore, we have

K∑
k=1

〈vk, (µ̃k − µk)〉I(Bk)

≤
√

2 log (20ΨtotAT/δ)
∑
a∈A

∑
ψ∈Ψ

K∑
k=1

νk(a, ψ)

max
(

1,
√
Nk(a, ψ)

) .
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Since Nk(a, ψ) =
∑k−1

i=1 νk(a, ψ), by Lemma 15, we have

K∑
k=1

νk(a, ψ)

max
(

1,
√
Nk(a, ψ)

) ≤ (1 +
√

2)
√
NT (a, ψ).

By Jensen’s inequality, we have

√
2 log (20ΨtotAT/δ)

∑
a∈A

∑
ψ∈Ψ

K∑
k=1

νk(a, ψ)

max
(

1,
√
Nk(a, ψ)

)
≤ (1 +

√
2)
√

2ΨtotAT log (20ΨtotAT/δ)

Therefore, with probability at least 1− δ, we have

RegSim-OOS
T ≤

√
T

2
log 4T/δ + 4

√
2T log 4T/δ + 2

√
T

+ (1 +
√

2)

(√
160|P≤m(D)|T log 4T/δ

+
√

2ΨtotAT log 20ΨtotAT/δ

)
Proof of Theorem 12

Let us define the following notation that is used throughout proof of Theorem 12:

P̃ k(·|ψ, i) = [p̃k(ψ
′|ψ, i)]ψ′∈Ψ+(ψ,i) ,

P̂ k(·|ψ, i) = [p̂k(ψ
′|ψ, i)]ψ′∈Ψ+(ψ,i) ,

P (·|ψ, i) = [p(ψ′|ψ, i)]ψ′∈Ψ+(ψ,i) ,

F̂ l,k =
[
F̂l,k(ψ)

]
ψ∈Ψl

,

for any l = 0, . . . ,m. We need to define the event Bk as the event that reward and transition

probability estimates achieve the confidence levels. Formally, it is defined as

Bk = {ψ ∈ Ψ, a ∈ A : |r̄(a, ψ)− r̂k(a, ψ)| ≤ conf1,k(a, ψ)}

∩ {ψ ∈ Ψ, i ∈ i ∈ D \ dom(ψ) :

‖P (·|ψ, i)− P̂ k(·|ψ, i)‖1 ≤ conf2,k(ψ, i)}.

Note that when event Bk happens, we have F̂0,k(ψ0) ≥ F ∗0 (ψ0). Let Ψ+
π,l denote the set of

realizations in phase l under policy π. Therefore, Ψ+
π,m denotes the set of terminal realizations
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under policy π. Let p̃k(ψ
′|ψ, i) denote the optimistic observation transition probabilities from

state ψ to ψ′ by observation i (the maximizer of the optimization problem given in (5.5)).

Step 1 (Regret Decomposition) : We can show by following the same as the step 1

of the proof of Theorem 11 that regret of the Seq-OOS can be decomposed as

RegSeq-OOS
T = TF ∗0 (ψ0)−

[
T∑
t=1

(
rt −

m−1∑
τ=0

cτ

)]

=
K∑
k=1

∑
a∈A

∑
ψ∈Ψ

νk(a, ψ) [F ∗0 (ψ0)− µ(a, ψ)]

+
∑
a∈A

∑
ψ∈Ψ

NT (a, ψ)r̄(a, ψ)−
T∑
t=1

rt

=
K∑
k=1

∑
a∈A

∑
ψ∈Ψ

νk(a, ψ) [F ∗0 (ψ0)− µ(a, ψ)] I(Bk) (5.15)

+
K∑
k=1

∑
a∈A

∑
ψ∈Ψ

νk(a, ψ) [F ∗0 (ψ0)− µ(a, ψ)] I(B̄k)

+
∑
a∈A

∑
ψ∈Ψ

NT (a, ψ)r̄(a, ψ)−
T∑
t=1

rt

Equation (5.15) can be bounded and decomposed as

K∑
k=1

∑
a∈A

∑
ψ∈Ψ

νk(a, ψ) [F ∗0 (ψ0)− µ(a, ψ)] I(Bk)

≤
K∑
k=1

∑
a∈A

∑
ψ∈Ψ

νk(a, ψ)
[
F̂0,k(ψ0)− µ̃k(a, ψ)

]
I(Bk) (5.16)

+
K∑
k=1

∑
a∈A

∑
ψ∈Ψ

νk(a, ψ) [r̃k(a, ψ)− r̄(a, ψ)] I(Bk). (5.17)

We can further decompose equation (5.16). Observe that νk(·, ·) is non zero only for

partial state-action pairs of the form (ĥk(ψ), ψ)ψ∈Ψ+
π̂k,m

. Therefore, we can rewrite equation

(5.16) as
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K∑
k=1

∑
a∈A

∑
ψ∈Ψ

νk(a, ψ)
[
F̂0,k(ψ0)− µ̃(a, ψ)

]
I(Bk)

=
K∑
k=1

∑
ψ∈Ψ+

π̃k,m

νk(ĥk(ψ), ψ)
(
F̂0,k(ψ0)− µ̃(ĥk(ψ), ψ)

)
I(Bk)

=
K∑
k=1

tk+1−1∑
t=tk

(
F̂0,k(ψ0)− µ̃(ĥk(ψm,t), ψm,t)

)
I(Bk) (5.18)

We also have F̂l,k(ψ) = Q̂l,k(ψ, ĝk(ψ)) for all ψ ∈ Ψl and l = 0, . . . ,m− 1 and F̂m,k(ψ) =

r̃(ĥk(ψ), ψ) = µ̃(ĥk(ψ), ψ) +
∑

i∈dom(ψ) ci by their definitions. Therefore, we can rewrite

equation (5.17) as

K∑
k=1

tk+1−1∑
t=tk

(
F̂0,k(ψ0)− µ̃(ĥk(ψm,t), ψm,t)

)
I(Bk)

=
K∑
k=1

tk+1−1∑
t=tk

(
Q̂0,k(ψ0, ĝk(ψ0))− F̂m,k(ψm,t)

+
m−1∑
l=0

cĝk(ψl,t)

)
I(Bk)

=
∑
k=1

tk+1−1∑
t=tk

m−1∑
l=0

(
Q̂l,k(ψl,t, ĝk(ψl,t))

− F̂l,k(ψl+1,t) + cĝk(ψl,t)

)
I(Bk).

