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Abstract—In this work, we propose a method to reduce
the impact of process variations by adapting the application’s
algorithm at the software layer. We introduce the concept
of hardware signatures as the measured post manufacturing
hardware characteristics that can be used to drive software
adaptation across different die. Using H.264 encoding as an
example, we demonstrate significant yield improvements (as
much as 30% points at 0% hardware overdesign), a reduction
in overdesign (by as much as 8% points at 80% yield) as well
as application quality improvements (about 2.0dB increase in
average peak-signal-to-noise ratio at 70% yield). Further, we
investigate implications of limited information exchange (i.e.
signature quantization) on yield and quality. We conclude that
hardware-signature based application adaptation is an easy and
inexpensive (to implement), better informed (by actual appli-
cation requirements) and effective way to manage yield-cost-
quality tradeoffs in application-implementation design flows.

I. INTRODUCTION

Variations in manufacturing process are increasingly af-
fecting the performance (speed, power) of systems, both
across multiple instances of a design and in time over its
usage life. With technology scaling to finer geometry devices,
the impact of manufacturing variations is getting worse [2, 3].
For high performance microprocessors in 180nm technol-
ogy, measured variation is found to be as high as 30% in
performance and 20 times in chip level leakage within a
single wafer [4]. According to the International Technology
Roadmap for Semiconductors (ITRS) [5], this trend is ex-
pected to get worse (see Figure 1).

A number of approaches have been proposed to handle
the variability associated with the manufacturing process.
Most of these approaches statistically model and forecast
the effect of variations early in the design flow in an
attempt to maximize the expected manufacturing yield, under
the constraint that a certain minimum performance level is
satisfied [3]. These methods often result in the creation of
designs that are high on resources and designer effort. Other
techniques like [6, 7] rely on post manufacturing tuning of
the hardware. For example, threshold voltage of the gates
on the critical path can be lowered after manufacturing in
order to make the design run faster (forward body biasing)
for slower chips. For extra leaky chips, the threshold voltage

Preliminary version of this work appeared in [1] and this work is a
substantial revision and extension

Fig. 1: ITRS Projection of Variability.

can be raised to reduce leakage (reverse body biasing). Often,
these techniques require that the designs support requisite
tuning knobs, thus making them complex. Moreover, tuning
needs to be done on a chip by chip basis and this results
in an increased test time. Performance-power optimization
techniques like Dynamic Voltage Scaling (DVS) have been
used to take process variations into account as in Razor [8].

While process variability is increasing, the basic approach
to designing and operating complex systems has remained
unchanged. Software has always assumed the hardware to
deliver a certain minimum level of performance, which the
hardware designers try hard to meet without leveraging
software’s flexibility. This rigid hardware-software paradigm
coupled with the objective to achieve a good manufacturing
yield often leads to systems being overdesigned relative to
their specification by addition of certain guardbands. Getting
the last bit of performance incurs serious power and area
overheads, thus increasing overall design costs. It also leaves
enormous performance and energy potential untapped as the
rigid software has to assume lower hardware performance
than what a majority of the instances of that system deliver.
Therefore, there is motivation to think of systems that have
a flexible hardware-software interface.

In this paper, we seek to build a flexible hardware-software
interface paradigm by proposing the notion of hardware
instance guided software adaptation for performance con-
strained applications. The broad idea is indicated in Figure 2



where the actual hardware state guides application adaptation
on a die specific basis. We show that, by adapting the ap-
plication to the post manufacturing hardware characteristics
(hardware signatures) across different die, it is possible to
compensate for application quality losses that might other-
wise be significant in presence of process variations. This
in turn results in improved manufacturing yield, relaxed
requirement for hardware overdesign and better application
quality.

Our work is motivated by the following two observations:
1) A plethora of modern applications are reconfigurable

and adaptive, e.g. video encoding and decoding, multi-
media stream mining, gaming, embedded sensing [9]
etc. They are capable of operating in various configu-
rations by adapting to certain input or environmental
conditions in turn producing similar or different quality
of service. This notion can be extended to let variation-
affected hardware drive application adaptation.

2) Process variation is increasing and hence, the con-
ventional methods of incorporating variation-resistant
design techniques, post manufacturing hardware tuning
or hardware overdesign have become expensive [10]
and may benefit from being complemented by alternate
software-level strategies.

Communication and wireless systems provide an excellent
analogy [11]. Communication systems adapt based on the
underlying physical communication fabric which is dynamic
(for instance [12–14]). Therefore, instead of designing proto-
cols with rigid speed and power constraints, an approach that
is flexible and allows for trade-offs is used and it has been
proven to be far more effective. In the same way, a system
can also adapt to the underlying variation-affected hardware
layer.

The idea of modifying the non-hardware layer to suit the
underlying hardware (for process variations or otherwise) is
not entirely new. In a recent work [15], the authors propose
a method to optimize the power management policy of a
System-On-Chip (SOC) statistically across all chips taking
process variations into account and its effect on leakage
power. Further, they suggest approaches to adapt the policy
on a chip by chip basis. Software fault tolerance schemes
[16] detect hardware faults using methods like Error Cor-
recting Codes (ECC) and correct them on the fly in the
software layer. In a recent work [17], a new low power
motion estimation framework is proposed in which the supply
voltage is purposely lowered, occasionally triggering some
timing faults which are then corrected using software fault
tolerance techniques. To handle supply voltage variations,
some authors [18] have proposed the use of a voltage sensor,
error recovery hardware and runtime modification of the
compiled software to prevent such voltage variations to get
triggered again. Software thermal management techniques
[19] perform scheduling in a multitasking scenario to ensure
that thermal constraints are met. Error resilience inherent

Fig. 2: Proposed Application Adaptation Model.

in applications has also been leveraged to improve defect-
limited hardware yield (see [20, 21]).

