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Abstract—This paper presents a novel cache replacement
method—Popularity-Driven Content Caching (PopCaching).
PopCaching learns the popularity of content and uses it to
determine which content it should store and which it should
evict from the cache. Popularity is learned in an online fashion,
requires no training phase and hence, it is more responsive to
continuously changing trends of content popularity. We prove
that the learning regret of PopCaching (i.e., the gap between
the hit rate achieved by PopCaching and that by the optimal
caching policy with hindsight) is sublinear in the number of
content requests. Therefore, PopCaching converges fast and
asymptotically achieves the optimal cache hit rate. We further
demonstrate the effectiveness of PopCaching by applying it to a
movie.douban.com dataset that contains over 38 million requests.
Our results show significant cache hit rate lift compared to
existing algorithms, and the improvements can exceed 40% when
the cache capacity is limited. In addition, PopCaching has low
complexity.

I. INTRODUCTION

The last few years have witnessed the proliferation of
rich media-enabled applications involving streaming of high
quality media content. For instance, online social network
users share nowadays not only texts and images, but also audio
and video content. High-quality video is also demanded by the
prevalence of retina-level resolution displays and emerging
technologies such as virtual reality. As a consequence, the
content that needs to be streamed in real-time has grown
significantly in terms of volume, size and diversity. To provide
high Quality-of-Service (QoS) with limited network resources
while keeping costs low, various network architectures and
algorithms have been proposed. Among them, content caching
is a key technology due to its effectiveness in supporting
streaming applications [1]. In fact, content caching is now con-
sidered as a basic network functionality in emerging network
architectures such as Content-Centric Networking [2].

Content caching is not a new technology - Akamai [3] and
its competitors have been providing content distribution and
caching services for decades. However, the recent rapid growth
of video traffic has led both the industry and the academia to
re-engineer the content caching systems in order to accommo-
date this vast traffic. Cloud providers now start to launch their
own caching services [4] and many websites also build their
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own caching systems to accelerate content distribution [5]. To
improve content caching efficiency, a significant amount of
research effort has been devoted to optimizing the network
architecture, e.g., path optimization [6], server placement [7],
content duplication strategy [8], etc. However, less attention
has been devoted to improving caching strategies, i.e., which
content should be cached, where and when. Today’s content
distribution network (CDN) providers still use simple cache
replacement algorithms such as Least Recently Used (LRU),
Least Frequently Used (LFU), or their simple variants [9].
These algorithms are easy to implement but may suffer major
performance degradation since they ignore the future popu-
larity that a content may acquire, which may alter the future
traffic demand pattern on the network, thereby resulting in a
low cache hit rate. Thus, an efficient content caching scheme
should be popularity-driven, meaning that it should incorporate
the future popularity of content into the caching decision
making. However, designing such popularity-driven content
caching schemes faces many challenges. Firstly, the future
popularity of a content is not readily available at the caching
decision time but rather needs to be forecasted. Secondly,
the popularity of a content changes over time and hence,
the content caching schemes should continuously learn, in
an online fashion, in order to track such changes and adjust
forecasts. Thirdly, using the estimated popularity of content
to derive the optimal caching decision represents yet another
challenge.

In this paper, we rigorously model how to use the popularity
of content to perform efficient caching and propose an online
learning algorithm, PopCaching, that learns the short-term
popularity of content (i.e., how much traffic due to a content is
expected in the near future) and, based on this, optimizes the
caching decisions (i.e., whether to cache a content and which
existing content should be replaced). The algorithm requires
neither a priori knowledge of the popularity distribution of
content nor a dedicated training phase using an existing
training set which may be outdated or biased. Instead, it
adapts the popularity forecasting and content caching decision
online, as content is requested by end-user and its popularity
is revealed over time. The contributions of this paper are
summarized below:

• We propose PopCaching, an online algorithm that learns
the relationship between the future popularity of a con-



tent and its recent access pattern. Using the popularity
forecasting result, PopCaching makes proper cache re-
placement decisions to maximize the cache hit rate. The
amortized time complexity of PopCaching is logarithmic
in the number of received requests.

• We rigorously analyze the performance of PopCaching
in terms of both popularity forecasting accuracy and
overall cache hit rate. We prove that the performance
loss, compared with the optimal strategy that knows the
future popularity of every content when making the cache
decision, is sublinear in the number of content requests
received by our system. This guarantees fast convergence
and implies that PopCaching asymptotically achieves the
optimal performance.

• We demonstrate the effectiveness of PopCaching
through experiments using real-world traces from
movie.douban.com which is the largest Rotten Tomatoes-
like website in China. Results show that PopCaching
is able to achieve a significant improvement in cache
efficiency against existing methods, especially when the
cache capacity at the cache server is limited (more than
100% improvement).

The remainder of the paper is organized as follows. Section II
provides a review of related works. Section III introduces the
system architecture and operational principles. In Section IV
we formally formulate the cache replacement problem. The
PopCaching algorithm is proposed in Section V. Theoretical
analysis of the algorithm is presented in Section VI. Simu-
lation results are shown in Section VII. Finally, Section VIII
concludes the paper.

