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Abstract—We study the problem of interference management
in large-scale small cell networks. Each user equipment (UE)
needs to determine in a distributed manner when and at what
power level it should transmit to its serving small cell base
station (SBS) such that a given network performance criterion
is maximized subject to minimum throughput requirements by
the UEs. First, we propose a distributed algorithm for the UE-
SBS pairs to find a subset of weakly interfering UE-SBS pairs,
namely the maximal independent sets (MISs) of the interference
graph in logarithmic time (with respect to the number of UEs).
Then we propose a novel problem formulation which enables UE-
SBS pairs to determine the optimal fractions of time occupied
by each MIS in a distributed manner. We analytically bound the
performance of our distributed policy in terms of the competitive
ratio with respect to the optimal network performance, which
is obtained in a centralized manner with NP (non-deterministic
polynomial time) complexity. Remarkably, the competitive ratio
is independent of the network size, which guarantees scalability
in terms of performance for arbitrarily large networks. Through
simulations, we show that our proposed policies achieve signifi-
cant performance gains (up to 390%) over the existing policies.

I. INTRODUCTION

Dense deployment of low-cost heterogeneous small cells
(e.g. picocells, femtocells) has become one of the most ef-
fective solutions to accommodate the exploding demand for
wireless spectrum [1]. The success of it depends crucially
on interference management by the small cells. Efficient
interference management in distributed large-scale small cell
networks is more challenging [1] due to the lack of central
coordinators, compared to that in traditional cellular networks.

In this work, we propose a novel framework for designing
interference management policies in the uplink of small cell
networks, which specify when and at what power level each
user equipment (UE) should transmit1. Our proposed design
framework and the resulting interference management policies
fulfill all of the following three important requirements. First,
effective policies should deal with significant heterogeneity of
small cell networks, which is caused by the differences in cell
sizes (e.g. pico/femtocells), numbers of UEs served, through-
put requirements by the UEs and network performance criteria.
Second, effective policies should avoid strong interference
among neighboring cells, while exploiting the weak inter-
ference among non-neighboring cells by spatial reuse. The
proposed policies achieve interference avoidance and spatial
reuse by scheduling maximal independent sets (MISs)2 of the

1Although we focus on uplink transmissions in this paper, our framework
can be easily applied to downlink transmissions.

2Consider the interference graph of the network, where each vertex is a
UE-SBS pair and each edge indicates strong interference between the two
vertices. An independent set (IS) is a set of vertices in which no pair is
connected by an edge. An IS is a MIS if it is not a proper subset of another
IS.

interference graph to transmit in each time slot. Third, the
policies should be computed and implemented in a distributed
manner, and should be scalable, i.e. achieve efficient network
performance with low computational complexity. Next, we
summarize our key contributions.

1. We propose a distributed method for the UEs to determine
a subset of MISs such that each UE belongs to at least one
MIS in the subset. Moreover, the subset can be generated in
logarithmic time (logarithmic in the number of UEs in the
network) for bounded-degree interference graphs 3, which is
significantly faster than the time (linear or quadratic in the
number of UEs) required by existing works [2] [3].

2. Given the computed subsets of MISs, we propose a
distributed algorithm in which each UE determines the optimal
fractions of time occupied by the MISs with only local
message exchange among neighbors in the interference graph.

3. Remarkably, we prove that the proposed distributed
policy achieves a competitive ratio that is independent of the
network size, with respect to the optimal network performance.
Note that the optimal network performance can only be ob-
tained in a centralized manner with global information (e.g. all
the UEs’ channel gains, maximum transmit power levels) and
NP complexity, while our policy is computed in a distributed
manner in polynomial time using only local information.
Moreover, through simulations, we show significant (up to
390%) performance gains over exisiting policies.

The rest of the paper is organized as follows. In Section II
we discuss the related works and their limitations. We describe
the system model in Section III. Then we formulate the
interference management problem in Section IV. We propose
the design framework in Section V, and demonstrate the
performance gain of our proposed policies in Section VI.
Finally, we conclude the paper in Section VII.

II. RELATED WORKS

In this section, we will describe the related works and their
limitations.