Most approaches either treat hardware inadequacy or mal-
functioning as emergencies by modeling them as transient
faults or rely on the inherent error tolerance of specific
applications. Moreover, these techniques are employed when
the hardware faults happen and some of them require special
hardware for correction. For process variations, software
adaptation can utilize the application algorithm’s quality
or performance tradeoffs to achieve error free operation
in the functional sense in presence of permanent manu-
facturing variations.

Designing a robust and dependable hardware is indispens-
able in the presence of manufacturing variations. Statistical
design and post silicon tuning significantly help to improve
overall manufacturing yield. We believe that incorporating
die-specific adaptation at the software layer can ease the
burden off expensive robust-hardware design methodologies.
This is because adaptation is much better informed of appli-
cation quality trade-offs at the software layer. In this context,
the main contribution of our work is the following

• To the best of our knowledge, this is the first work
to discuss application adaptation based on process-
variation affected manufactured hardware.

• Using an H.264 encoder, we show that implementing
die-specific software adaptation increases manufacturing
yield, improves overall application quality and thereby
allows for under-design of hardware.

• We consider the implications of limited hardware-
software information exchange and die test time by
presenting methods to compute optimal signature quan-
tization points.

This paper is organized as follows. In section II, we intro-
duce the concept of hardware signature based adaptation in
the context of applications that are performance constrained.
In section III, we apply this methodology to an H.264 encoder
and demonstrate its benefits. In section IV, we discuss the
effects of signature quantization and present an algorithm to
compute optimal signature measurement points. We conclude
in section V.



II. HARDWARE SIGNATURE BASED ADAPTATION

In this section, we describe the use of hardware signatures
for software adaptation in performance constrained applica-
tions.

A. Hardware Guided Adaptation: Formulation for Perfor-
mance Constrained Applications

Consider a system that comprises of an application running
on a generic or dedicated hardware. The application can
be tuned to run in different software configurations denoted
by set S. These configurations are associated with varying
performance and quality trends. Note that, if the application
is not adaptive, S = φ. Also, in this discussion, we assume
the hardware to be static but the idea can easily be extended
to reconfigurable hardware.

At this point, it might be worth noting that most ap-
plications can be made to support software tuning knobs.
Even something as simple as sorting can have a variety of
implementations to choose from. As an example, while one
implementation requires a lower runtime, another one might
have a less memory footprint etc. Our focus in this paper is
on multimedia applications which inherently provide ample
knobs for adaptation.

Adaptation attempts to find the optimal software operating
configuration copt ∈ S. Note that, the definition of optimality
strictly depends on context and will differ from application
to application. In our discussion, optimal software operating
configuration is one that maximizes output application quality
Q while satisfying application execution time constraints,
ETmax. Examples of such systems include but are not limited
to audio/video compression applications, gaming, stream
mining, graphics processing etc. The notion of quality and
configurations depends on the application. For audio/video
compressions applications, quality can be the Peak-Signal-
to-Noise Ratio (PSNR) of the encoded bitstream and the
configurations can be different modes of operation of some
block, say motion estimation.

Note that application execution time strongly depends on
the underlying hardware characteristics (maximum operating
frequency, memory etc.). Conventionally, this dependence is
assumed to be implicit and worst-case (or expected post
manufacturing) hardware characteristics are used to solve for
copt. Therefore, regardless of the true post manufacturing
hardware characteristics, the same copt is chosen as being
optimal for all die. Because of the impact of process vari-
ations on hardware performance, post manufacturing hard-
ware characteristics may differ significantly from idealized
expectations and also from one die to another (because of
die-to-die variations). Hence, the choice of copt may not be
truly optimal for all die. We propose the inclusion of these

Fig. 3: Hardware Signature Guided Adaptation for Performance
Constrained Applications.

hardware characteristics into the optimization problem as

copt(v) = argmax
c∈S

Q(c, v)

under the constraint that
ET (c, v, h) ≤ ETmax

(1)

In this equation, v is the input to the application, c is an
operating configuration, Q is the quality and ET is the
execution time that depends on the configuration c and the
input v. h represents the hardware characteristics.

If the underlying hardware consists of more than one
functional blocks or more than one independently fabri-
cated components, each block can be affected by process
variations in different ways (because of within-die process
variations). The hardware characteristic h should therefore
include the state of every functional block. Consequently,
an application can knowledgeably adapt and redistribute
the effort of computation among the hardware functional
blocks to achieve the same desired performance given the
manufactured hardware. A die that does not currently satisfy
the performance constraint can be made usable by adapting
the operating configuration to give the same performance at
a small tolerable loss in output quality using Equation 1.

B. Hardware Signatures: Representing True Hardware Char-
acteristics

Equation 1 assumes that the application is aware of the
exact hardware characteristics on a die specific basis. We
call these die specific hardware characteristics made known
to the software application as hardware signatures. Hard-
ware signatures are potentially different for different die and
different functional blocks within the same die.

Choice of signature content depends on the particular
system objectives. For systems that pose strict constraints
on timing (real time applications), signature could comprise
of the maximum operating frequency of individual functional
blocks of hardware. System memory along with speed of the
CPU-memory interface can be an important metric to include
if memory intensive and computation intensive techniques
are choices for application configuration. Indeed, exploiting



space-time tradeoff has been a major focus of research in
algorithms. By knowing the exact frequency and memory
characteristics of the hardware at hand, these algorithms
can make decisions optimal for that particular hardware.
For systems where low power operation is a concern, the
exact value of leakage power and maximum switching current
are valid signatures contents. Knowing the exact values of
leakage and switching power can aid power management
policies like Dynamic V oltage and Freqeuency Scaling
(DV FS) to make optimal die specific power-performance
trade-offs. High leakage variability [4] indicates tremendous
potential for power savings through adaptation.