II. RELATED WORK

The common approaches for content caching that have
already been adopted in the Internet nowadays are summarized
in [10]. As mentioned in the introduction, a significant amount
of research effort was devoted to optimizing the network
architecture, including routing path [6], server placement [7],
content duplication strategy [11] [8], etc. For instance, [6]
systematically describes the design of the Akamai Network.
Authors in [7] utilize geographic information extracted from
social cascades to optimize content placement. In [11], it
is assumed that content popularity is given and light-weight
algorithms that minimize bandwidth cost are presented. In [8],
an integer programming approach to designing a multicast
overlay network is proposed. However, much less attention
has been devoted in literature to developing efficient caching
schemes. The most commonly deployed caching schemes
include Least Recently Used (LRU), Least Frequently Used
(LFU) and their variants [9], which are simple but do not
explicitly consider the future popularity of content when
making caching decisions.

Forecasting popularity of online content has been exten-
sively studied in the literature [12] [13]. Various solutions are
proposed based on time series models such as autoregressive
integrated moving average [14], regression models [15] and
classification models [16]. Propagation features of content

derived from social media are recently utilized to assist
popularity prediction, leading to an improved forecasting
accuracy [17] [18] [19]. While these works suggest ways
to forecast the popularity of content, few works consider
how to integrate popularity forecasting into caching decision
making. In [20], propagation information of content over social
media is utilized to optimize content replication strategies. An
optimization-based approach is proposed in [21] to balance
performance and cache replacement cost. These works develop
model-based popularity forecasting schemes in which model
parameters are obtained using training datasets. However,
relying on specific models may be problematic in a real
system since some information may not be fully available to
the caching infrastructure. Moreover, because the popularity
distribution of content may vary over time, relying on existing
training sets, which may be outdated, may lead to inaccurate
forecasting results.

To adapt to the varying popularity of content, several learn-
ing methods for content caching are proposed. In [22], each
requested content is fitted into a set of predetermined models
using the historical access patterns of the content. The best
model that produces the smallest error is selected to predict
what content should be cached. In [23], the content replace-
ment problem is modeled as a multi-armed bandit problem and
online algorithms are designed to learn the popularity profile of
each content. The main drawback of these two methods is that
they both learn the popularity independently across content,
ignoring the similarity between content, thereby resulting in
high training complexity and a slow learning speed.

III. SYSTEM OVERVIEW
A. Architecture

The modules of the considered popularity-driven cache node
is depicted in Fig. 1. In addition to the basic modules (i.e.
Cache Management, User Interface, Content Fetcher, Local
Cache, and Request Processor) in a conventional cache node,
the popularity-driven cache node also implements Feature
Updater, Learning Interface, and two databases (i.e. Feature
Database and Learning Database) to enable the learning
capability.
• The Feature Updater module is responsible for updating

the raw features (e.g. the view count history) of a content,
which is stored in the Feature Database.

• The Learning Interface is the module that implements the
PopCaching algorithm.

B. Operational Principles
Each content request involves three sequential procedures.

First, when a request arrives to the cache node, PopCaching
updates the Feature Database to keep up-to-date features of
the requested content. Second, PopCaching sends a query to
the Learning Database with the request’s context vector to get
a popularity forecast of the requested content, based on which
the caching decision is made. Third, when the real popularity
of the content is revealed after the request has been served,
PopCaching learns the relationship between the context vector
and the popularity of content and then encodes this knowledge
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Fig. 1. Modules of a single cache node in a caching system. A typical work
flow is also presented.

into the Learning Database. Such knowledge will be used in
future requests for content with similar context vectors. The
detailed operations of the popularity-driven cache node are
described below. However, we note that our main focus is on
the modules that enable the learning capability.
• Update:

1) The Request Processor receives a request.
2) The Request Processor initiates an update procedure

with information of the received request.
3) The Feature Updater calculates the latest feature

values and writes them into the Feature Database.
• Query:

4) The Cache Management module checks if the re-
quested content is in local cache.

5) If the requested content is not found, the Pop-
Caching algorithm decides whether or not to cache
the content.

6) The PopCaching algorithm extracts the context vec-
tor from the Feature Database.

7) The PopCaching algorithm searches the Learning
Database with the context vector and makes a
caching decision based on the forecasted popularity
of the content.

8) The PopCaching algorithm returns its decision.
9) Based on the caching decision, the requested content

is either cached locally or not.
A) If the content is decided to be cached, Cache

Management module updates the local cache.
B) The request is served.

• Learn:
C) The Request Processor triggers a learning process.
D) PopCaching extracts the context vector and revealed

popularity from the Feature Database.
E) PopCaching updates the Learning Database with

the context vector and revealed popularity.

IV. SYSTEM MODEL

In this section, we formalize the popularity-driven caching
problem.