A. Distributed Interference Management Based on Power
Control

Policies based on distributed power control, with repre-
sentative references [4]–[11] have been used for interference
management in both cellular and ad-hoc networks. In these
policies, all the UEs in the network transmit at a constant
power all the time (provided that the system parameters remain

3Bounded degree graphs are the graphs whose maximum degree can be
bounded by a constant independent of the size of the graph, i.e. ∆ = O(1).



the same)4. The major limitation of policies based on power
control is the difficulty in providing minimum throughput
guarantees for each UE, especially in the presence of strong
interference. Some works [4], [5], [7] use pricing to mitigate
the strong interference. However, they [4], [5], [7] cannot
strictly guarantee the UEs’ minimum throughput requirements.
Indeed, the low throughput experienced by some users, caused
by strong interference, is the fundamental limitation of such
power control approaches - even the optimal power control
policy obtained by a central controller [12], [13] can be inef-
ficient 5. Since strong interference is very common in dense
small cell deployments (e.g. in offices and apartments where
SBSs are installed close to each other [15]), more efficient
policies are required which can guarantee the individual UEs’
throughput requirements. Also, there exist a different strand of
work based on [16] which proposes a distributed algorithm to
achieve the desired minimum throughput requirement for each
UE. However, these works cannot optimize network perfor-
mance criterion such as weighted sum throughput, minimum
average throughput etc. and hence are suboptimal.
B. Distributed Spatial Reuse Based on Maximal Independent
Sets

An efficient solution to mitigate strong interference is
spatial reuse, in which only a subset of UEs (which do
not significantly interfere with each other) transmit at the
same time. Spatial Time reuse based Time Division Multiple
Access (STDMA) has been widely used in existing works on
broadcast scheduling in multi-hop networks [2], [3], [17]6.
Specifically, these policies construct a cyclic schedule such
that in each time slot an MIS of the interference graph is
scheduled. The constructed schedule ensures that each UE is
scheduled at least once in the cycle.

In terms of performance, STDMA policies [2], [3], [17]
cannot guarantee the minimum throughput requirement of
each UE, and usually adopt a fixed scheduling (i.e. follow a
fixed order in which the MISs are scheduled), which may be
very inefficient depending on the given network performance
criteria. For example, the policies in [3] are inefficient in
terms of fairness. In terms of complexity, for the distributed
generation of the subsets of MISs, the STDMA policies in
[2], [3], [17] require an ordering of all the UEs, and have
a computational complexity (in terms of the number of steps
executed by the algorithm) that scales as O(|V |)) (in [3], [17])
or O(|V ||E|)) (in [2]), where |V | and |E| are the number
of vertices/UEs and the number of edges in the interference
graph, respectively. Hence, in large-scale dense deployments,
the complexity grows superlinearly with the number of UEs,
making the policies difficult to compute. By contrast, our

4Although some power control policies [4], [5], [7] go through a transient
period of adjusting the power levels before the convergence to the optimal
power levels, the users maintain constant power levels after the convergence.

5In the case of average sum throughput maximization given the minimum
average throughput constraints of the UEs, the power control policies are
inefficient if the feasible rate region is non-convex [14] .

6These works [2], [3], [17] do not have the exactly same model as in our
setting. However, these works can be adapted to our model. Hence, we also
compare with these works to have a comprehensive literature review.

proposed distributed algorithm for generating subsets of MISs
does not require the ordering of all the UEs, and has a
complexity that scales as O(log |V |), namely sublinearly with
the number of the UEs, for bounded-degree graphs.7

Finally, the STDMA policies in [2], [3], [17] are designed
for the MAC layer and assume that all the UEs are ho-
mogeneous at the physical layer. In practice, different UEs
are heterogeneous due to their different distances from their
SBSs, their different maximum transmit power levels, etc.
This heterogeneity is important, and will be considered in our
design framework.
C. Distributed Power Control and Spatial Reuse For Multi-
Cell Networks

As we have discussed, the works in the above two categories
either focus on distributed power control in the physical
layer [4], [5], [7] or focus on distributed spatial reuse in the
MAC layer [2], [3], [17]. Similar to our paper, some works
(representative references [18]–[22] ) adopted a cross-layer
approach and proposed distributed joint power control and
spatial reuse for multi-cell networks. However, although these
works schedule a subset of UEs to transmit at the same time,
the subset is not the MIS of the interference graph [20], [21].
For example, the policies in [20], [21] schedule one UE from
each small cell at the same time, even if some UEs are from
small cells very close to each other. In this case, the UEs will
experience strong inter-cell interference. Hence, the works in
[20], [21] cannot perfectly eliminate strong interference from
neighboring cells and exploit weak interference from non-
neighboring cells. Moreover, the works in [18]–[22] cannot
provide minimum throughput guarantees for the UEs.