Hardware signatures can be measured once post-
fabrication and written into a non-volatile software read-
able1 memory element on-chip or on-package. Signature
characterization can be done in software as well with some
hardware support (e.g., mechanisms to detect errors and
control frequency). This is likely more expensive though with
a benefit of runtime characterization. Well-known parametric
tests such as FMAX (performance) and IDDQ (leakage
power) can yield such signature values. Signatures can also
be measured at regular intervals during system operation
to account for ambient voltage/temperature fluctuations and
wearout mechanisms such as Time Dependent Dielectric
Breakdown (TDDB) and Negative Bias Temperature Insta-
bility (NBTI). At-speed logic and memory built-in self test
(BIST) techniques can be employed for faster and any time
computation of such signatures. Approximations using on-
chip monitors (e.g., ring oscillators or monitors such as [23])
can work as well. Since signature measurement involves
using test techniques with well understood overheads, in this
work we do not discuss these methods in more detail.

C. Q-C Plot and Modeling Hardware Signatures

The behavior of a performance constrained application can
be represented by a Quality-Complexity (Q-C) plot [24–26]
(see Figure 4). Every valid operating configuration (for a
fixed input, process and environmental condition) c is
represented by a point (xc, yc) on the Q-C plot, where the
Y-coordinate (yc) represents Quality (Quality(c)) and X-
coordinate (xc) represents execution time of the application
(ET (c)) in that configuration. Operating configurations with
larger execution times (under constant input, process and
environmental condition assumption) are usually associ-
ated with higher quality as the application gets more time to
process its input and therefore, can do a better job.

For illustrative purposes, we do not show the dependence
on input v. Various recent works deal with the problem
of capturing input dependence. Classification and machine
learning [27, 28] is a recent example in which a set of training
data is first computed by executing the application on various
kinds of inputs and operating environments. Subsequently,

1Most modern chips already contain several such EEPROM or NVRAM
components for storing hardware IDs, time, etc (e.g., see [22])

Fig. 4: Q-C plot Changes with Hardware.

relevant and easy to compute features are extracted from
this training data. At runtime, input features are matched
to the features computed offline. Various other ad-hoc so-
lutions [29, 30] have been proposed in the same area. This is
a well researched topic and is not the focus of this work. We
urge the interested reader to refer to [27, 28] for details. We
also assume constant environmental conditions for our
analysis.

The behavior of the system as formulated in Equation 1
can be translated to the problem of finding the configuration
with maximum quality that lies to the left of the vertical
line x = ETmax, where ETmax is the application tolerated
execution time constraint for the system. Therefore, over
the range of such execution time constraints, the optimal
operating points (the points of quality upperbound) form
an envelope or a Q-C curve. Note that these operating
configurations are discrete and not continuous. Therefore, a
particular operating configuration will be optimal for a range
of execution time constraints. A Q-C curve will therefore
typically look like a staircase function.

The Q-C plot implicitly depends on hardware state. By
making this dependence explicit as formulated in Equation 1,
every die will have its own Q-C plot. Specifically, an ap-
plication configuration will have different execution time
(ET (c)) for different die depending on the process variation
scenario, i.e. the configuration undergoes a horizontal shift
in position on the Q-C plot. Therefore, the envelope or
the operational Q-C curve also changes. The magnitude of
the configuration point shift on the Q-C plot depends on
the relative contribution of various constituent functional
blocks in that application configuration and the magnitude
of process variations for each of these functional blocks.
Figure 4 demonstrates this Q-C curve change.

Hardware signatures make the application aware of such
die specific Q-C plot perturbations. By knowing the exact
die specific Q-C curve, the application is better equipped
to make optimal copt selections. This results in improved
manufacturing yield as systems may now successfully op-
erate in die specific optimal configurations instead of being
simply discarded for not satisfying the specified performance



Fig. 5: Operating Configurations for the H.264 Encoder.

constraints or minimum quality levels. This also translates to
a smaller performance guardband requirement to achieve the
same manufacturing yield.

Note that the presence of a quality-performance trade-off
is essential for the above methodology to work. There is a
large class of modern day applications that fall under this
category. For example, video encoding, multimedia stream
mining, gaming, embedded sensing [9] are examples of
such applications. The class of RMS applications proposed
in [31] are all conducive to this kind of trade-off. As shown
in the next section, incorporating power into the optimization
framework opens up yet another broad class of applications
that can benefit from this strategy. Evaluating all such ap-
plications is out of scope of this paper. We concentrate on
H.264 encoding for our analysis.

III. PROOF OF CONCEPT: H.264 ENCODING

In this section, we apply the proposed adaptation to an
H.264 encoding scheme [32, 33]. We assume that motion
estimation (M.E), DCT transform (T.X) and entropy coding
(E.C) modules are the three independent functional blocks of
the encoder. Quality Q is given by the PSNR of the encoded
video. The encoder is required to maximize the output
PSNR subject to bitrate (Rmax) and frame processing delay
(ETmax) constraints. Please refer to Table I for details. The
optimization in Equation 1 can be rewritten as

copt(v) = argmax
c∈S

PSNR(c, v)

under the constraint that
R(c, v) ≤ Rmax

ET (c, v, h) ≤ ETmax

(2)

In Equation 2, ET (c, v, h) is the sum of the execution
times of the three functional blocks and S is the set of
all available encoder configurations. Table II shows the
various representative H.264 encoder tuning knobs used in
our experiments. Please refer to [34] for detail descrip-
tion of these tuning parameters. Operating configurations
are obtained by permuting the values of the knobs. These
configurations range from algorithmically simple to more
complex ones with varying levels of performance and quality

TABLE I: Experiment Specifications

Number of Frames 192
ETmax 0.03 seconds
Bitrate 800 kbps
Frames per second 33
Frequency Variation I.I.D Gaussian Distributed

Mean=0, 3σ=30% of Nominal Frequency

TABLE II: Encoder Configurations used in Experiments

1 Enable/Disable sub-pixel motion estimation
2 Enable/Disable bi-prediction sub-pel motion estimation
3 FFT transform window size: 8x8, 4x4 or combination of both
4 Run length encoding: CABAC [35] or CAVLC
5 Enable/Disable 8x8, 8x16, 16x8, 8x4, 4x8 motion estimation

search window
6 Enable/Disable 8x8, 8x16, 16x8, 8x4, 4x8 bi-prediction motion

estimation search window

trade-offs. Figure 5 shows the Q-C plot for the encoder using
the above configuration set2. This plot is constructed from
the data obtained from profiling the encoder running on a
representative video sequence. In our experiments, we use
the mobile video sequence because of its strong texture and
complex motion content. Note that, from our discussion on
input classification, in practical systems, every input type
will have its own associated Q-C curve and some online
learning technique may be employed to map to the correct
input type at runtime. Hardware signatures are taken to be
the independent frequency deviations of the three functional
blocks (refer Table I).