Consider the setting where a content provider has a set
of content C = {1, 2, ..., C} that can be requested by end
users.1 In practice, this set may be very large and we may have
millions of content. To provide services with high quality, the
content provider sets up a caching system (e.g. uses a 3rd-party
caching service or sets up its own). The caching system aims
to offload requests to its local cache at its best effort. In this
paper, we focus on a single cache node in such a system where
cache nodes operate independently. Let s < C be the capacity
of the node, i.e., the maximum number of content the node can
store in its local cache. We assume that all content are of the
same size,2 so the node can hold up to s content. We denote re-
quests for content by Req = {req1, req2, ..., reqk, ..., reqK},
which come in sequence. Each request in this set is represented
by reqk = 〈c(k), x(k), t(k)〉,∀1 ≤ k ≤ K, where c(k) ∈ C is
the content being requested, t(k) is the time of the request
(e.g. when the end user initiates the request), and x(k) is
the context vector of the request. The context x ∈ Rd is a
d-dimensional vector that describes under what circumstance
the request is made, which may include features like the user’s
profile, the property of the requested content, and system
states. Without loss of generality, we normalize the context
and let x ∈ [0, 1]d , X .

For each coming request reqk, we first check if it can be
handled by the node’s local cache. Formally, let Yk(c(k)) ∈
{0, 1} represent whether content c(k) is in the local cache
at the time when reqk needs to be served. For instance,
Yk(c(k)) = 1 means that reqk can be served by the
local cache. Furthermore, we use a binary vector Yk =
[Yk(1), Yk(2), ..., Yk(C)] to denote the whole cache status at
time t(k), where Yk(c) is the c-th element in Yk. We want to
emphasize that Yk is only used for analysis and our algorithm
does not require storing the whole Yk.

When c(k) is not found in the local cache, the node
retrieves it from the storage servers and decides whether
to store c(k) in its local cache. Specifically, the node may
replace an existing content with the new content c(k). Let
cold(k) ∈ {c : Yk(c) = 1} denote the old content that is
replaced by c(k). Hence, the cache status vector is changed
to Yk+1 according to the following equation:

Yk+1(c) =


0 if c = cold

1 if c = c(k)

Yk(c) otherwise

A caching policy prescribes, for all k, whether or not
to store a content c(k) that is not in the local cache and,
if yes, which existing content cold(k) should be replaced.
Formally, a caching policy can be represented by a function
π : ({0, 1}C , C,X ) 7−→ {0, 1}C that maps the current cache

1While we use C to denote the total number of content, it is used for
theoretical analysis and our algorithm does not need to know this number.

2This same size assumption can be justified as follows: each content is split
into chunks of a fixed size and each chuck is then considered as a content.
This is a common practice in real world systems. For instance, the widely
adopted Dynamic Adaptive Streaming over HTTP (DASH) protocol usually
splits each video into several equal-sized chunks.



status vector, the requested content and the context vector of
the request to the new cache status vector. Whenever a request
reqk is served, the cache status is updated according to π:

Yk+1 = π(Yk|c(k), x(k)) (1)

To evaluate the efficiency of the caching system, we use
cache hit rate H(K,π), which is defined as the percentage of
requests that are served from the local cache up to the K-th
request. In addition, H(π) denotes the long-term average hit
rate, which is defined as follows:

H(π) = lim
K→∞

H(K,π) = lim
K→∞

1

K

K∑
k=1

Yk(c(k)) (2)

In this way, H(π) describes how the caching system performs
in the long term by adopting the caching policy π. Note that
even though π is not explicitly written on the right hand side
of (2), the evolution of the cache status vector Yk is governed
by π.

Our objective is to find a policy π that maximizes the overall
cache hit rate so that we achieve the highest cache efficiency.

π∗ = arg max
π

H(π) (3)

V. POPCACHING ALGORITHM

A. Algorithm Overview

The PopCaching algorithm is presented in Figure 2. For
each incoming request reqk, we first extract the features of the
request and update the Feature Database module. Specifically,
we use a sliding window to log the recent access history of
each content. We then examine the local cache to see whether
the requested content c(k) has already been cached. If c(k)
exists in the local cache, then the end user is served using
the content copy in the local cache; otherwise, we fetch c(k)
from the storage servers to serve the end user. In the second
case, PopCaching makes a forecast on the future popularity
of c(k) and decides whether or not to push c(k) in the local
cache and which existing content should be removed from the
local cache. To do this, PopCaching extracts the context vector
x(k) associated with the current request from the Feature
Database and issues a forecast of the request rate for c(k),
denoted by M̃k, using the popularity forecast algorithm that
will be introduced in the next subsection. Then, PopCaching
compares M̃k with the popularity estimate of the least popular
content already in the local cache, denoted by M̃ least. To
quickly find the least popular content, PopCaching maintains
a priority queue Q that stores the cached content along with
their estimated request rates. The top element of Q is simply
the least popular content. If M̃k > M̃ least, then PopCaching
replaces the least popular content cleast with c(k) in the local
cache and update Q accordingly; otherwise, PopCaching does
nothing to the local cache. To keep the popularity estimates of
content in the local cache up to date, PopCaching periodically
updates the forecast for the cached content after every φ
requests.