III. SYSTEM MODEL

A. Heterogeneous Network of Small Cells

We consider a heterogeneous network of K small cells
operating in the same frequency band8 (see Fig. 1), which
represents a common deployment scenario considered in prac-
tice [7]. Note that the small cells can be of different types
(e.g. picocells, femtocells etc.) and thereby belong to different
tiers in the heterogeneous network. Each small cell j has
one SBS, (SBS-j), which serves a set of UEs under a closed
access scenario [7]. Denote the set of UEs by U = {1, ..., N}.
We write the association of UEs to SBSs as a mapping
T : {1, ..., N} → {1, ..,K}, where each UE-i is served by
SBS-T (i). We focus on the uplink transmissions; the extension
to downlink transmissions is straightforward when each SBS
serves one UE at a time (e.g. TDMA among UEs connected
to the same SBS).

Each UE-i chooses its transmit power pi from a compact set
Pi ⊆ R+. We assume that 0 ∈ Pi, ∀i ∈ {1, ..., N}, namely
any UE can choose not to transmit. The joint power profile of

7As will be shown in Theorem 5, for graphs which are not bounded degree
graphs, even a centralized solution based on all the MISs cannot satisfy the
minimum throughput requirements.

8Our solutions will be based on spatial time reuse assuming every UE uses
the same frequency. Our solutions can be extended to spatial frequency reuse,
where we let different MISs operate in non-overlapping frequency bands.
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Figure 1. Illustration of a heterogeneous small cell network.

all the UEs is denoted by p = (p1, ...., pN ) ∈ P , ΠN
i=1Pi.

Under the joint power profile p, the signal to interference and
noise ratio (SINR) of UE-i’s signal, experienced at its serving
SBS-j = T (i), can be calculated as γi(p) =

gijpi
N∑

k=1,k 6=i
gkjpk+σ2

j

,

where gij is the channel gain from UE-i to SBS-j, and σ2
j is

the noise power at SBS j. The UEs do not cooperate to encode
their signals to avoid interference, hence, each UE and its
serving SBS, referred to as UE-SBS pair, treat the interference
from other UEs as white noise. Each UE-i gets the following
throughput [20], ri(p) = log2(1 + γi(p))9.
B. Interference Management Policies

The system is time slotted at t = 0,1,2..., and the UEs are
assumed to be synchronized as in [20]. At the beginning of
each time slot t, each UE-i decides its transmit power pti and
obtains a throughput of ri(pt). Each UE i’s strategy, denoted
by πi : Z+ = {0, 1, ..} → Pi, is a mapping from time t to a
transmission power level pi ∈ Pi. The interference manage-
ment policy is then the collection of all the UEs’ strategies,
denoted by π = (π1, ..., πN ). The average throughput for

UE i is given as Ri(π) = limT→∞
1

T+1

T∑
t=0

ri(pt), where

pt = (π1(t), ..., πN (t)) is the power profile at time t. We
assume the channel gain to be fixed over the considered time
horizon as in [20].

A policy based on power control discussed in Subsection
??, [4] [7] is defined as πconst(t) = p for all t, where
p ∈ P . As we have discussed before, our proposed policy
is based on MISs of the interference graph. The interference
graph G has N vertices (See Fig. 1), each of which is one
of the N UE-SBS pairs. There is an edge between two
pairs/vertices if their cross interference is high (rules for
deciding if interference is high will be discussed in Section
V) and let there be M edges in the graph. Note that to refer to
a vertex we will use UE-SBS pair/UE interchangeably. Given
an interference graph, we write I = {I1, ..., INMIS} as the
set of all the MISs of the interference graph. Let pIj be a
power profile in which the UEs in the MIS Ij transmit at their
maximum power levels and the other UEs do not transmit,

9We use the Shannon capacity here. However, our analysis is general and
applies to the throughput models that consider the modulation scheme used.

namely pk = pmaxk , maxPk if k ∈ Ij and pk = 0
otherwise. Let PMIS = {pI1 , ...,pINMIS } be the set of all
such power profiles. Then π is a policy based on MIS if
π(t) ∈ PMIS for all t and the set of all such policies is
ΠMIS = {π : Z+ → PMIS}.