We also consider and demonstrate improvements for
overdesigned hardware in our experiments, where the per-
centage of overdesign is varied from -20% to +20%. Overde-
sign provides for a guardband/margin in hardware perfor-
mance. In other words, the hardware is intentionally designed
to achieve a higher performance than is required. This is done
to overcome potential degradation in performance due to
process variations to regulate manufacturing yield3. However,
this overdesign has significant penalties in terms of area,
power, cost and turnaround time [10]. In our experiments,
overdesign (i.e. faster hardware) is handled by relaxing the
input processing time constraint ETmax.

A. Results and Discussion

In Figure 6, we show the change in encoder PSNR as
the operating frequency varies4. When encoding is done at
nominal frequency (0% frequency variation), both the non-
adaptive (red dashed line) and adaptive (blue solid line) cases
have the same PSNR. This is because, they are operating in
the same base configuration with no frame loss.

2In this context, it should be noted that a PSNR difference of 0.5 to 1 dB
is significant and is perceivable to the human eye

3In this context, a negative value of overdesign simply means an under-
designed hardware.

4For this analysis, all three hardware components are assumed to have
the same variation so that the results can be shown on a 2-D plot.



Fig. 6: Hardware Guided Adaptation Improves PSNR (For samples
of video sequences encoded using adaptive and non adaptive meth-
ods, please see http://nanocad.ee.ucla.edu/Main/Codesign).

As frequency reduces, the PSNR of the non-adaptive
encoder differs from the adaptive one. This is because, the
non adaptive encoder operates in the same base configuration
and starts dropping frames rapidly. Consequently, its PSNR
falls sharply5. On the other hand, the adaptive encoder tries
to adapt to a configuration that ensures maximum quality
with no frame loss. Consequently, it is able to achieve a
higher PSNR than the non-adaptive case. For example, when
frequency decreases from nominal, the adaptive encoder
adapts from a configuration with PSNR of 28.28dB to a less
complex configuration with PSNR of 28.18dB, thus avoiding
frame loss and achieving a better overall quality.

When frequency increases, the adaptive encoder shifts to
a more complex configuration (still with zero frame loss)
and achieves a PSNR higher than nominal, while the non-
adaptive encoder is not able to utilize the faster hardware.
Consequently, its PSNR stays flat over the higher frequency
range, i.e., hardware-aware adaptation achieves the same
desired PSNR with a lower frequency of operation, in turn
implying that such a system can tolerate process variations
to a greater extent.

We perform Monte-Carlo simulation on 1000 die samples
(Table I). The Q-C curve perturbation for every die sample is
estimated and optimal operating configuration copt is found
using Equation 2. We plot the results by varying hardware
overdesign. Overdesign provides a guardband in performance
to counter the effect of process variations after manufactur-
ing. We define manufacturing yield as the percentage of die
that undergo no frame loss (i.e., a jitter constraint).

Figure 7 demonstrates significant yield improvements with
adaptation. At 0% overdesign, yield of the non-adaptive
encoder is 50% (intuitively, half of the manufactured die
lie on either side of the nominal hardware under normal
frequency distribution). When the encoder adapts according
to the manufactured hardware, it operates in a configuration

5We handle lost frames by replacing them with the previously known
good frame and computing the output PSNR as is usually done in real
time multi-media decoders.

Fig. 7: Hardware Guided Adaptation Improves Manufacturing Yield.

Fig. 8: Hardware Guided Adaptation Improves Overall Application
Quality.

with minimal frame loss and yield increases to 80%. This
trend is seen over the entire span of positive or negative
overdesign. An important point to observe is that, given
enough available configurations (scalable encoding), applica-
tion adaptation can ensure almost constant quality by trading
off work needed for different components. From Figure 7, we
can also conclude that hardware-aware adaptation relaxes the
requirement of overdesign to achieve the same manufacturing
yield. For example, to ensure 80% yield, adaptation relaxes
the overdesign requirement by 8%.

Figure 8 shows the variation of average PSNR across
all passing die with manufacturing yield for both hardware
adaptive and non-adaptive cases. We only show the plot for
0% overdesign, i.e., nominal design as the data for other
overdesign values follows the same trend. From the figure,
it is observed that adaptation results in a higher average
PSNR over the entire range of manufacturing yield6. At
70% yield, average PSNR for hardware adaptive case is
higher by 2.0dB. For the non-adaptive encoder, increase
in yield comes at significant PSNR penalty because the
encoder has to ensure a low enough complex configuration
(for all die) that satisfies the required yield and hence a
staircase PSNR waveform is observed. However, adaptation

6For the adaptive case, the highest quality die are used to match the non
adaptive case for the same yield



Fig. 9: Variation of Frequency and Power with Supply Voltage
Under Process Variations

allows for graceful degradation in PSNR when improving
yield, as operating configurations can change on a die-by-die
basis.