By definition, we have

Q̂l,k(ψ, i) =
∑

ψ′∈Ψ+(ψ,i)

p̃k(ψ
′|ψ, i)F̂l+1,k(ψ

′)− ci (5.19)
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Then,

tk+1−1∑
t=tk

m−1∑
l=0

(
Q̂l,k(ψl,t, ĝk(ψl,t))

− F̂l,k(ψl+1,t) + cĝk(ψl,t)

)
I(Bk)

=

tk+1−1∑
t=tk

m−1∑
l=0

〈(P̃ k(·|ψl,t, ĝk(ψl,t))− ek,ψl+1,t
), F̂ l,k〉I(Bk)

=
m−1∑
l=0

∑
ψ∈Ψl

∑
i∈D\dom(ψ)

νk(ψ, i)〈(P̃ k(·|ψ, i)

− P (·|ψ, i)), F̂ l,k〉I(Bk)

+

tk+1−1∑
t=tk

m−1∑
l=0

〈(P (·|ψl,t, ĝk(ψl,t))− eψl+1,t
), F̂ l,k〉I(Bk).

Therefore, regret can be decomposed as

RegSeq-OOS
T

≤
∑
a∈A

∑
ψ∈Ψ

NT (a, ψ)r̄(a, ψ)−
T∑
t=1

rt (5.20)

+
K∑
k=1

∑
a∈A

∑
ψ∈Ψ

νk(a, ψ)(F ∗0 (ψ0)− µ(a, ψ))I(B̄k) (5.21)

+
K∑
k=1

∑
a∈A

∑
ψ∈Ψ

νk(a, ψ)(µ̃k(a, ψ)− µ(a, ψ))I(Bk) (5.22)

+
K∑
k=1

m−1∑
l=0

∑
ψ∈Ψl

∑
i∈D\dom(ψ)

νk(ψ, i)〈(P̃ k(·|ψ, i)

− P (·|ψ, i)), F̂ l,k〉I(Bk) (5.23)

+
K∑
k=1

tk+1−1∑
t=tk

m−1∑
l=0

〈(P (·|ψl,t, ĝk(ψl,t))

− eψl+1,t
), F̂ l,k〉I(Bk). (5.24)

Step 2 (Regret due to randomness of the rewards) : We can show by following

the same as the step 2 of the proof of Theorem 11 that equation (5.8) with probability 1− δ
4T
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as ∑
a∈A

∑
ψ∈Ψ

NT (a, ψ)r̄(a, ψ)−
T∑
t=1

rt ≤
√
T

2
log (4T/δ).

Step 3 (Regret due to Violation of Confidence Intervals) : The equation (5.21)

can be bounded by

K∑
k=1

∑
a∈A

∑
ψ∈Ψ

νk(a, ψ)(F ∗0 (ψ0)− µ(a, ψ))I(B̄k)

≤ 2
√
T +

T∑
t=bT 1/4c+1

tI
(

(P̂ t, R̂t) /∈ (Pt,Rt)
)
.

where Pr
(

(P̂ t, R̂t) /∈ (Pt,Rt)
)
≤ δ

5t5
. Therefore, following the same steps as the Step 3 of

proof of Theorem 11, with probability at least 1− δ
4T

K∑
k=1

∑
a∈A

∑
ψ∈Ψ

νk(a, ψ)(F ∗0 (ψ0)− µ(a, ψ))I(B̄k) ≤ 2
√
T .

Step4 (Regret due to estimation error of transition probabilities): Define a

constant Z =
√

160Ψmax log (4DΨtotT/δ). We can show that

K∑
k=1

m−1∑
l=0

∑
ψ∈Ψl

∑
i∈P1(ψ)

νk(ψ, i)〈(P̃ k(·|ψ, i)

− P (·|ψ, i)), F̂ l,k〉I(Bk)

≤ Z

m−1∑
l=0

∑
ψ∈Ψl

∑
i∈D\dom(ψ)

K∑
k=1

νk(ψ, i)√
max (1, Nk(ψ, i))

a

≤ (1 +
√

2)Z
m−1∑
l=0

∑
ψ∈Ψl

∑
i∈D\dom(ψ)

√
NT (ψ, i)

b

≤ (1 +
√

2)
√

160mDΨmaxΨtotT log (4DΨtotT/δ)

where (a) follows from Lemma 15 and (b) from Jensen’s inequality since
∑

ψ∈Ψ

∑
i∈D∪∅NT (ψ, i) =

mT .

Step 5 (Regret due to randomness due to transition probabilities) We define

Xl,t = 〈(P (·|ψl,t, ĝk(ψl,t)) − eψl+1,k(t)
), F̂ l,k(t)〉I(Bk(t)). Observe that ‖F̂ l,k(t)‖∞ ≤ 2 since
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r̂t(a, ψ) ≤ 1 for each partial state- action pair and confidence levels are than 1. Therefore,

for any l = 0, 1, . . . ,m− 1,

|Xl,t| =
(
‖p(·|ψl,t, ĝk(ψl,t))‖1

+ ‖eψl+1,k(t)
‖1

)
‖F̂ l,k(t)‖∞I(Bk(t)) ≤ 4.

By Azuma-Hoeffding bound and following the same steps as the Step 5 of proof of Theorem

1, with probability 1− δ
4T

K∑
k=1

tk+1−1∑
t=tk

m−1∑
l=0

〈(P (·|ψl,t, ĝk(ψl,t))− eψl+1,t
), F̂ l,k〉I(Bk)

=
m−1∑
l=0

T∑
t=1

Xl,t ≤ 4m
√

2T log (4T/δ).

Step 6(Regret due to estimation error of rewards) Following the same steps as

the Step 6 of proof of Theorem 11, equation 5.20 can be bounded as

(1 +
√

2)
√

2ΨtotAT log (20ΨtotAT/δ).

Therefore,

RegSeq-OOS
T ≤

√
T

2
log (4T/δ) + 2

√
T + 4m

√
2T log (4T/δ)

+ (1 +
√

2)
√

160mDΨmaxΨtotT log (4DΨtotT/δ)

+ (1 +
√

2)
√

10ΨtotAT log (20ΨtotAT/δ).

5.7 Appendices

5.7.1 Probability of Confidence Intervals Violation for Sim-OOS

Let P̂ t = (p̂t(ψ))ψ∈Ψ and R̂t = (r̂t(a, ψ))ψ∈Ψ denote the observation/transition probability

estimates and mean reward estimates at time t. The following lemma bounds the probability

of (P ,R) to be in the plausible set of observation/transition probability and mean rewards

using the estimates at time t.
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Lemma 12. For any t ≥ 1, if we set conf1(n, t) = min
(

1,
√

log(20ΨtotAt5/δ)
2 max(1,n)

)
and conf2(n, t) =

min
(

1,
√

log(10Ψtot log(4t/δ))
max(1,n)

)
, the probability that (P̂ t, R̂t) is not contained in the plausible set

(Pt,Rt) at time t is

Pr
((
P̂ t, R̂t

)
/∈ (Pt,Rt)

)
≤ δ

5t5
. (5.25)

Proof.