IV. PROBLEM FORMULATION

A. The Interference Management Policy Design Problem

We aim to optimize a chosen network performance cri-
terion W (R1(π), ...., RN (π)), defined as a function of the
UEs’ average throughput. We can choose any performance
criterion that is concave in R1(π), ...., RN (π). For instance,
W can be the weighted sum of all the UEs’ throughput,
i.e.

∑N
i=1 wiRi(π) with

∑N
i=1 wi = 1 and wi ≥ 0, minimum

average throughput achieved by any user i.e. miniRi(π) etc.
The policy design problem can be then formalized as follows:

Policy Design Problem (PDP)
maxπ W (R1(π), ..., RN (π))

subject to Ri(π) ≥ Rmini , ∀i ∈ {1, ..., N}
The above design problem is very challenging to solve

even in a centralized manner (it is NP-hard [23] when the
performance criterion is sum throughput, even when we re-
strict to policies based on power control πconst). Denote the
optimal value of the PDP as Wopt. Our goal is to propose
distributed interference management policies, that achieve a
constant competitive ratio with respect to Wopt, with the
competitive ratio independent of the network size. We achieve
our goal by focusing on policies based on MISs ΠMIS , among
other innovations that will be described in Section V.

V. DESIGN FRAMEWORK FOR DISTRIBUTED
INTERFERENCE MANAGEMENT

A. Proposed Design Framework

Our proposed design framework (See Fig. 2) consists of four
steps. In Step 1, each UE-SBS pair identifies UE-SBS pairs
which interfere with it strongly. In Step 2, the UE-SBS pairs
determine a subset of MISs in a distributed fashion, such that
each UE-SBS pair belongs to at least one MIS in the subset.
In Step 3, each UE-SBS pair determines the optimal fraction
of time allocated to each MIS found in Step 2 in a distributed
fashion (The optimal fraction depends on the performance
criterion.). In Step 4, UE-SBSs determine the cycle length and
the number of slots taken by each MIS, based on the optimal
fractions of time computed in Step 3. Next, we describe the
four steps in detail.

Step 1. Identification of the interfering neighbors: Each
UE-SBS pair obtains a local view (i.e. its neighbors) of the
interference graph using distributed methods that either use
local measurements of Received Signal Strength (RSS) [24]
or use locations of the UE-SBSs in the geographical proximity
to identify another pair [25] as interfering or not. If a UE-SBS
pair is identified by another pair as interfering, then the two are
connected by an edge in the interference graph. Each UE-SBS
pair is informed by another pair if it identifies it as interfering
through the back-haul network/X2 interface, which is used for
inter-cell interference coordination (ICIC) [26].
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Figure 2. Steps in the Design Framework.

Step 2. Distributed generation of MISs that span all
the UEs: In Step 2, the UE-SBS pairs generate a subset of
MISs in a distributed fashion. It is important that the generated
subset spans all the UEs, namely every UE is contained in
at least one MIS in the subset. Otherwise, some UEs will
never be scheduled. The distributed algorithm is comprised of
two phases: first, distributed coloring of the interference graph
based on [27], and second, extension of the color classes to the
MISs. We assume that all the UEs are synchronized and carry
out their computation simultaneously (i.e. not sequentially).
We now explain the algorithm in detail. The pseudo-code can
be found in Tables II and III given at the end.

Phase 1. Distributed coloring of the interference graph:
The goal of this phase is to let each UE–i choose a color
from C0

i = {1, ...H} ∩ {1, .., di + 1}, such that no neighbors
choose the same color. Here H10 is the maximum number of
colors given to all SBSs at the installation and di is the degree
(number of neighbors in the interference graph) of ith pair.