B. DVS: Power and Voltage as Hardware Signatures

In the above discussion, we considered a system where
quality (PSNR) was maximized under the constraint that
the input was processed within the alloted time. Frequency
deviations from the nominal values were the hardware sig-
natures in this case. For energy constrained systems, power
dissipation is an important quality metric to include in
the adaptation process. Consider Figure 9 which shows the
dependence of frequency and switching power7 on supply
voltage for a simple 4 stage FO-4 inverter chain8 under
process variations (varying transistor length and threshold
voltage by +-10%) using HSPICE. The curves indicate the
nominal and the fast/slow delay/power envelopes. It can be
seen that the supply voltage required to achieve the same
frequency for different die is significantly different and so
is power dissipation, resulting in a wide power-performance
band. For example, at supply voltage of 1V, there is a
variation of 64% in delay and 16% in switching power across
the nominal. By knowing the exact power-performance trade-
off specific to a die, adaptation algorithms like DVS that try
to optimize on a combined performance-power-quality metric
can do a much better job by adapting in a manner specific to
the die. This motivates the inclusion of power as a possible
signature metric for such systems.

To estimate the returns that one can expect, we scale supply
voltage to achieve the same performance for various sample
die affected by process variations. As a result, power con-
sumption of these sample die changes according to Figure 9.
Using the Q-C curve of Figure 5, we construct the PSNR
vs. power curves of the H.264 encoder for these sample
die in Figure 10. Specifically, we show results for the fast
corner. slow corner and the nominal. Intuitively, the power

7In this analysis, switching power is estimated at constant frequency of
operation i.e. the variation in switching power is essentially the same as
that of switching energy. This variation is mainly due to change in gate
capacitance.

845nm PTM models have been used for these simulations

Fig. 10: Variation Space of the PSNR vs. Power Curves for
Nominal/Slow/Fast Corners Under Process Variations for H.264
Encoder.

consumption of the faster corner is lower because it can oper-
ate at a lower supply voltage to achieve same performance.
These curves show that different die have different power
requirement levels to achieve the same performance (and
quality) and this gives us a potential scope of improvement
using signature based adaptation.

Hardware signature for such a system will consist of a
look-up table that specifies the operational voltage (e.g., a
look-up table based method is proposed in [36, 37] to store
and track frequency-voltage relationships across process and
temperature variations) and power dissipation as well for each
frequency of operation. This information will let algorithms
like DV S know of the exact operational PSNR-Power curve
specific to that die.

IV. HARDWARE SIGNATURE MEASUREMENT TRADEOFFS

Size (i.e., how many functional blocks and how many
parameters per block) and quantization (e.g., discretization
of performance into frequency bins) of the signature affects
the potential benefit that can be derived from signature-
based adaptation. Signature quantization influences storage
and more importantly, post manufacturing test complexity.
In this section, we focus on determining optimal signature
quantization scheme. The problem is very similar to the
concept of data compression using quantization in signal
theory. Quantization results in an associated distortion during
signal reconstruction. The choice of signal quantization levels
is therefore very important to minimize distortion. For this
analysis, we assume operating frequency as the hardware
signature. Therefore, we focus on the problem of determining
what frequencies to test (and store as signatures) to ensure
minimum quality loss, given the maximum permitted number
of such frequency tests.

Consider a hardware system with N independent compo-
nents. When the system operates in software configuration
c, a certain number of average execution cycles are spent
in each component. Thus, every configuration c can be



represented by the load distribution row vector LDc.

LDc =
[
mc

1 mc
2 .... mc

N

]
where mc

k are the number of execution cycles spent in
component k when executing in configuration c. Let tck be the
time spent in component k and tc be the total input processing
time when the system is operating in configuration c. We have

N∑
k=1

tck = tc

Because of frequency quantization, let Xi
k be the ith

frequency quantization point (i ∈ 1..sk) for component k
(k ∈ 1..N) which need to be determined. Further, assume
that

Xi
k < Xj

kfor i < j and k ∈ 1 to N (3)

For some die, let the maximum frequency of component
k for k ∈ 1..N be quantized to Xik

k . When the component
operates at this frequency, then tck =

mc
k

X
ik
k

, and therefore

tc =

N∑
k=1

mc
k

Xik
k

= LDc × p
where p is the quantized hardware signature of the die and
is given by,

pT =
[

1

X
i1
1

1

X
i2
2

.... 1

X
iN
N

]
The optimal configuration is the one which meets the

input processing time constraint and has the maximum output
quality (refer Eq 1). The input time constraint is met when,

tc = LDc × p ≤ ETmax

The output quality of the application executing on the die is
therefore,

Qdie = max
c∈S

(Qc × u(ETmax − (LDc × p)))

where Qc is the output quality when the application oper-
ates in configuration c and u() is the standard unit step func-
tion. Note that there are a total of

∏N
k=1 sk possible quantized

signatures. Let these quantized signatures be denoted by set
P. At this point, it is helpful to visualize the sampling process
as an N-dimensional space where an axis corresponds to the
cycle time of a unique component. The signature set P is
therefore represented by a set of points which divide the
N-dimensional space into N-dimensional hyper-rectangles.
The hyper-volume of such an N-dimensional hyper-rectangle
encompasses all those die that will be quantized to one
signature. This is shown in Figure 11 for two components.
Note that the frequencies of component 1 and 2 are quantized
at 3 points giving a total of 9 signature quantization points.
Every configuration (c1, c2 and c3 in the figure) is represented
as a slanted line, xc + yc = ETmax. Therefore, all die that

Fig. 11: 2 Component Signature Quantization.

lie to the bottom left of a configuration line can operate
at that configuration to meet performance constraints. The
vertically (horizontally) shaded hardware space in the figure
will be quantized to the signature on the upper right corner.
i.e. point A (B). Hence, while the hardware enclosed in the
vertically shaded region can only operate at c1, those that
belong to the horizontally enclosed region will operate at
max(Q(c1), Q(c2)).

Let f(x1, x2, ..., xN ) be the joint probability distribu-
tion function of the frequency variations of the hard-
ware components. For signature p ∈ P, let Vp denote the
probability weighted hyper-volume of the N-dimensional
hyper-rectangle that is quantized to p.

Vp =

∫ X
i1
1

X
i1−1
1

...