1: procedure PROCESSONEREQUEST(reqk)
2: Update the feature database for c(k)
3: if c(k) is in the local cache then
4: Serve the end user from the local cache
5: else
6: Fetch c(k) from the storage servers
7: Serve the end user with c(k)
8: Extract x(k) from the feature database
9: M̃k ← Estimate(x(k))

10: 〈M̃ least, cleast〉 ← the top element in Q
11: if M̃k > M̃ least then . update local cache
12: Remove the top element from Q
13: Insert 〈M̃k, c(k)〉 into Q
14: Replace cleast with c(k) in the local cache
15: end if
16: end if
17: if k mod φ = 0 then
18: Re-estimate the request rate for all content in Q
19: Rebuild the priority queue Q
20: end if
21: c(k)’s popularity Mk is revealed after time θ
22: Call Learn(x(k), Mk)
23: end procedure
Fig. 2. Procedure of processing a single request. Learn and Estimate are
two procedures defined in Section V-B.

B. Popularity Forecasting

Each request reqk is characterized by its context vector
x(k) of size d and hence, it can be seen as a point in the
context space X = [0, 1]d. At any time, the context space X
is partitioned into a set of hypercubes P(k) = {Pi}. These
hypercubes are non-overlapping and X =

⋃
Pi∈P(k) Pi for

all k. The partitioning process will be described in the next
subsection. Clearly, x(k) belongs to a unique hypercube in the
context space partition, denoted by P ∗(k). For each hypercube
Pi ∈ P(k), we maintain two variables N (Pi) and M(Pi) to
record the number of received requests in Pi and the sum of
the revealed future request rate for those requests, respectively.
The forecasted future popularity for requests with contexts in
this partition Pi is computed using the sample mean estimate
M̃(Pi) =M(Pi)/N (Pi).

The popularity forecasting is done as follows. When a
request reqk with context x(k) is received, PopCaching first
determines the hypercube P ∗(k) that x(k) belongs to in
the current partitioning P(k). The forecasted popularity for
reqk is simply M̃(P ∗(k)). After the true popularity Mk of
the content of reqk is revealed, the variables of P ∗(k) is
updated toM(P ∗(k))←M(P ∗(k))+Mk and N (P ∗(k))←
N (P ∗(k))+1. Depending on the new value of N (P ∗(k)), the
hypercube may split into smaller hypercubes and hence, the
partitioning of the context space evolves. The next subsection
describes when and how to split the hypercubes.

C. Adaptive Context Space Partitioning

This subsection describes how to build the partition P
as requests are received over time. Let li denote the level
of a hypercube Pi which can also be considered as the



1: procedure LEARN(x(k),Mk) . Learn from reqk
2: Determines P ∗(k) that x(k) belongs to
3: N (P ∗(k))← N (P ∗(k)) + 1
4: M(P ∗(k))←M(P ∗(k)) +Mk

5: SPLIT(P ∗(k))
6: end procedure
7: procedure ESTIMATE(x(k)) . Estimate M̃k

8: Determines P ∗(k) that x(k) belongs to
9: return M(P ∗(k))/N (P ∗(k))

10: end procedure
Fig. 3. Procedures of Learn and Estimate for a single request

1: procedure SPLIT(Pi)
2: if N (Pi) ≥ z12z2·li then
3: Split Pi into 2d hypercubes {Pj}
4: Set M(Pj)←M(Pi) for each Pj
5: Set N (Pj)← N (Pi) for each Pj
6: Set level lj ← li + 1 for each Pj
7: end if
8: end procedure

Fig. 4. The procedure of adaptive context space partitioning

generation of this hypercube. At the beginning, the partition
P contains only one hypercube which is the entire context
space X and hence, it has a level 0. Whenever a hypercube
Pi accumulates sufficiently many sample requests (i.e. N (Pi)
is greater than some threshold ζ(li)), we equally split it along
each dimension to create 2d smaller hypercubes. Each of these
child hypercubes Pj has an increased level of lj ← li + 1
and inherits the variables M(Pi) and N (Pi) from its parent
hypercube, i.e. M(Pj)←M(Pi) and N (Pj)← N (Pi). Due
to this splitting process, a hypercube of level li has length 2−li

along each axis.
The threshold ζ(li) determines the rate at which the context

space is partitioned. Partitioning the context space too fast or
too slow will both cause inaccurate estimates. Therefore, in
PopCaching, ζ(li) is designed to have the form z12z2·li where
z1 > 0 and z2 > 0 are two parameters of the algorithm.
In Section VI, we will show that by carefully selecting the
parameters, PopCaching can achieve the optimal performance
asymptotically. Figure 5 illustrates how PopCaching makes a
forecast of the popularity of a requested content, learns from
that request after its popularity is revealed, and updates the
partition of the context space accordingly.

VI. PERFORMANCE ANALYSIS

In this section, we analyze the performance of the Pop-
Caching algorithm. We first bound the popularity forecasting
error, and then use it to derive the bound on the overall cache
hit rate H(π).