Pr
((
P̂ t, R̂t

)
/∈ (Pt,Rt)

)
≤
∑
a∈A

∑
ψ∈Ψ

Pr (|r̄(a, ψ)− r̂t(a, ψ)| ≥ conf1,t(a, ψ))

+
∑

I∈P≤m(D)

Pr

 ∑
ψ∈Ψ+(I)

|p(ψ)− p̂t(ψ)| ≥ conf2,t(I)


a

≤
∑
a∈A

∑
ψ∈Ψ

2δ

20ΨtotAt5
+

δ

10t5
≤ δ

5t5
,

where conf2,t(I) =
√

10Ψtot log(4t/δ)
Nt(I)

≥
√

2 log(10Ψtot2Ψtot t5/δ)
max (1,Nt(I))

and

∑
I∈P≤m(D)

Pr

 ∑
ψ∈Ψ+(I)

|p(ψ)− p̂t(ψ)| ≥ conf2,t(I)


≤

∑
I∈P≤m(D)

Pr

( ∑
ψ∈Ψ+(I)

|p(ψ)− p̂t(ψ)|

≥

√
2 log(10Ψtot2Ψtott5/δ)

max (1, Nt(I))

)
b

≤
∑

I∈P≤m(D)

δ

5Ψtott5
≤ δ

10t5
(5.26)

where (b) follows from Lemma 14.

5.7.2 Probability of Confidence Intervals Violation for Seq-OOS

Let P̂ t = (p̂t(ψ
′|ψ, i))ψ∈Ψ,i∈D and R̂t = (r̂t(a, ψ))ψ∈Ψ denote the observation/transition

probability estimates and mean reward estimates at time t. The following lemma bounds

the probability of (P ,R) to be in the plausible set of observation/transition probability and

mean rewards using the estimates at time t.
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Lemma 13. For any t ≥ 1, if we set conf1(n, t) = min
(

1,
√

log(20ΨtotAt5/δ)
2 max(1,n)

)
and conf2(n, t) =

min
(

1,
√

log(10Ψmax log(4tΨtotD/δ))
max(1,n)

)
, the probability that (P̂ t, R̂t) is not contained in the plau-

sible set (Pt,Rt) at time t is

Pr((P̂ t, R̂t) /∈ (Pt,Rt)) ≤
δ

10t5
. (5.27)

Proof.

Pr
((
P̂ t, R̂t

)
/∈ (Pt,Rt)

)
≤
∑
a∈A

∑
ψ∈Ψ

Pr (|r̄(a, ψ)− r̂t(a, ψ)| ≥ conf1,t(a, ψ))

+
∑
ψ∈Ψ

∑
i∈D\dom(ψ)

Pr

( ∑
ψ′∈Ψ+(ψ,i)

|p(ψ′|ψ, i)− p̂t(ψ′|ψ, i)|

≥ conf2,t(ψ, i)

)
a

≤
∑
a∈A

∑
ψ∈Ψ

2δ

20ΨtotAt5
+

δ

10t5
≤ δ

5t5
,

where conf2,t(ψ, i) =
√

10Ψmax log(4ΨtotDt/δ)
Nt(I)

≥
√

2 log(10ΨtotD2Ψmax t5/δ)
max (1,Nt(ψ,i))

and

∑
ψ∈Ψ

∑
i∈D\dom(ψ)

Pr

( ∑
ψ′∈Ψ+(ψ,i)

|p(ψ′|ψ, i)− p̂t(ψ′|ψ, i)|

≥ conf2,t(ψ, i)

)
≤
∑
ψ∈Ψ

∑
i∈D\dom(ψ)

Pr

( ∑
ψ′∈Ψ+(ψ,i)

|p(ψ′|ψ, i)− p̂t(ψ′|ψ, i)|

≥

√
2 log(10Ψmax2ΨtotDt5/δ)

max (1, Nt(ψ, i))

)
b

≤
∑
ψ∈Ψ

∑
i∈D\dom(ψ)

δ

10ΨtotDt5
≤ δ

10t5
(5.28)

where (b) follows from Lemma 14.
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5.7.3 L1 deviation of true and empirical distributions

Let A denote the finite set {1, 2, . . . , a}. For two probability distributions P and Q on A,

let

‖P −Q‖1 =
a∑
i=1

|P (i)−Q(i)|

denote L1 distance between P and Q. For a sequence xn = x1, . . . , xn ∈ An, let P̂ be the

empirical probability distribution on A defined by

P̂ (j) =
1

n

n∑
i=1

I(xi = j).

Lemma 14. [WOS03] Let P be a probability distribution on the set A = {1, 2, . . . , a}. Let

Xn = X1, X2, . . . , Xn be i.i.d. random variables according to P . Then, for all ε > 0,

Pr(‖P − P̂ ‖ ≥ ε) ≤ (2a − 2)e−ε
2n/2. (5.29)

5.7.4 Summation bound

Lemma 15. [JOA10] For any sequence of numbers z1, . . . , zn with 0 ≤ zk ≤ Zk−1 =

max
(

1,
∑k−1

i=1 zi

)
,

n∑
k=1

zk√
Zk−1

≤ (
√

2 + 1)
√
Zn (5.30)
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CHAPTER 6

Sequential Patient Allocation for Randomized

Controlled Trials

6.1 Introduction

It is very rare that a clinician can understand/determine whether an treatment has a clinically

relevant effect. Given uncertain knowledge about the disease and large variations in the

patients’ outcomes, it is often very challenging to say that an treatment has an effect on the

basis of observational/case-control study. Randomized Controlled Trials (RCTs) are the gold

standard for comparing the effect and value of treatment(s) because there exists a control

group that is comparable to the treatment group in every possible way except the treatment.

An treatment goes through phase I-III of clinical research before it is accepted and

implemented. Figure 6.1 summarizes the stages of RCTs. Phase I trials attempt to estimate

tolerability and characterize pharmacokinetics and pharmacodynamics with participants of

healthy volunteers. Phase II clinical trials attempt to determine the maximum tolerated

dose that is the dose in which an adverse event occurs. In this paper, we focus on Phase

III clinical trials that aim to determine the efficacy of the treatment with respect to control

action. In the most of clinical trials, the designers are interested in answering the question

of ”In population W is drug A at daily dose X more efficacious in improving Z by Q amount

over a period of time T than drug B at daily dose Y ” [FFD98]. Table 6.1 shows the sample

size of the trial, treatment evaluated on the trial, primary outcome used to evaluate the

treatment action and result summary of the trial. As seen from the Table 6.1, the sample

size of trials are ranging from 1000 to 4000, the type of outcomes are ranging from binary

to time to event. Table 6.1 also shows that some of treatments are effective only on the
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Figure 6.1: Stages of Clinical Trials

subgroups of the patients, not on the entire target population. The existing trials recruit

patients from target population and uniformly randomly assign the patients to treatment

groups. However, as we show later in the paper, this becomes very suboptimal as the

heterogeneity of the patients increases. We propose a novel way of recruiting patients in

adaptive way based on observations already made.