∫ X
iN
N

X
iN−1

N

f(x1, ..., xN )dx1...dxN

If the frequency variations of the hardware components are
independent, then

Vp =
N∏

k=1

∫ X
ik
k

X
ik−1

k

f(xk)dxk

For a given signature quantization scheme, the total quality
benefit of having a signature at point p is given by Vp ×
Qp. For the most optimal signature quantization, this quality
needs to be maximized. Therefore, the signature quantization
problem can be formulated as an optimization problem.

Maximize QuantGain =
∑
p∈P

Vp ×Qp

where

Vp =

∫ X
i1
1

X
i1−1
1

...

∫ X
iN
N

X
iN−1

N

f(x1, ..., xN )dx1...dxN

Qp = max
c∈C

(Qc × u(ETmax − (LDc × p)))

Xi
k < Xj

kfor i < j and k ∈ 1 to N

(4)



The above formulation is very similar to that of scalar
quantization in multiple dimensions commonly encountered
in signal compression theory. The problem is to determine
the signature quantization values, given the maximum num-
ber of such values so that expected quality is maximized.
However, the expression for quantization error in Equation 4
is significantly different from the standard minimum mean
square (MMSE) quantization error formulation in signal
compression theory.

Equation 4 is a generic optimization problem and there-
fore, various ad-hoc techniques can be employed. For our
experiments, we use the cyclic coordinate descent approach
to solve the optimization problem in Equation 4. Specifically,
we employ an iterative strategy, where at each iteration step,
we determine the best location of one signature quantization
point, given the location of all other signature quantization
points. We perform this analysis for all quantization points.
We iterate until the quality benefit of performing another
iteration is less than a certain threshold. The global range
of quantization point variation is −3σ to 3σ of frequency
variation. Note that, in this process, we arrive at a locally
optimal solution that depends on the initial starting point. By
repeating the process for different starting points, a sufficient
amount of solution space can be covered9. In the next section,
we will show how the optimal solution can be obtained for
the special case of one-component hardware (N = 1). At
this point, it is worth noting that computational complexity
of solving Equation 4 is not critical as deciding on a signature
quantization scheme needs to be done just once for a product.

For the Q-C plot of the H.264 encoder (Figure 5), we
compare our proposed signature quantization scheme with
a uniform quantization scheme10. Figure 12 and Figure 13
shows QuantGain and yield loss respectively as the number of
signature quantization points per component is varied. Note
that our proposed signature quantization scheme results in a
higher QuantGain (and therefore a higher PSNR) as well
as improved yield over the uniform quantization scheme.
Uniform quantization scheme is not able to capture the sen-
sitivity of expected quality (and yield) to the location of the
quantization points and hence a rippling behavior is observed
as the number of signature quantization points increases.
For the proposed scheme, expected quality monotonically

9We believe that for practical problems, this strategy is manageable.
Moreover, specific ad-hoc methods can always be employed to perform
this iteration efficiently. For example, in our H.264 encoder, we had 3
components and 34 configurations. We carried out the iteration procedure
by initially starting with big iterator steps and then reducing the step size
gradually. This helps in two ways. It ensures quick convergence near the
optimal through big movements in signature quantization parameters when
we are searching far away from the optimal solution in the solution space.
On getting to the near optimal space, we reduce the iterator step size to fine
tune the location of the signature quantization parameters. On a 2.5 Ghz
Xeon processor, this analysis took 18 seconds for 5 quantization points per
component in MATLAB.

10In the uniform quantization scheme, component signature quantization
is done at equal frequency intervals lying between −3σ to 3σ of frequency
variation

Fig. 12: QuantGain Vs. Total Number of Signature Quantization
Points Per Component for 0% Overdesign.

Fig. 13: Yield Loss Vs. Total Number of Signature Quantization
Points Per Component for 0% Overdesign.

increases with the number of signature quantization points.
Note that, if the probability distribution f(x1, x2, ..., xN )

is not known in closed form, Lloyd’s algorithm [38] for
vector quantization can be employed to solve the problem
using representative hardware samples.

A. Special Case: One Component Hardware

It is interesting to think of the signature quantization
problem of the previous section in the special case of one
component hardware. The objective is to find optimum signa-
ture quantization points Xj (j ∈ 1..s) for maximum quality,
where s is the maximum number of available quantization
points and |C| is the number of configurations. We have
dropped the subscript k from the notation because there exists
just one component. Note that, N = 1 can be plugged into
Eq 4 and similar techniques as in the previous section can
always be employed. Here, we will analytically solve the
signature quantization problem for one component hardware
using Q-C curves. This is important as there exists a definite
solution to the optimization problem in the one-component
case.



Fig. 14: Signature measurement for One Component Hardware.

We will start by developing an intuition into the solution.
Consider Figure 14. c0 and c1 are two operating configura-
tions. The Q-C curve for nominal hardware and also for two
slower hardware, HS1 and HS2 is shown, where hardware
HS1 is slower than hardware HS2. For HS2, c2 (that lies on
the ETmax line) is not a valid physically existing operating
configuration. So, the application has to operate at c1 for
HS2. For HS1, c1 lies on the ETmax line and the application
operates at c1. Therefore, HS2 and HS1 are equivalent from
this perspective. Every die slower than the nominal but faster
than HS1 will operate on c1. From the above, it makes sense
to quantize signature at HS1, but no additional benefit is
obtained by having a quantization point between HS1 and
nominal. This result is important as it limits the potential
solution space of the problem.

Therefore, when s >= |C|, the optimum location of
signature quantization points correspond to those hardware
which have their Q-C curves intersecting the ETmax line at
valid operating configuration points on the Q-C plot. Any
additional number of signature quantization points over the
number of configurations are redundant and will not improve
quality.

When s < |C|, a brute-force search technique would
require

(|C|
|s|
)

operations to get to the optimal quantization
set. As previously mentioned, computational complexity is
not an issue. However, a clever technique that uses graph
shortest path algorithm[39] can be used to solve this without
brute-force.