A. Upper Bound on the Popularity Forecast Error

To enable rigorous analysis, we make the following widely
adopted assumption [24] [25] that the expected popularity of
similar content are similar. This is formalized in terms of a
uniform Lipschitz continuity condition.

Assumption 1. (Uniform Lipschitz continuity) There exists a
positive real number β > 0 such that for any two requests k

#	  reqs	  during	  the	  last	  hour	  
10	   20	   30	  

Popularity	  forecas0ng	   Learning	  
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Fig. 5. An illustration of popularity forecasting and adaptive context space
partitioning in which, for illustration purposes, we suppose that the context
space is two-dimensional (i.e. d = 2).

and k′, we have E|Mk −Mk′ | ≤ β||x(k)−x(k′)|| where || · ||
represents the Euclidean norm.

We now bound the forecast error made by the PopCaching
algorithm.

Proposition 1. The expected total forecast error for the first
K requests, E

∑K
k=1 |M̃k−Mk|, is upper bounded by Õ(Kµ)

for some µ < 1. If we choose z2 = 0.5, then µ = d
d+0.5 .

The error bound proved in Proposition 1 is sublinear in K,
which implies that as K →∞, E

∑K
k=1 |M̃k−Mk|/K → 0.3

In other words, PopCaching makes the optimal prediction
as sufficiently many content requests are received. The error
bound also tells how much error would have been incurred by
running PopCaching for any finite number of requests. Hence,
it provides a rigorous characterization on the learning speed
of the algorithm.

B. Lower Bound on the Cache Hit Rate

In the previous subsection, we showed that the popularity
forecast error is upper-bounded sublinearly in K. In this
subsection, we investigate the lower bound on the cache hit
rate that can be achieved by PopCaching and the performance
loss of PopCaching compared to an oracle optimal caching
algorithm that knows the future popularity of all content.

We first note that the achievable cache hit rate H(π)
depends not only on the caching policy π but also the access
patterns of requests. For instance, a more concentrated access
pattern implies a greater potential to achieve a high cache hit
rate. To bound H(π), we divide time into periods with each
period containing φ requests 4. In the m-th period (i.e. requests
k : mφ < k ≤ (m + 1)φ), let Msort be the sorted vector of
the popularity of all content in {k : mφ < k ≤ (m + 1)φ}.
The normalized total popularity of the j most popular content
in this period is thus

∑j
i=1M

sort
i∑C

i=1M
sort
i

. Recall that C is the total
number of content files. Let the function

f(j) = 1−
∑j
i=1M

sort
i∑C

i=1M
sort
i

. (4)

be the normalized total rate of the (C − j) least popular
content. Clearly, f(j) is a monotonically decreasing function
and f(C) = 0. Note that (1) in different periods, f(j) can

3The complete analysis and proofs can be found in the Appendix B.
4For analysis simplicity, we assume that K is a multiple of φ. Generaliza-

tion is straightforward.



be different; (2) we do not make any assumption on the
popularity distribution and 1− f(j) is simply the probability
mass function of Msort.

The next proposition connects the popularity forecasting
error to the achievable cache hit rate.

Proposition 2. For any time period m, if the popularity
forecasting error satisfies |M̃sort

i − Msort
i | ≤ ∆M, ∀i ∈

{1, 2, ..., C}, then the achieved cache hit rate is at least
1− f(s)− 2s

φ −
2s·∆M∑C
i=1M

sort
i

in that period.

To understand the bound in 2, we split it into two parts.
The first part 1−f(s)− 2s

φ depends on the access pattern f(·)
and the cache capacity s but not the forecasting error ∆M .
Therefore it represents how well a caching policy can perform
in the best case (i.e. when it makes no popularity forecasting
errors). As expected, if the access pattern is more concentrated
(i.e. f(s) is smaller), the cache hit rate is higher. When the
period φ is sufficiently long, then as the cache capacity s→ C,
the cache hit rate (1 − f(s) − 2s

φ ) → 1. The second part
2s·∆M∑C
i=1M

sort
i

measures the cache hit rate loss due to popularity
forecasting errors. A larger forecasting error ∆M leads to a
bigger loss.

By combining Proposition 1 and Proposition 2, we show in
Theorem 1 that PopCaching achieves the optimal performance
asymptotically.

Theorem 1. PopCaching achieves a cache hit rate that asymp-
totically converges to that obtained by the oracle optimal
strategy, i.e., EH(π∗) = EH(π0). 5

Proof. Since f(j) and ∆M may vary among different time
periods, we now use fm(j) and ∆Mm to denote their cor-
responding values in the m-th period. Let M inf be the
infimum of

∑C
i=1M

sort
i over all time periods. According to

Proposition 2 and utilizing φ� s:

E(H(π∗)−H(π0)) ≤ lim
K→∞

φ

K
E

K
φ −1∑
m=0

2s ·∆Mm∑C
i=1M

sort
i

≤ lim
K→∞

2sφ

K
· E
∑K
k=1 |M̃k −Mk|

M inf

= lim
K→∞

Õ(K
d

d+1/2 )

K
= 0 (5)

VII. EXPERIMENTAL RESULTS

A. Dataset

We use data crawled from movie.douban.com as our
main dataset for the evaluation of PopCaching. The web-
site movie.douban.com is one of the largest social platforms
devoted to film and TV content reviews in China. On top
of traditional functionalities of a social network platform, it
provides a Rotten Tomatoes-like database, where a user can
post comments (e.g. short feedback to a movie), reviews (e.g.