In this paper, we propose two different optimization criteria to design RCTs: average

treatment effect estimation and efficacious treatment identification. The first criteria is to

minimize the estimation error of subgroup-level treatment effect defined as the difference

between the expected primary outcome of treatment and control action. We show that the

optimal approach is to allocate the patients into treatment and control groups proportional

to standard deviation of primary outcomes. Hence, the existing repeated fair coin tossing

approach is only optimal if the standard deviations of the treatment and control group is

the same. It is very unlikely that these groups have the same variations. Even if they did,

it is impossible to verify that before the clinical trial has started. The second criteria is to

minimize the convex combination of the type-I and type-II error of identifying the subgroups

in which treatment action is efficacious with respect to control action. The optimal policy

in this case depends both on the mean and standard deviation of primary outcomes of both

treatment and control action and is more complicated. The parameters, hence the standard

deviation, of the primary outcome distribution is unknown a priori. Hence, a learning

algorithm is required to estimate the parameters and allocate the patients to treatment

groups in adaptive way.

We model the RCT design as a finite stage MDP. The designer recruits N patients over

K steps in order to optimize the learning criteria described above. We define the state
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Study Size Treatment Primary Outcome Result

[Gro01] 3640 Supplement of vita-

mins

whether AMD event happened

or not

significant reduction for the development of

AMD event

[CBM04] 4162 Statin Time to adverse event (death

or stroke)

results consistent among the subgroups (no im-

provements)

[HWB99] 838 Red cell transfusion 30 days mortality effective among the patients with Apache 2

score less than equal to 20 and age less than

55

[ROP12] 1272 Use of fingolimod brain volume loss subgroup analysis showed that it was effective

for a subgroup

Table 6.1: RCT Examples in the Literature

vector as the parameters of the posterior distributions of the treatment and control actions,

the transition function as the Bayes update of the parameters and single stage rewards as

the improvements on the learning criteria by taking an allocation action. Unfortunately,

the Dynamic Programming (DP) solution to solve the MDP is computationally intractable

because of the large state and action space. Therefore, we propose Optimistic Knowledge

Gradient (Opt-KG), computationally tractable, a greedy, and approximate solution to K-

step MDP to achieve more plausible learning power.

Experiments are conducted in a synthetic dataset inspired by real RCTs with Bernoulli

and Exponential outcome setting. We show that (i) Opt-KG achieves significant improve-

ments in the mis-classification errors, (ii) achieves the same confidence levels with existing

approaches in RCTs in lesser patient budget when the objective is to identify the efficacy

of the treatment. When the objective is learning the subgroup level treatment effects, we

show that the Opt-KG algorithm achieves significant improvement with respect to existing

approaches in RCTs especially when the standard deviations of treatment outcomes differs.

The main contribution of the paper is three folds: (1) we formulate the RCT design

problem as a finite stage MDP, and provide an optimal solution via DP, (2) we show an

approximate, computationally tractable solution, Optimistic Knowledge Gradient (Opt-KG),

(3) our framework can be used with various optimization criteria; including treatment effect

estimation and identifying efficacious treatments.
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6.2 Related Work

The most commonly used procedure to allocate patients into treatment and control group

is ”repeated fair coin-tossing”. The main drawback is the possibility of imbalanced group

sizes in RCTs with small patient budget [FFD98]. Hence, decision-makers follow a restricted

procedure in which probability of assigning a patient to underrepresented group is increased,

see blocked randomization [LMW88] and adaptive bias-coin randomization [SG02]. A less

frequently used procedure is covariate-adaptive randomization in which patients are assigned

to treatment groups to minimize covariate imbalance [MHS12].

The most similar existing approach to ours is response adaptive randomization in which

the probability of being assigned to a treatment group increases if responses of prior pa-

tients in that particular group is favorable [HR06b]. This randomization approach takes

the patient’s benefit into account. The Multi-Armed Bandits (MABs) are mathematical

decision framework for resource (patient) allocation to maximize the cumulative outcomes

(patient benefit) [ACF02c,GGW11,AG12b]. [VBW15] shows that MABs achieve cumulative

outcomes (patient benefit) but poor learning performance as they allocate most of the re-

sources (patients) to favorable actions (treatments). Hence, [VBW15] proposes a variation

on MAB algorithms that allocate patients to control action at times to overcome this issue

of low learning performance. In our paper, we mainly focus on learning performance, not

the patient benefit because the most of the RCTs aim to test the hypothesis of new drug

being more efficacious than the control action [FFD98].

In this chapter, we provide a Bayesian approach to RCT design and model it as a fi-

nite stage MDP. The optimal patient allocation policy can be obtained via the Dynamic

Programming (DP) that is computationally intractable for large size problems. The Gittins

Index [GGW11,Whi80] provides an (optimal) closed form solution to the MDP, however, is

again computationally intractable.

Knowledge Gradient(KG) policies provide an approximate, greedy approach to the MDP.

Since the action space, containing all possible allocation choices, is very large, the KG policies

are not either computationally tractable. Additionally, the KG mostly focus on multivariate
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normal priors for the measurements [FPD08,FPD09]. In this paper, we provide a variation

of the Opt-KG policies [CLZ13], to handle large action space.

6.3 Randomized Clinical Trial (RCT) Design

In this section, we describe the statistical model for RCTs. Our model for RCTs constitute

three components: patient subgroups, treatments, treatment outcome. Define W as patient

population and X as the set of discrete partition on W with |X | = X. Let Y = {0, 1} be

the action space and 0 indicating control action, 1 indicating treatment action and Z be the

(bounded) outcome space, with zmin and zmax being the minimum and maximum outcome.

Our goal in this paper is to recruit N patients over a period of T observing each outcome in

Tobs period (having K = T/Tobs steps) (i) to estimate the subgroup-level treatment effects,

(ii) to identify efficacious treatments for the subgroups.

We model the treatment outcome distribution belonging to exponential family. In the

next subsection, we give a brief description of the exponential family and Jeffrey’s prior on

their parameters.