Consider Figure 15. Let Qcj denote the quality corre-
sponding to configuration cj and let Xj be the corresponding
signature quantization location. The number of nodes in the
graph is |C| × s (arranged as a matrix) and the cost of
an edge from node (i1, j1) to (i2, j2) (cost(i2,j2)(i1,j1)) is the
quality loss incurred by having signature quantization point
at configurations j1 and j2 and no quantization point between
them (note that all nodes in column j have same quality Qcj

and Qcj1 > Qcj2 for j1 < j2). If f(x) is the probability
distribution of the frequency variations of the hardware, then

Fig. 15: Shortest Path Approach to Find Optimal Signature Quan-
tization.

Fig. 16: Improvement in PSNR with finer signature granularity.

cost
(i2,j2)

(i1,j1) =


∞ if j2 ≤ j1
∞ if i2 6= i1 + 1∑j2

l=j1+1(Q
cl −Qcj2)

∫Xl

Xl−1 f(x) dx, otherwise

Every path from node D (imaginary node corresponding
to having a quantization point at ∞) to node L (last sig-
nature quantization location corresponding to the maximum
tolerable variation) will consist of s nodes. The quality loss
minimization problem maps to finding the shortest path from
D to L. Nodes in the path correspond to the quantization
points.

We perform this analysis for the Q-C curve of the H.264
encoder shown in Figure 5 for different values of s and
the results are compared to a naive signature quantization
approach, where quantization is done at uniform intervals.
From Figure 16, it can be observed that the proposed sig-
nature quantization results in higher PSNR than the uniform
quantization approach.

V. CONCLUSION

In this work, we have built on the notion of a flexible
hardware-software interface by proposing the use of hard-
ware instance guided software adaptation for performance
constrained applications. With increasing variability, there is
a need to shift from the basic approach of designing and



operating complex system with a rigid hardware-software
interface. With more and more applications being adaptive
by nature, we show that variation-aware software adaptation
can ease the burden of strict power-performance constraints
in design. Hardware signatures (once measured and stored)
can be used to guide software adaptation to handle variability
on a die by die basis. For an H.264 encoder, we illustrate that
this approach can lead to an improvement in manufacturing
yield, relaxed requirement for overdesign and an overall
better application quality. Specifically, for the H.264 encoder
• Manufacturing yield improves by 30% points at 0%

overdesign.
• For an objective yield of 80%, adaptation relaxes the

need for overdesign by 8%.
• Encoding quality is better by 2.0dB over the non adap-

tive case with an objective yield of 70%.
We discuss the implications and cost of signature test and

present methods to quantize signatures in an optimized way.
We do this analysis for a generic multi-component hardware
and then discuss the special case of one-component hardware.
Overall, we believe that adaptation is better informed of
application quality tradeoffs at the application layer rather
than the hardware layer. Therefore, it is easier and cheaper
to implement adaptation at the software layer as compared
to designing a robust and dependable hardware.

We plan to extend, implement and show the improvements
of this methodology for various other application scenarios.
Dynamic voltage scaling is a potential application as was
briefly hinted in this paper. Further, we will investigate signa-
ture based adaptation policy perturbations in already adaptive
applications. In future, it would also be interesting to
compare hardware-level variation mitigation approaches
with proposed opportunistic software approaches.
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VI. RESPONSE TO REVIEWERS’ COMMENTS

We would like to thank the editor, the associate editor and all the reviewers for their constructive comments. We have
revised the paper to clarify and address the various issues that the reviewers pointed out.



A. Response to Reviewer 1’s comments

Thank you.



B. Response to Reviewer 2’s comments

1) Comment: The additional material from your GLSVLSI paper is less significant than you claimed. The main part is
the formulation of multi-component signature quantization, but its importance is not supported by experiments. With
multi-component signature quantization, within-die variation can be mostly eliminated and its benefit must be very
interesting for readers.
Response: We thank the reviewer for a careful study of the paper. As the reviewer has pointed out, multi component
signature quantization can indeed be very beneficial particularly when the process has a high percentage of within
die variations. In our analysis, we have mathematically formulated how multi component signature quantization can
be performed by reducing the problem to a generic optimization problem. We have used the proposed quantization
method to our H.264 encoder and demonstrated the benefits in Figure 12 and Figure 13. Indeed, the effects of within
die variation are reduced. This is easily seen from comparing Figure 12 with Figure 16, where the difference between
the red and blue curves is significantly larger for Figure 12 than Figure 16.
Multi component signature quantization is the main but not the only contribution of this paper. Most of the experiments
have been redone to make them more meaningful and realistic. For example, we have incorporated many more
configurations of the H.264 encoder in our experiments in Section III-A to make the results more realistic (see
Figure 5). We have re-drawn Figure 10 to make it more meaningful and intuitive. In Section IV, we present single
component signature quantization as a special case of multi-component case and highlight the differences. Almost all
sections have been rewritten to present the idea better. New figures have been added (see Figure 2, Figure 3, Figure 4)
for ease of understanding. We hope this helps to address the reviewer’s concern.



C. Response to Reviewer 3’s comments

1) Comment: The paper proposes the concept of software adaptation under process variation with H.264 example. As
the author mentioned in the paper, body biasing and voltage scaling have been used to compensate hardware variation.
Therefore, it will be better to compare the different schemes as a future work if the author works on the subject,
further.
Response: We thank the reviewer for this suggestion. The reviewer is correct in pointing out that adaptive body
biasing and voltage scaling have been used to compensate performance variation, albeit at cost of power increase. Our
work tries to address variation problems at the application layer (as opposed to hardware layer) due to its proximity
to the end user and it being more flexible. We agree that in future, it would be interesting to compare hardware-level
variation mitigation approaches with opportunistic software approaches. We have added this to the future work section.