The distributed coloring works as follows. At the beginning
of each time slot t, each UE-i chooses a color from the set of
remaining colors Cti randomly, and informs its neighbors of
its tentative choice. This information can be transmitted using
the back-haul network/X2 interface. If the tentative choice of
the UE does not conflict with any of its neighbor, then it fixes
and confirms the color choice, informs the neighbors of the
confirmation and will not contend for colors any further in
Phase 1. The neighbors delete the color chosen by i from their
lists Ct+1

j
,∀j ∈ N (i), where N (i) is the set of i’s neighbors.

On the other hand, if there is a conflict then the UE does not
choose that color and repeats the same procedure in the next
time slot. There are dc1 log 4

3
Ne + 1 time slots in Phase 1,

known to the SBSs at installation where c1 is the parameter
given by the protocol. Phase 1 is successful if all the UEs
acquire a color which implies that the set of color classes (i.e.
the set of UEs with the same color) obtained span all the UEs.

Phase 2. Extending color classes to the MISs: Each color
class obtained at the end of Phase 1 is an independent set (IS)
of the graph. In Phase 2, we extend each of these ISs to MISs
and generate additional MISs in this step. Note that after Phase
1, each UE has chosen one color and deleted some colors from
its list. But there may still be remaining colors in its list that
are not acquired by any of its neighbors. The goal of Phase
2 is to utilize these remaining colors. At each time slot in

10The maximum number of colors H should be set to be larger than the
maximum number of UE-SBS pairs interfering strongly with any UE-SBS
pair. The SBSs can determine H according to the deployment scenario. H
in general will also include the number of UEs that use the same SBS who
interfere with each other along with the other neighboring UEs. For example,
H can be 10-15 in an office and can be 3-5 in a residential area.

Phase 2, UE-i chooses each color from the remaining colors
in its list independently with probability c. Each UE-i then
sends this set of its tentative choices to its neighboring UEs,
and receives its neighbors’ choices. For any tentative choice
of color, if there is a conflict with at least one neighbor, then
that color is not fixed; otherwise, it is fixed. At the end of
each time slot, each UE deletes its set of fixed colors from its
list, and transmits this set of fixed colors to its neighbors, who
will delete these fixed colors from their lists as well. Hence,
a UE deletes a particular color, if and only if this UE itself
or some of its neighbors have chosen this color. Based on this
key observation, we can see that if a color is not in any UE’s
list, the set of UEs who have chosen that color is a MIS. If
all the UEs have an empty list, then for any color in the set
{1, ...,H}, the set of UEs with this color is a MIS. There
are dc2 logxNe+ 1 time slots in Phase 2, known to SBSs at
installation, where x = 1

1−(c)H(1−c)H2 , and c2 is the parameter
given by the protocol. We say that Phase 2 is successful, if it
finds H MISs, equivalently, if all the UEs have an empty list
after dc2 logxNe+ 1 time slots.

Example: Fig. 3 shows the interference graph of a network
of 5 UE-SBS pairs. At the start, each UE-SBS pair has a list
of 3 colors, {Red, Yellow, Green} to choose from. At the end
of Phase 1, which runs for P1 = dc1 log 4

3
5e time slots, UEs

2,3 acquire Yellow, UEs 4,5 acquire Red and UE 1 acquires
Green. UEs 2,3 delete all the colors from their list of remaining
colors, as Yellow is acquired by them and Red, Green by their
neighbors. UE 1 also deletes all the colors, since its neighbors
use Yellow and Red, but UE 4(UE 5) has Yellow(Green) color
in its list. At the end of Phase 1, Red color class is MIS, while
Yellow and Green are not. At the end of Phase 2, which runs
for P2 = dc2 logx 5e+ 1 time slots, UE 4 (UE 5) acquires the
remaining color Yellow (Green). At the end of Phase 2, the
color classes Green and Yellow are MISs. Next theorem shows
that the Phase 1 and 2 are successful with a high probability.

Theorem 1. For any interference graph with the maximum
degree ∆ ≤ H−1, the phase 1 and 2 of the proposed algorithm
output a set of H MISs spanning all the UEs in (dc1 log 4

3
Ne+

dc2 logxNe+ 2) time slots with a probability no smaller than
(1− 1

Nc1−1 )(1− 1
Nc2−1 ), where c1, c2 are design parameters

that trade-off run time and the success probability.
Proof 1: The success probability of Phase 1 is high, (1 −
1

Nc1−1 ) (lower bound), (see [27] for detail), here we analyze
Phase 2.