6.3.1 Exponential Families and Jeffrey’s Prior

Define Z, Θ as a general sample space and general parameter space, respectively. Define

G : Z → R and h : Z → R. The single parameter exponential family with sufficient statistic

G and parametrization θ, relative to h is dominated family of distributions by the following

densities with respect to λ

p(z|θ) = Φ(θ)h(z) exp(θG(z))

where Φ(θ) is uniquely determined by
´∞
−∞ p(z|θ)dλ(z) = 1 hence

Φ(θ) =

(ˆ ∞
−∞

h(z) exp(θG(z))dλ(z)

)−1

.

It is usually written as

p(z|θ) = h(z) exp(θG(z)− F (θ))
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where F (θ) = − log Φ(θ). Expectation and variance of the sufficient statistics can be ex-

pressed with respect to derivatives of the normalization function, i.e.,

F ′(θ) = EZ|θ [G(Z)] , F ′′(θ) = VarZ|θ [G(Z)] .

Different choices of these functions generates a different probability density. Choosing h(z) =

1, θ = ln p
1−p , G(z) = z generates a Bernoulli distribution with p. Some other examples of

exponential family distribution are poison, and exponential distributions.

In this paper, we’ll put a Bayesian ”non-informative” prior, which is invariant under re-

parametrization of the parameter space. We use the Jeffrey’s prior, that is proportional to

square root of the Fisher information I(θ). In the case of the exponential family, the Fisher

information is the second derivative of the normalization function, i.e., I(θ) =
√
F ′′(θ).

Under the Jeffrey’s prior, the posterior on the parameter θ after n observation is given by

p(θ|z1, . . . , zn) ∝
√
F ′′(θ) exp

(
θ

n∑
i=1

G(zi)− nF (θ)

)
.

Given n outcomes (z1, z2, . . . , zn), we can summarize the information needed for the pos-

terior distribution is s = [s0, s1] = [
∑n

i=1G(zi), n]. Then, the posterior is proportional to√
F ′′(θ) exp (θs0 − s1F (θ)).

6.3.2 MDP Model for RCT Design

In this subsection, we model the RCT design problem as a finite step in discounted MDP.

A finite step MDP consists of number of steps, a state space, an action space, transition

dynamics, a reward function. We need to define all the components of the MDP.

Let (Ω,F ,P) be a probability space. As noted above, denote X , Y , Z as the set of

subgroups of the patients, treatment set, and outcome set. Let θx,y be the true parameter

for subgroup x and treatment y. The value indicating the success of treatment action y on

patient subgroup x is referred to as treatment outcome and assume to be drawn according

to exponential family distribution, i.e., Z ∼ p(·|θx,y). Define µ(θx,y) denote true outcome

of the treatment y on subgroup x, i.e., µ(θ) = F ′(θ) = EZ|θ [G(Z)] and treatment effect

to be E(θ0, θ1) = F ′(θ1) − F ′(θ0) for the parameters θ0 and θ1 so that treatment effect on
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subgroup x is given by E(θ0,x, θ1,x). We are given a budget of N patients to be recruited in

K steps. At time step k, the designer decides to recruit Mk patients uk(x, y) of whom are

from subgroup x and assigned to treatment y where∑
x∈X

∑
y∈Y

uk(x, y) = Mk.

Having made a decision U k = {uk(x, y)}, the designer observes the outcomes W k =

{Wk(x, y) =
∑uk(x,y)

j=1 G(Zj) : Zj ∼ P(·|θx,y)}. Denote M̄k =
∑k−1

k=0Mk as the number of pa-

tients recruited in the previous k decision time. Define the filtration (Fk)Kk=0 by letting Fk to

be the sigma-algebra generated by the past decisions and observations {U 0,W 0,U 1,W 1 . . . ,U k−1,W k−1}.

We’ll define Ek [·] to indicate E
[
·|Fk

]
and Vark [·] to indicate Var

[
·|Fk

]
. Allocation deci-

sions are restricted to be Fk-measurable so that decisions depend only on measurements and

decisions made in the past.

We’ll use the Bayes rule to form a sequence of posterior predictive distributions for

F ′(θx,y) from prior and successive measurements. Let µkx,y = Ek [F ′(θx,y)] posterior mean

outcome statistics and σkx,y = Vark (F ′(θx,y)) be the posterior variance of the parameter of

subgroup x and treatment y. Based on these definitions above, the posterior mean and

variance of subgroup-level treatment effect are given by Ek(x) = µkx,0 − µkx,1 and σkE(x) =(
σkx,0
)2

+
(
σkx,1
)2

, respectively. Define the average treatment effect (ate) as the difference

between the outcome of treatment and control action in a target population statistic, that

is, Ek
pop =

∑
x∈X wxE

k(x) where wx is the proportion of target population with subgroup x.

The state space is the space of all possible distributions under consideration for {θx,y}.

Let Sk denote state matrix of shape 2X × 2 that contains the hyper-parameters of posterior

distribution of the outcomes for both treatment and control actions for all (x, y) ∈ X × Y

in the kth decision time. Define Sk to be the all possible states at nth stage, that is,

Sk = {Sk = [skx,y]| : M̄kymin ≤ skx,y,0 − s0
x,y,0 ≤ M̄kymax,

0 ≤ skx,y,1 − s0
x,y,1 ≤ M̄k, ∀(x, y)}

Our action space in decision time k is the set of all possible pairs of (Mk,U k) with

Mk ≤ N − M̄k−1 and
∑

x,y uk(x, y) = Mk. Taking an action ak = (Mk,U k) means recruiting
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Mk patients uk(x, y) of whom are from subgroup x and assigned to treatment y. Fix the

decision stage as k. When the designer selects one of the actions, we use the Bayes rule to

update the distribution of θx,y conditioned on Fk based on outcome observations of W k,

obtaining a posterior distribution conditioned on Fk+1. Thus, our posterior distribution for

θx,y is proportional to
√
F ′′(θ) exp

(
θskx,y,0 − F (θ)skx,y,1

)
. The parameters of the posterior

distribution can be written as a function of sk and W k. Define Sk+1 = P (sk, ak,W k)

as the transition function given observed treatment outcome Zk and P(Sk+1|Sk, ak) as the

posterior state transition probabilities conditioned on the filtration in decision time k. Having

taken an allocation action ak = (Mk,U k), the state transition probabilities can be given by:

Sk+1 = sk +
[
W k,U k

]
with posterior predictive probability p(W |sk) where

P(W |s) =
∏

(x,y)∈X×Y

P(V (x, y)|sx,y)

P(W |sx,y) =

ˆ
θ∈Θ

P

uk(x,y)∑
j=1

G(Zj) = W

∣∣∣∣θ
P(θ|sx,y) dθ

Our objective is to minimize the weighted expected mean-squared error. The expected

mean-squared error of the average treatment effect of subgroup x is given by

msek(x) = E
[(
Ēk(x)− E

[
Ēk(x)

])2
]

=
1∑
y=0

E
[(
µkx,y − E

[
µkx,y

])2
]

=
1∑
y=0

(
σkx,y
)2
.