2) Comment: In equation (1), there is no constraint on power. It has only delay constraint. So, in figure 6, PSNR increases
for +15% frequency variation case. However, +15% frequency variation can cause more power consumption. In that
case, software adaption with delay and power co-constraints will guarantee more robust operation.
Response: We thank the reviewer for this comment. We agree with the reviewer that future extensions of our work can
include power and performance both as objectives or constraints. In this paper, we have taken execution time constrained
multimedia as a first prototypical application to illustrate the hardware-signature based software adaptation. In Section
III-B, we have provided a brief explanation and estimated the gains that can be obtained in a performance-power-
quality tradeoff scenario. In fact, one of the co-authors of this work has another recent publication which deals with
power hardware-signature based operating system adaptation (see L. Wanner, R. Balani, S. Zahedi, C. Apte, P. Gupta,
and M. Srivastava, Variability Aware Duty Cycle Scheduling in Long Running Embedded Sensing Systems, in Design,
Automation, and Test in Europe (DATE), March 2011).



D. Response to Reviewer 4’s comments

1) Comment: This Q-C curve still does not make much sense to me. This is in part because delay and execution time
is not totally the same thing. Delay is affected by process variations and environmental variations (temperature), etc.
Execution time depends on clock frequency, the task/data size. Clock frequency can be affected by process variation.
So execution time does not have a simple and clear dependency on process. Therefore, it is not a correct statement
by saying Operating configurations with larger execution time are usually associated with higher quality. (page 5 ,
section C). Also, x = Delaymax for vertical lines has the same issue. Long delays means more timing errors usually.
It is very skeptical to think that the quality of the application would increase. I believe the authors need to rethink
this curve to deliver their idea.
Response: We thank the reviewer for providing important constructive comments on the paper to make it more useful.
Delay/Execution time comparison: As defined in Section II-C, Delay refers to the application execution time, i.e.
it is defined as being synonymous to execution time of the application. It is not the same as critical path delay.
Consequently, similar to execution time, Delay depends on task/data size as well as the clock frequency which in
turn depends on process variations and environmental variations. However, from the reviewer’s comment, the idea of
defining Delay as application execution time is not appropriate for our consideration. To address this problem, we
have changed all references to the term Delay by execution time and Delaymax to ETmax throughout the paper as
appropriate. In Section II-C, we have also added a couple of additional references [25, 26] that can help to explain
the concept of Q-C plots, as used in other related works. We hope this helps to clarify the reviewer’s concern and
makes the presentation of the concept simpler.
Execution time vs. Quality : As correctly pointed out by the reviewer, execution time of the application depends on
4 factors - the task/data size, operating configuration, process variation and environmental variations. As described
in paragraph 2 of Section II-C, we do not show the dependence on the task/data size. Therefore, our definition of
execution time assumes constant workload. We also assume nominal environmental conditions. Therefore, in our
analysis, execution time changes with operating configuration and process variation. Application quality depends on
operating configuration. A Q-C curve plots application quality vs. application execution time for a given process
variation. When the process variation is different, we get a different (shifted) Q-C curve. The statement, operating
configurations with larger execution times are usually associated with higher quality, is comparing Q-C points for
the same Q-C curve (i.e. the same task/data, process variation and environmental variation scenario), which makes
sense because, the more the time allowed for an application to process its input, the better will be its quality under
the above assumption. To make this point explicit, we have amended our explanation in bold in Section II-C.

2) Comment: I believe it is important to show the hardware signature (certain features) has direct relationship with
yield. For example, Figure 5 in reference 1. Here, yield depends on fault density. At software level, your task is to
reconfigure the software so that you can lower down i.e. fault density (maybe by long execution time i.e.). So I think
it makes a lot more sense to put figure 8 in your paper to earlier sections (without the with adaptation result). And
then you show in the figure (maybe just a couple of points ) that use different configurations (page 7, highlighted area
in left column) in details about you can do to improve the PSNR.
Response: We thank the reviewer for creating the context for this interesting discussion. The question of errors/fault
density is orthogonal. At the software level, we are not attempting to lower down the fault density by reconfiguring
the software (by long execution time etc.). Our objective is to reconfigure the software to achieve correct functional
operation (within the maximum permitted time constraint), by possibly compromising a little (tolerable) on the output
quality. This improves the yield, as the number of correctly functioning manufactured units increases, i.e. yield in our
case is defined in parametric fashion at the application layer. The fault density really does not change. Using hardware
signatures, we are ensuring hardware always operates correctly, i.e. error-free (or as correctly as in conventional
methodologies) in the functional sense. We understand that this may require some different mechanisms for test and
thats why we also show PSNR improvements irrespective of the conventional yield.
To address the reviewer’s concern, we have added a brief description of the same in Section I in bold and we have
also provided references to the papers mentioned by the reviewer.

3) Comment: I also dont think you can achieve error free operations as stated in the paper. This is a very bold statement.
You can achieve error tolerant. That is, we still have error in the system and hardware, however, by soft adjustment,
the applications can run fine. Here, you may still have error in your application i.e. error rate is not zero, but it is
lowered down to a good level.



Response: We thank the reviewer for providing valuable comments. From the previous discussion, using hardware
signatures, we are reconfiguring the software to ensure that the system always operates correctly, i.e. error-free (or as
correctly as in conventional methodologies) in the functional sense. We are able to do this by utilizing the inherent
performance-quality tradeoff of the application. The term error-free in this context does not imply zero fault density.
It symbolizes correct funtional behavior (possibly at cost of slightly lower, but tolerable, output quality). To make
this point explicit, we have amended the appropriate statement in bold in Section I.

4) Comment: Figure 7 and figure 8 have yield related results. But how yield was introduced into the idea was missed
in the explanation.
Response: We thank the reviewer for a careful study of the paper. As described above, yield in our case is defined in
parametric fashion at the application layer, i.e., it is defined as the percentage of die that satisfy performance constraints,
possibly at the cost of slightly lower output quality. In our H.264 proof of concept, this is also stated in Section III-A,
”We define manufacturing yield as the percentage of die that ensure no frame loss (i.e. a jitter constraint)”. We hope
this helps to address the reviewer’s concern.