We first show that, if the list of remaining colors given as,
C1ni is empty at n ≥ dc1 log 4

3
Ne + dc2 logxNe + 2 and if

this holds ∀i ∈ {1, ..., N} then the Phase 2 has converged
to a set of H MISs which span all the UEs. Let us assume



1 5

2

3

4
C11

0
 =

 {R,Y,G}

C12
0
 = {R,Y,G}

C14
0
 = {R,Y,G}

C13
0
 = {R,Y,G} C15

0 
=

{R,Y,G}

1 5

2

3

4

C12
P1

= {}

1 5

2

3

4
C13

P1
= {}

C14
P1

= {Y}

C11
P1

= {} C15
P1

= {G}

C12
P1+P2

= {}

C13
P1+P2

= {}

C14
P1+P2

= {}

C11
P1+P2

= {} C15
P1+P2

= {}

A). Before Phase 1 

and Phase 2

B). After Phase 1,

     (Time = P1 time slots).

C). After Phase 2,

     (Time=P1+P2 time slots).

C1
Q

i

List of colors 

remaining 

for UE-i at time slot 

Q

Y/G/R color acquired 

by a UE

Set of colors {R,G},

{R,Y} acquired by a 

UE

{R,Y,G} {Red,Yellow,Green} 

1. Color classes corresponding to 

Y,G are ISs after Phase 1, R is MIS 

after Phase 1.

2. Color classes corresponding to 

R,Y,G are MISs after Phase 2.
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otherwise, i.e. C1ni is empty ∀i ∈ {1, ..., N} however, the set
corresponding to some color h ∈ {1, ...,H}, I ′h is not a MIS.
I
′

h has to be an IS. Assume otherwise, i.e. I
′

h is not an IS,
which implies that there must exist a pair of UEs, i and j,
which are neighbors and are a part of I

′

h. If this is true then
both then both acquired the color h either in the same time
slot or in different time slots, in Phase 1 or 2. In case the
color is acquired in different time slots, then after the first
time slot when either of the UEs in the pair acquires the color
it will transmit the final color choice, h to the neighbors (see
Table II and III) who in turn delete that color. However, if the
color is deleted by the neighbor then it cannot acquire it in the
future thus, ruling out the case that the colors were acquired
in two different time slots. If the color was acquired by the
UEs in the same time slot, then it implies that despite the
conflict in tentative choice the UEs acquire the color which is
not possible (see Table II and III). This shows that I

′

h is an
IS.

Since I
′

h is not maximal then ∃ at least one UE-j 6∈ I
′

k

which can be added to this set without violating independence.
From the assumption, we have C1nj = φ which implies that
the color h was deleted at some stage from the original list
of all the colors either in Phase 1 or 2. The deletion of h was
a result of that color being acquired finally by at least one of
the neighbors k ∈ N (j) since j 6∈ I ′k. In that case, j cannot
acquire h as it will violate the independence property.

Next, we show that indeed the list of all colors available
C1ni is empty at the end of Phase 2 with a high probability.
Let Un correspond to the number of UEs which have a non-
empty list at the beginning of time slot n and, let Tn(Un)
correspond to the total time needed before all the UEs have
an empty list. The probability that a UE at time slot n with
a non-empty list will have an empty list in next time slot is
always greater than cH(1− c)H2

. This can be explained as, if
the UE chooses all the colors in the list assuming (worst case
H number of colors remain) and all the neighbors (worst case
H neighbors) do not choose any color, then all the colors in
the UE’s list will be deleted. From this, we get E(Un+1) ≤
(1− cH(1− c)H2

)Un = 1
xU

n and Tn(Un) = 1+Tn(Un+1).
Assuming that the Phase 2 will start with N UEs whose list
are non-empty (worst case) and from [28] we get P (Tn(N) ≥
dc2 logxNe) ≤ 1

Nc2−1 . This gives the lower bound on success

probability of Phase 2 and thereby the result in the Theorem.
(Q.E.D)

Theorem 1 characterizes the performance of our proposed
algorithm, in terms of the run time of the algorithm and the
lower bound of the success probability. When the parameters
c1 and c2 are chosen to be large, the lower bound of the success
probability increases at the expense of a longer run time. When
the maximum degree of the interference graph is larger, we
need to set a higher H , which results in a longer run time. This
is reasonable, because it is harder to find coloring and MISs
when the number of interfering neighbors is higher. Finally,
we can see that the lower bound of the success probability
is very high even under smaller c1 and c2, especially if the
number of UEs is large. Note that the exact success probability
should depend on the probability c, while the lower bound in
Theorem 1 does not.