5We have made an implicit assumption here that all requests during a time
period is randomly distributed. Hence it is less likely to see consecutive
requests for unpopular content and the best caching strategy π∗ is to just
store the most popular ones during that period.

a long article for a movie), ratings, etc. In our experiments, we
suppose that there is an online video provider who provides
video content to users on movies.douban.com. To simulate
the content request process, we take each comment on a
video content by a user as the request for this content.
More specifically, we assume that every movie comment in
our dataset is a downloading/streaming request towards our
hypothesized video provider and the time when the comment
is posted is considered as the time when the request is initiated.
Even though movie.douban.com may not actually store any
encoded video, using the comment process to simulate the
request process can be well justified: it is common that people
post comments on the video content right after they have
watched it and hence, the comment data should exhibit similar
access patterns to those of content request data observed by
an online video provider.

To obtain data from movie.douban.com, we implemented a
distributed crawler to enumerate videos, accessible comments6

and active users (i.e., users who have posted at least one
comment.) To guarantee the correctness of the main dataset,
we also wrote a random crawler to get a small dataset and
cross-checked with the main dataset. As an overview, the
main dataset contains 431K (431 thousand) unique videos,
among which 145K are active (i.e., videos having at least one
comment), 46M (46 million) accessible comments, and 1.3M
active users.

B. Simulator Setup

We build a discrete event simulator according to Fig. 1 and
evaluate the performance of PopCaching. The context vector
in this experiment has four dimensions (d = 4): how many
times the content is requested during the last 5 hours, 30
hours, 5 days, and 30 days respectively. Besides, there are four
parameters in our algorithm, θ, φ, z1, and z2. The simulation
results presented in this section are all obtained with θ = 1000
seconds, φ = 10000, z1 = 2, and z2 = 0.5 if not explicitly
clarified.

C. Benchmarks

We compare the performance of PopCaching with bench-
marks listed below:
• First In First Out (FIFO) [26]. The cache acts as a

pipe: the earliest stored content is replaced by the new
content when the cache is full.

• Least Recently Used (LRU) [27]. The cache node
maintains an ordered list to track the recent access of
all cached content. The least recently accessed one is
replaced by the new content when the cache is full.

• Least Frequently Used (LFU) [28]. The cache node
maintains an ordered list to track the numbers of access
of all content. The least frequently used one is replaced
by the new content when the cache is full. Note that
LFU may have very poor long-term performance due to

6A comment may be deleted by its owner or administrators. An inaccessible
comment has a unique ID but cannot be downloaded.
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Fig. 6. Cache hit rate under different cache capacity. The percentage number
in brackets is the ratio of the cache capacity to the total number of content,
i.e., s/C.

a cache pollution problem: if a previously popular content
becomes unpopular, LFU may still hold it for a long time,
resulting in inefficient utilization of the cache.

• Least Frequently Used with Dynamic Aging
(LFUDA) [29]. LFUDA is a variant of LFU that
tries to solve the cache pollution problem by maintaining
a cache age counter that punishes the access frequency
of old content.

• Optimal Caching. The cache node runs Belady’s MIN
algorithm [30] that achieves theoretically optimal perfor-
mance with hindsight. Note that Belady’s algorithm is
not implementable in a real system due to the fact that it
needs future information.

D. Performance Comparison
Figure 6 shows the overall average cache hit rates achieved

by PopCaching and the benchmark algorithms under various
cache capacity. As can be seen, PopCaching significantly
outperforms all the other algorithms in all the simulations. In
particular, the performance improvement against the second
best solution exceeds 100% when the cache capacity is small.
This is because the benchmark algorithms does not take the
future popularity of content into account when making the
caching decisions. They consider only the current popularity
of the content which may differ from the future popularity,
thereby causing more cache misses. Moreover, the benchmark
algorithms treat each content independently without trying
to learn from the past experience the relationship between
popularity and the context information. For instance, when
a content is evicted from the local cache, all knowledge about
this content is lost and cannot be used for future decision
making. Instead, PopCaching learns continuously and stores
the learned knowledge into the learning database which can be
utilized in the future. The advantage of PopCaching becomes
greater when the cache capacity is smaller since more careful
caching decisions need to be made. To illustrate the enormous
improvement by adopting PopCaching on reducing the cache
storage requirement, consider a common target cache hit rate
of 0.5. In this case, PopCaching requires a cache capacity of
300 while LFU needs a cache capacity of 3000.