For a state s = (ũ, w̃), the action space is the set of pairs of (m,u) with m is less than

equal to patient budget left, and elements in u summing up to m, that is given by

A(s) = {(m,u) : 1 ≤ m < N − 1T ũ1,1Tu1 = m}

We define the reward function as the decrease on the mean-squared error by taking an

action a in state s. The reward function R : S ×A → R is then given by

R(s, a) =
∑
x∈X

wxE
[
msek(x)−msek+1(x)

∣∣s, a]
where expectation is taken with respect to outcome distribution of treatment and control

actions under state vector s. An allocation policy is a mapping from state space to action
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space, prescribing the number of patients to recruit from each subgroup and how to assign

them to treatment groups, that is π : S → A. The value function of a policy π starting from

state of S0 is given by

V π(S0) = B(S0)−
∑
(x,y)

Eπ
[
wx(σ

K
x,y)

2
]

=
K∑
k=0

Eπ
[
R(Sk, Ak)

]
(6.1)

where B(S0) =
∑

x∈X wx mse0(x) and the expectation is taken with respect to allocation

policy π. Our learning problem is K-stage of MDP with tuple:

{T, {Sk}, {A(s)}, P (Sk, ak,W k), R(Sk, ak)}

and our goal is to solve the following optimization problem:

maximizeπ Eπ [R(Sn, π(Sn))]

subject to ∀n : π(Sn) ∈ A(Sn)

In the next subsection, we propose a Dynamic Programming (DP) approach for solving

the K-stage MDP defined above.

6.3.3 Dynamic Programming (DP) solution

In the dynamic programming approach, the value function is defined as the optimal value

function given a particular state Sk at a particular stage k, and may be determined recur-

sively through Bellman’s equation. If the value function can be computed efficiently, the

optimal policy can also be computed from it. The optimal value function at the terminal

stage K − 1 (the stage in which last patient is recruited) is given by:

V K−1(s) = max
a∈A(s)

R(s, a)

The dynamic programing principle tells us that the loss function at other indices 0 ≤ n <

K − 1 is given recursively by

Qk(s, a) = En
[
V k(P (s, a,W ))

]
,

V k(s) = maxa∈A(s) Q
k(s, a)
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where the expectation is taken with respect to randomness of the cumulative treatment

outcomes W . The dynamic programming principle tells us that any policy that satisfies the

following is optimal: A∗k = arg maxa∈A(Sk) = Qk(Sk, a).

It is computationally intractable to solve the DP because (i) the state space contains all

possible distributions under consideration, hence very large, (ii) the value and Q functions

need to be re-computed each step the state vector is updated.

In the rest of the paper, we show an (approximate) solution to the case in which the

number of the patients to recruit in each step is fixed and determined by the designer

initially. However, we show in the experiments that choosing m can have a large impact

on the performance. We propose a greedy solution to solve the MDP approximately in

computationally tractable way. Our proposed solution, Opt-KG, computes the maximum

one -stage reward that can be obtained by taking each action a ∈ A, and then selects the

action with the maximum one-stage reward

6.4 A greedy solution for fixed recruitment: Optimistic Knowl-

edge Gradient (Opt-KG)

In the rest of the paper, we focus on the setting where the number of patients to recruit is

fixed and equal to M = T/K. Then, the allocation decision is all possible recruitments and

treatment assignments of M patients. The action set is

A =

{
u :
∑
x

∑
y

u(x, y) = M

}
.

and size of this action set is |A| =
(
M+2X−1

2X−1

)
. The Rand-KG algorithm computes an expected

improvement in the terminal value function by taking an action a ∈ A. We can write the

value function at terminal stage can be decomposed into improvements in the value function,

that is,

V K(SK) =
[
V K(SK)− V K(SK−1)

]
+ . . .+

[
V K(Sk+1)− V K(Sk)

]
+ V K(Sk)
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The Knowledge Gradient (KG) is the policy that selects the action that will make the

maximum improvements in the value function at each instance, that is,

AKGk (s) = arg max
a∈A(s)

Ek
[
V K(P (s, a,W ))− V K(s)

]
= arg max

a∈A(s)

ˆ
w

V K(P (s, a,w))P(w|Sk) dw

As seen from above, computing the KG policy requires computing the posterior pre-

dictive distribution and posterior expectation integral for each action in A. This is also

computationally expensive procedure since the action space is in the order of O
(
M2X−1

)
.

That is why we focus on the Optimistic Knowledge Gradient (Opt-KG) Algorithm that com-

putes optimistic improvements in the value functions. Algorithm 8 shows a tractable way

of computing the optimistic functions. At each iteration m, the procedure computes the

maximum improvement in the value function by an additional sample from the pair (x, y)

and increments that index by 1. The complexity of computing AOpt−KG(s) is O(MX)

At each decision step k, the algorithm computes the best action using the procedure in

Algorithm 8 and recruits the patients accordingly. At the end of decision step, the state

vector is updated based on treatment outcome observations. When the patient budget is

exhausted, our algorithm outputs the subgroup-level treatment effect and average treatment

effect for whole population. At the terminal stage K, ATE for the subgroup x is given by

ĒK(x) = E
[
F ′(θ)|SKx,0

]
− E

[
F ′(θ)|SKx,1

]
,

and ATE for whole population is given by

EK
pop =

∑
x∈X

wxĒ
K(x)

where wx is the proportion of the population with subgroup x. The pseudo-code for the

Opt-KG is given in Algorithm 9.

6.5 Extension to Treatment Efficacy Identification in RCTs

In this section, we modify our problem to identify the subgroups in which the treat action

is effective with respect to control action. Efficacy of treat action with respect to control
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Algorithm 8 Optimistic Action Computation

Input : Current state vector: s

Set optimal action u∗ = 0

for m = 1, . . . ,M do

for (x, y) ∈ X × Y do

Set s1 = P (s,u∗,u∗zmax)

Set s2 = P (s,u∗,u∗zmin)

Set ũ = u∗ + 1(x,y)

Compute v1 = V K(P (s, ũ, ũymax))− V K(s1)

Compute v2 = V K(P (s, ũ, ũymin))− V K(s2)

Compute q(x, y) = max(v1, v2).

end for

Compute (x∗, y∗) = arg maxx,y q(x, y).

Update u∗ = u∗ + 1(x∗,y∗).

end for

Return AOpt−KG(s) = u∗.