Step 3. Distributed computation of the optimal fractions
of time for each MIS: Let the set of MISs generated in Step 2
be {I ′1, ..., I

′

H}. Here, the UE-SBS pairs compute the fractions
of time allocated to each MIS in a distributed manner.

Note that when an MIS is scheduled, the UEs in this MIS
transmit at their maximum power levels, and the other UEs
do not transmit. Define Rki as the instantaneous throughput
obtained by UE i in the MIS I

′

k, which can be calculated

as: log2(1 +
giT (i)p

I
′
k
i∑N

r=1,r 6=i grT (i)p
I
′
k
r +σ2

T (i)

), where pI
′
k
i = pmaxi if

i ∈ I
′

k and p
I
′
k
i = 0 otherwise. To determine Rki , the UE

needs to know the accumulative interference it experiences
when transmitting in I

′

k. This can be done by having an initial
cycle of transmissions by the MISs, i.e. UEs in MISs, in the
order of the indices (i.e. the order of their colors), in which
the SBSs of the UEs can measure the received SINR.

From now on, we assume that the network performance
criterion W (y) is concave in y and is separable, namely
W (y1, ...yN ) =

∑N
i=1Wi(yi). Examples of separable criteria

include weighted sum throughput and proportional fairness.
Note that our framework can be extended to deal with min-
imum average throughput, although it is not separable (see
the discussion in Appendix at the end). Then the problem of
computing the optimal fractions of time for the MISs becomes:



Coupled Problem (CP)

max
α

∑N

i=1
Wi(

∑H

k=1
αkR

k
i )

subject to
∑N

i=1
αkR

k
i ≥ Rmini ,∀i ∈ {1, ..., N}

H∑
k=1

αk = 1, αk ≥ 0,∀k ∈ {1, ..,H}

Since each UE i knows only its own utility function Wi and
its minimum throughput requirement Rmini , it cannot solve
the above problem by itself directly. To be able to solve the
problem, each UE-i computes a local estimate of the fractions
of time allocated to all the MISs (including those that do not
include UE-i). Denote UE-i’s local estimate of the fraction
of time allocated to MIS I

′

k by βki . We impose an additional
constraint that all the UEs’ local estimates are the same, such
that they reach to consensus. Such a constraint is still global,
because any two UEs, even when they are not neighbors and
far away from each other, need to have the same local estimate.
Hence, global message exchange among any pair of UEs is
needed to solve CP, which is not allowed.

Now we reformulate the CP into a decoupled problem
(DP) that involves only local coupling among the neighbors
and that can be solved by Alternating Direction Method of
Multipliers (ADMM) [29]. If UE i and l are connected by
an edge (i, l) then for each set I

′

k define θk(i,l)i = βki and
θk(i,l)l = −βkl . Note that these auxiliary variables are intro-
duced to formulate the problem into the ADMM framework
[29]. Define a polyhedron for each i, Ti = {βi|s.t. 1tβi =
1,βi ≥ 0, R

′

iβi ≥ Rmini }, here βi = (β1
i , ..., β

H
i ) and

Ri = (R1
i , ..., R

H
i ) and ()

′
corresponds to the transpose.

Let β = (β1, ..., βN) ∈ T , where T =
∏N
i=1 Ti and∏

corresponds to the Cartesian product of the sets. Also,
let βk = (βk1 , ..., β

k
N ), ∀k ∈ {1, ..,H}. Define another

polyhedron Θk
(i,l) = {(θk(i,l)i, θ

k
(i,l)l) : θk(i,l)i + θk(i,l)l =

0, −1 ≤ θk(i,l)s ≤ 1,∀s ∈ {i, l}}, Θk =
∏

(i,l)∈E Θk
(i,l)

here E = (e1, ..eM ) is the set of all the M edges in the
interference graph. A vector θk ∈ Θk is written as θk =
(θke1,z(e1), θ

k
e1,t(e1), .., θ

k
eM ,z(eM ), θ

k
eM ,t(eM )), here z(ei), t(ei)

correspond to the vertices in the edge, ei. Similarly define,
θ = (θ1, ..., θH) ∈ Θ , where Θ =

∏H
k=1 Θk.