In Figure 7, we plot the cache hit rate versus the date
that a request is initiated in order to show how the caching
performance varies over time. Each point of a curve in the
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Fig. 7. Cache hit rate over time for the first 3 million requests starting from
1 March 2014. Cache capacity is 250 (s = 250). Each point in the figure
represents the percentage of cache hit within the window between itself and
its proceeding point.

figure represents the percentage of cache hit within the time
window between itself and the proceeding point. We draw the
figure for only a time duration of 180 days because afterwards
the cache hit rates of all algorithms converge (except LFU and
LFUDA). Several points are worth noting: (1) On the first day,
all algorithms show similar performance. This is because the
distribution of content popularity is relatively stable during
a single day, thus making it easy to make cache decisions.
Then, the advantage of PopCaching becomes obvious as more
requests arrive. In this time, Popcaching successfully learns
from the large volume of requests and hence makes accurate
popularity predictions. (2) The cache hit rate achieved by
PopCaching shown in this figure is not always increasing.
This is due to the fact that the curve is generated for a single
realization of the request arrival process. When averaging over
a large number of realizations, the expected cache hit rate is
expected to be non-decreasing. Unfortunately, our dataset lacks
a large number of independent realizations and hence, we are
not able to plot such a figure. Nevertheless, Figure 7 is still
useful to illustrate the learning behavior of PopCaching and its
superior performance over the existing solutions. (3) LFU and
LFUDA fail to track the changing trends of content popularity:
the cache hit rate of both algorithms drop rapidly after a few
tens of days. This is because LFU makes caching decisions
using the past popularity of content which becomes outdated
as time goes by. LFUDA alleviates this problem by introducing
a cache age counter but does not completely eliminate it.
In contrast, PopCaching responses quickly to the changes in
popularity distribution, and therefore maintains a steady cache
hit rate.

TABLE I
CACHE HIT RATE UNDER DIFFERENT VALUES OF φ.

φ s = 100 s = 1000 s = 10000
102 37.56 63.73 91.05
103 37.57 63.78 91.05
104 37.52 63.95 91.06
105 37.06 63.99 90.97

Table I shows the impact of choosing different algorithm
parameters on the achievable caching performance for various
cache capacity. As we can see, the cache hit rate does not
significantly change even if different φ is used. This is much
desired in practice since the algorithm is robust to different
system settings.



TABLE II
COMPARISON OF RUNNING SPEED (INCLUDING SIMULATOR OVERHEAD)
UNDER DIFFERENT CACHE CAPACITY. RESULTS ARE SHOWN IN NUMBER

OF THOUSAND REQUESTS PER SECOND.
Capacity (s) PopCaching LRU FIFO LFU LFUDA

100 28.9 1279 1463 24.5 17.3
10000 25.8 725 864 9.37 5.26

Finally, we compare the running speed of PopCaching
with the benchmarks in Table II. In our implementations, all
algorithms are written in pure Python [31] and are single-
threaded. LRU is implemented in ordered dictionary and LFU
in double-linked list with dictionary. All results are measured
on a mainstream laptop with a 2.8GHz CPU. As we can see
in Table II, PopCaching processes more than 20 thousand
requests per second and outperforms both LFU and LFUDA.
This means that PopCaching can be integrated into existing
systems without introducing a significant overhead. Note that
constant time algorithms such as LRU have an obvious ad-
vantage in this comparison, but they may not benefit a content
caching system much since in such a system the bottleneck of
running speed is usually not the caching algorithm.

VIII. CONCLUSION

This paper proposed a novel online learning approach to
perform efficient, and fast cache replacement. Our algorithm
(PopCaching) forecasts the popularity of content and makes
cache replacement decisions based on it. PopCaching does
not directly learn the popularity of each content. Instead, the
algorithm learns the relationship between the future popularity
of a content and the context in which the content is requested,
thus utilizing the similarity between the access patterns of
different content. The learning procedure takes place online
and requires no a priori knowledge of popularity distribution
or a dedicated training phase. We prove that the performance
loss of PopCaching, when compared to the optimal strategy,
is sublinear in the number of processed requests, which
guarantees a fast speed of learning as well as the optimal cache
efficiency in the long term. Extensive simulations with real
world traces also validate the effectiveness of our algorithm,
as well as its insensitivity to parameters and fast running speed.

APPENDIX

A. Some Lemmas

Lemma 1. For any request that falls into hypercube P , the
expected estimation error for that request is upper bounded

by β
√
d

2z2 · 2−
√

2
2 +(1−2z2 )2(z2−

1
2
)l+4(1−2z2−

1
2 )/z1

2lz2 (1−2z2−
1
2 )

for l ≥ 1 and

β
√
d for l = 0, where l is the level of P .