Algorithm 9 The Opt-KG Algorithm for ATE Estimation

Input : {wx}, K, S0

for k = 1, . . . , K do

Compute U ∗k = AOpt−KG(Sk) using Algorithm 1.

Recruit the patients based on U ∗k, observe cumulative treatment outcome W ∗
k.

Update Sk+1 = Sk + (U ∗k,W
∗
k).

end for

Compute µKx,y = E
[
F ′(θ)|SKx,y

]
Compute the treatment effect ĒK(x) = µKx,1 − µKx,0.

Compute ATE as ĒK
pop =

∑
x∈X wxĒ

K(x).

Output : {ĒK(x)}, EK
pop.
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action is defined as the indicator in which treat outcome is τ -percent better than control

outcome, that is,

ν(x) =


1 if [µ(θx,0)−µ(θx,1)]

µ(θx,0)
≥ τ

0 if otherwise

We define the positive set H∗ = {x ∈ X : ν(x) = 1} as the set of subgroups in which treat

action is effective and H̄∗ = X \ H∗ as set of subgroups in which treat action is ineffective.

In this setting, the output is an estimated set of subgroups in which treat action is effective

with respect to control action, that is, HK . Define H̄K as the set of subgroups in which treat

action is estimated to be ineffective. We call any subgroup x ∈ H∗ as the effective subgroup

and any subgroup x ∈ HK as estimated effective subgroup. There are typically two types

of errors: type-I error in which an actual effective subgroup is found to be ineffective and

type-II error in which an actual ineffective subgroup is found to effective when the patient

budget is exhausted. The formal definitions for type-I and type-II errors are given by:

eK1 =
∑
x∈X

1 (x ∈ H∗) 1
(
x 6∈ HK

)
eK2 =

∑
x∈X

1 (x 6∈ H∗) 1
(
x ∈ HK

)
The total error is the convex combination of type-I and type-II error and is given by:

eK = λeK1 + (1− λ)eK2 where λ ∈ (0, 1) is the tradeoff parameter between type-I and type-II

error. This is a parameter that is selected by the designer based on the actual costs of Type-I

and Type-II errors. Selecting a large λ will potentially decrease the Type-I error but increase

the Type-II error. Selecting a small λ will do the opposite changes in Type-I and Type-II

errors.

Based on the outcome distributions at a terminal stage, our objective is to identify the

subgroups in which treatment action is efficacious with respect to control action. We can

125



formally define our objective as:

HK = arg min
H

∑
x∈X

E
[
λ1(x 6∈ H)1(x ∈ H∗)

+ (1− λ)1(x ∈ H)1(x 6∈ H∗)
∣∣FK] (6.2)

The optimization problem stated above can be solved by a naive way of iterating all

possible H. However, this solution will be exponential in the number of patient subgroups.

We show a solution to (6.2) that is linear in the number of patient subgroups. Before we

present the solution to (6.2), we define the posterior probability on the treatment efficacy at

decision stage k as P k
x , This is the probability that efficacy is 1 conditional on θx,0 and θx,1

drawn according to posterior distributions. Formally,

P k
x = P

(
µ(θ0)− µ(θ1)

µ(θ0)
≥ τ

∣∣∣∣θ0∼Pθ|Sx,0,0,Sx,0,1θ1∼Pθ|Sx,1,0,Sx,1,1

)
.

This is the probability that treatment action is τ -percent effective with respect to control

action given the posterior probabilities of Skx,y.

A simple solution to (6.2) is HK = {x ∈ X : PK
x ≥ 1− λ}. Define g as

g(x;λ) = λ(1− x)1(x ≥ 1− λ) + (1− λ)x1(x < 1− λ).

Then, the total error can be written as eK =
∑

x∈X g(PK
x ). where B(S0) =

∑
x∈X g(P 0

x ). To

complete our MDP formulation, define the reward function R(s, a) as the decrease in the

error by taking an allocation action a in state s, that is,

R(s, a) = E
[
g(P k

x ;λ)− g(P k+1
x ;λ)

∣∣s, a] .
The value function of a policy π starting from S0 is then given by:

V π(S0) = B(S0)−
∑
x∈X

Eπ
[
g(PK

x )
]

= Eπ
[
R(Sk, ak)

]
.

where B(S0) =
∑

x∈X g(P 0
x ) and the expectation is taken with respect to allocation policy

π. Our learning problem can then be modified to use new reward functions.
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We can then modify the DP, and the OPT-KG algorithm for this new reward definition.

At the end of the allocation, the subgroups in which the treatment action is efficacious with

respect to control action can be determined by HK = {x ∈ X : PK
x ≥ 1− λ}.

6.6 Experiments

In our experiments, we use two different types of primary outcomes: time to adverse event

(Exponential distribution) and an indicator for an adverse event (Bernoulli distribution).

An example for the Exponential outcome is clinical study in [CBM04]. In this study, 4162

patients who had been hospitalized for an acute coronary syndrome within the preceding

10 days are recruited. The treatments of 40 mg of pravastatin daily (control action) and

80 mg of atorvastatin daily (treatment action) are compared with respect to the primary

outcome of death from any cause. An example for the Bernoulli outcome case is clinical study

in [HWB99]. In this study, 838 critically ill patients are recruited and randomly assigned

to restrictive strategy and liberal strategy of transfusion. The primary outcome of 30-day

mortality is used to evaluate these two strategies.

We use the exponential outcomes with the treatment and control actions without sub-

groups in the first simulation setting and Bernoulli outcomes with treatment and control

action with 4 subgroups. In all the experiments below, we assume 100 patients are re-

cruited in each step. We generate 1000 different experiments and report the average per-

formance metrics. We report the Root Mean Squared Error (RMSE), that is rmse =√
1

1000

∑1000
j=1 (ĒK

j − Ej)2 in the first simulation setting and type-I, type-II and total error

rate, that is,

err1 =

∑1000
j=1

∑
x∈X 1

(
x ∈ H∗j

)
1
(
x 6∈ HK

j

)∑1000
j=1

∑
x∈X 1

(
x ∈ H∗j

)
err2 =

∑1000
j=1

∑
x∈X 1

(
x 6∈ H∗j

)
1
(
x ∈ HK

j

)∑1000
j=1

∑
x∈X 1

(
x 6∈ H∗j

)
(6.3)

and total error rate is 1- accuracy.
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Figure 6.2: Error Comparisons with Benchmarks

We compare our algorithm with Uniform Allocation (UA), aka repeated fair coin toss-

ing, that uniformly randomly recruits the patients from subgroups and uniformly assigns

the patients to treatment groups, and Thompson Sampling (TS) [AG12b] that draws the

parameters of the outcomes for each action and then selects the action with the maximum

sample.

6.6.1 Results on Treatment Efficacy Identification

In this subsection, we perform experiments on Treatment efficacy identification problem. In

this first experiment, we assume 2 subgroups with θx,0 = 0.5 for all x ∈ {0, 1}, and θ1,1 = 0.7

and vary θ0,1 from 0.51 to 0.6. Our goal is to identify the best treatment for each subgroup.

In this setting, classifying the subgroup 0 is more challenging than classifying subgroup 1.

As seen from the Figure 6.3, our algorithm outperforms the uniform allocation in the cases

when the gap between treatment and control among the subgroups is different from each

other. This is improvement is achieved by sampling more from the subgroups in which the

gap is smaller.

In the rest of the experiments on this subsection, we assume 4 different subgroups with
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Figure 6.3: Total error rates for different parameter

θx,0 = 0.5 for all x ∈ X , and {θx,1} = (0.3, 0.45, 0.55, 0.7). Our goal is to identify the

subgroups in with treatment action is more efficient than the control action. We use this

setting because there are 2 subgroups in which treatment action is inefficient and 2 subgroups

in which treatment action is efficient and some subgroups are easier to classify than others.

For example, subgroup 1 is easier to classify than subgroup 3. In the second experiment, we

show the Type-I, Type-II and total error of the Opt-KG, TS and UA algorithms for different

patient budget. As seen from Figure 6.2, Opt-KG significantly outperforms the UA and

TS algorithm for all budgets. We note that UA outperforms the TS algorithm when the

patient budget is large. This is because TS aims to maximize the patient benefit, not the

learning performance. Hence, it allocates all the patients to better treatment, and eventually

estimates the action with lower performance poorly.

In the third experiment, Figure 6.4 shows the trade-off between the Type-I and Type-II

errors. As seen from the Figure 6.4, Type-I error of the Opt-KG algorithm decreases with

λ, and Type-II error of the Opt-KG increases with λ. Therefore, investigators can achieve

trade-offs between the errors by setting λ.

The next experiment shows the performance of the OPT-KG algorithm in the case when

m patients are recruited sequentially till the patient budget of 500. As shown from the Table

6.2, the error of the Opt-KG increases with m. When m = 250 patients are recruited in one

time, the Opt-KG only adapts the allocation policy in the second 250 patients and hence
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Figure 6.4: Tradeoffs between Type-I and Type-II errors

has larger error.

m 10 25 50 100 250

Opt-KG 0.1209 0.1245 0.1281 0.1292 0.1411

UA 0.1484 0.1484 0.1484 0.1484 0.1484

Table 6.2: Error Metric for different patient m

In the experiment, we illustrate the importance of the informative prior on patient recruit-

ment in RCTs. We generate informative priors by sampling 10 patients from each subgroup

and treatment group (without using from the patient budget). As seen from the Table 6.3,

our improvement with respect to Uniform Allocation is larger in the case of informative

prior. The informative prior is useful for the Opt-KG in two ways: (i) the informative prior

helps the Opt-KG to make more informed decisions on patient recruitment in the first steps,

(ii) the informative prior helps the Opt-KG to focus more on the subgroups with smaller

gaps.

In the experiment, we show a slightly different result. As in the previous steps, we assume

that 100 patients are recruited in each step. And the trial runs until a confidence level is

reached, that is 1
X

∑
x∈X g(P n

x ) ≤ β for some confidence level β. As seen from Table IV, the

Opt-KG recruits less number of patients than the UA to achieve the same confidence level.
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Budget 200 500 1000

Non-informative 0.0429 0.1151 0.2813

Informative 0.0748 0.1349 0.3263

Table 6.3: Improvement score for different budgets

we show the number of patients recruited by Opt-KG and uniform allocation until

1
X

∑
x∈X g(P n

x ) ≤ β. In this experiment, we again use the Bernoulli outcome model and

report the average number of patients who are recruited by Opt-KG and UA for different

values of β. As seen from Table 6.4, the UA achieves the same confidence level as Opt-KG

by recruiting 2 times more patients than Opt-KG, or running the trial 2 time more than UA.

This means that designer might save tremendous resources by implementing Opt-KG

Algorithm β = 0.05 β = 0.1

Opt-KG 11.3 6.1

UA 21.7 9.1

Table 6.4: Comparison of trial length for a confidence level

6.6.2 Results on ATE estimation

In this subsection, we perform experiments on ATE estimation problem. The first experiment

is designed to show the effectiveness of our algorithm for different parameter of treatment

outcome where we set θ0 = 1, and vary θ1. Figure 6.5 shows the RMSE improvement of Opt-

KG with respect to UA for different θ1, and hence different standard deviation of treatment

outcome distribution. Figure 6.5 shows that the Opt-KG achieves lower RMSE by allocating

more patients to the treatment group with higher standard deviation. The Opt-KG allocates

87% of the patients to treatment group for θ1 = 0.01 (and standard deviation of 100) and

achieves more than 25% improvement in RMSE with respect to UA. In the case when the

standard deviations of both actions are the same, the RMSE performance of Opt-KG is the
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Figure 6.5: RMSE improvement of Opt-KG with respect to UA

Figure 6.6 shows the RMSE performance of Opt-KG, UA and TS for different patient

budget for parameter of control action θ0 = 1, parameter of the treatment action θ1 = 0.1.

As seen from the Figure, the Opt-KG outperforms both algorithms in all budgets. Note

again that the performance of the TS algorithm is even worse than the UA algorithm for

larger budgets.

In the next experiment, we focus on extreme case in which the designer has only two

steps to recruit N = 1000 patients for parameter of control action θ0 = 1 and θ1 varying

from 1, 5, 10, 25. The designer recruits M patients in the first step and N −M patients in

the second step. Figure 6.7 shows the RMSE for different values of M . As seen from the

Figure, the minimum RMSE for ATE is achieved in M∗ = 85, 150, 235 for the parameters

5, 10, 25 respectively. If the designer recruited less patients than M∗, the designer would not

be able to estimate the parameters effectively and hence would not be able to recruit the

patients in an optimal way. If the designer recruited more patients than M∗, the designer

would not have sufficient number of patient budget left to achieve the optimal allocation.
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CHAPTER 7

Concluding Remarks

In this thesis, we studied two different ways to learn personalized treatment policies: learning

by conducting a clinical trial, learning from observational studies. In the case of clinical

trials, we proposed algorithms both to maximize the patient benefit (Chapter 2, Chapter 5)

and learning power (Chapter 6). In the case of observational studies, we proposed efficient

deep learning algorithms in which selection bias is handled with feature selection (Chapter

3) and representation learning (Chapter 4). Although our focus in this thesis was medical

informatics, there are wide range of applications in which our algorithms are applicable –

from education to recommender systems.
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