Proof. For l = 0, there is only one hypercube, so the estima-
tion error is bounded by E|M̃k −Mk| ≤ β||x(k′)− x(k)|| ≤
β
√
d. For l ≥ 1, since P (x(k)) is at level l, it contains dz12z2e

samples at level 0, dz122z2e − dz12z2e samples at level 1, ...,
and NP − dz12z2e samples at level li. Let

∑
k′ denotes the

summation over all requests k′ that are in P or P ’s ancestors,
the expected estimation error for reqk is bounded by

E|M̃k −Mk| ≤
∑
k′ β||x(k′)− x(k)||

NP

=β
√
d

dz12z2e+
∑l−1
i=1(dz12(i+1)z2e − dz12i·z2e)2−i/2

+ ...+ (NP − dz12l·z2e)2−l/2
NP

<β
√
d
z12z2 +

∑l−1
i=1(z12(i+1)z2 − z12i·z2)2−i/2 + 4

z12l·z2

=β
√
d · (C1 · 2−z2l + C2 · 2−

1
2 l) (6)

where C1 and C2 are constant numbers that are only related
to system parameters z1 and z2:

C1 =
2z2 · 2−

√
2

2

1− 2z2−
1
2

+
4

z1
, C2 =

1− 2z2

1− 2z2−
1
2

(7)

B. Proof of Proposition 1

Proof. From (6) we know that the upper bound of the expected
estimation error is related to the level of the hypercube, where
higher level leads to smaller error. Consider the worst case
scenario when each coming request always hits the hypercube
with the least level. Let l be the highest level of all hypercubes.
Then there will be dz12z2e samples entering the hypercube
at level 0, 2id(dz12(i+1)z2e − dz12i·z2e) samples entering
hypercubes at level i (1 ≤ i ≤ l − 1), and remaining samples
entering level l.

E
K∑
k=1

|M̃k −Mk|

<β
√
d{dz12z2e+

l∑
i=1

[2id(dz12(i+1)z2e − dz12i·z2e)(C12−z2i + C22−
i
2 )]}

<β
√
d{z12z2 + 1 + C1

2d−z2

1− 2d−z2
+ C2

2d−
1
2

1− 2d−
1
2

+

z1(2z2 − 1)[2dC1
2dl − 1

2d − 1
+ 2d+z2− 1

2C2
2(d+z2− 1

2 )l − 1

2d+z2− 1
2 − 1

]}

≤β
√
d(C3 + |C4|2dl + |C5|2(d+z2− 1

2 )l) (8)
Meanwhile, we also derive the relationship between K and l:

K ≥dz12z2e+

l−1∑
i=1

[2id(dz12(i+1)z2e − dz12i·z2e)]

>[z1(2z2 − 1)− 1]2(d+z2)l (9)
thereby

2l < [z1(2z2 − 1)− 1]−
1

d+z2 ·K
1

d+z2 (10)
then

E
K∑
k=1

(M̃k −Mk)

<β
√
d

(
C3 + |C6|K

d
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(11)

where
C3 = z12z2 + 1 + C1
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The equation shows that the sum of the expected estimation
error is upper bounded by Õ(|C6|K

d
d+z2 + |C7|K

d+z2−1/2
d+z2 ),

and when we choose z2 = 1
2 , it becomes Õ(K

d
d+1/2 ).7

C. Proof of Proposition 2
Proof. In this proof we only consider the case where the
capacity of cache is smaller than the number of all content,
that is s < C. When s ≥ C, we can just cache all content and
always achieve the best cache hit rate, where our conclusion
in this proof still holds but is not meaningful.

Based on our algorithm, we always try to fill the cache
with the s-most popular content. Normally we would choose
{Msort

1 ,Msort
2 , ...,Msort

s }, but due to estimation error, we
may not correctly choose the s-largest values. Assuming we
have chosen {Msort

i1
,Msort

i2
, ...,Msort

is
} based on the esti-

mated sorting below:
M̃sort
i1 ≥ M̃sort

i2 ≥ ... ≥ M̃sort
is ≥ ... ≥ M̃sort

iC (12)
Since the sum of the s-largest elements in a set should be

no less than the sum of any s elements in the set, we have:
s∑
j=1

M̃sort
ij ≥

s∑
i=1

M̃sort
i (13)

According to (4) and M̃sort
i ≥ Msort

i − ∆M , we
know

∑s
i=1 M̃

sort
i ≥

∑s
i=1(Msort

i − ∆M) ≥ (1 −
f(s))

∑C
i=1M

sort
i − s · ∆M , which intuitively means that

we can always find s elements in {M̃sort
i1

, M̃sort
i2

, ..., M̃sort
iC
}

where the sum of them is at least (1 − f(s))
∑C
i=1M

sort
i −

s ·∆M . Combining this with (13), we have
s∑
j=1

M̃sort
ij ≥

s∑
i=1

M̃sort
i ≥ (1−f(s))

C∑
i=1

Msort
i −s∆M (14)

At each time period (e.g. mφ < k ≤ mφ + φ), each
corresponding content of {Msort

i1
,Msort

i2
, ...,Msort

is
} is cached

either before this time period or after its first cache miss.
Hence we bound the worst case cache hit rate during each
time period as

1

φ

mφ+φ∑
k=mφ+1

Yk(c(k)) =

∑s
j=1bMsort

ij
∆t− 1c∑C

j=1M
sort
j ∆t

≥
(1− f(s))

∑C
j=1M

sort
j − 2s(∆M + 1/∆t)∑C

j=1M
sort
j

=(1− f(s))− 2s ·∆M∑C
j=1M

sort
j

− 2s

φ
(15)
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