Decoupled Problem (DP)
minβ∈T ,θ∈Θ−

∑N
i=1Wi(Ri

′
βi)

subject to Dkβk − θk = 0, ∀k ∈ {1, ..,H}
Here, Dk ∈ R2M×N , is a matrix in which each row has

exactly one non-zero element which is 1 or −1. Each element
of the matrix, Dk

vj is evaluated as follows, the index v can be
uniquely expressed in terms of quotient q and the remainder
w as v = 2q + w, and if j 6= z(eq+1), j 6= t(eq+1) then
Dk
vj = 0. If w = 1, j = z(eq+1), then Dk

vj = 1 else if w =
0, j = z(eq+1) then Dk

vj = 0. Also, if w = 0, j = t(eq+1),
then Dk

vj = −1 else if w = 1, j = t(eq+1) then Dk
vj = 0.

Theorem 2: For any connected interference graph, the
coupled problem is equivalent to the decoupled problem.

Proof 2: The two problems which are introduced to transit
from CP to DP are,

Global Primal Problem (GPP)
max

∑H
k=1Wi(

∑N
i=1 β

k
i R

k
i )

subject to
∑H
k=1 β

k
i R

k
i ≥ Rmini ,∀i ∈ {1, ..., N}∑H

k=1 β
k
i = 1, ∀i ∈ {1, ..., N}

βki = βkl , ∀i 6= l,∀k ∈ {1, ...,H},
βki ≥ 0, ∀i ∈ {1, ..., N},∀k ∈ {1, ...H}

The second problem, Local Primal Problem (LPP) is the
same as GPP except we choose a subset of the constraints from
the above problem. Basically, instead of an equality constraint
between the UE’s estimate and every other UE in the network,
we only keep the equality constraints between the UE and its
neighbors, i.e. βki = βkl , ∀k ∈ {1, ...,H},∀l ∈ N (i). This is
formally stated below:

Local Primal Problem (LPP)
max

∑H
k=1Wi(

∑N
i=1 β

k
i R

k
i )

subject to
∑H
k=1 β

k
i R

k
i ≥ Rmini ,∀i ∈ {1, ..., N}∑H

k=1 β
k
i = 1, ∀i ∈ {1, ..., N}

βki = βkl , ∀l 6∈ N (i),∀k ∈ {1, ...,H},
βki ≥ 0, ∀i ∈ {1, ..., N},∀k ∈ {1, ...H}

To show that problems CP and GPP are equivalent, we need
to show that from β∗ = (β∗1, .., β

∗
N ), an optimal argument

of GPP, we can obtain an optimal argument of CP, i.e. α∗

and vice versa. Since β∗ is the optimal value (assuming
feasibility) we know that β∗i = β∗j (component-wise) holds
∀i, j ∈ {1, ..., N}.

a).Let α
′

= β∗i . α
′

satisfies the constraints in CP. The
objective of CP at α

′
attains the optimal value of GPP. We

need to establish that α
′

is indeed the optimal argument of
CP. Assume that α

′
is not the optimal value, then there exists

another α∗ which is indeed the optimal. Next, using α∗, we
can obtain another β

′
as follows, β

′

1 = α∗and β
′

i = β
′

1, ∀i ∈
{1, ..., N}. The objective of GPP at β

′
should be higher than

β∗ which contradicts β∗ being the optimal argument. Note that
if either of CP or GPP is infeasible then the other problem can
be shown to be infeasible as well. On the same lines we can
show that from an α∗ we can obtain β∗ as well.

b). Let α∗ be the optimal solution to CP, and define β
′′

a
solution to GPP as follows. Let β

′′

1 = α∗ and β
′′

i = β
′′

j , ∀j 6=
i and since α∗ satisfies the constraints of CP, i.e. it is feasible,
implies that β

′′
as well satisfies constraints of GPP. We want

to show that β
′′

is the optimal value as well, assume that it is
not and there exists an argument β∗ for which the objective
takes a higher value. If this is the case then, from β∗ we
can construct a α

′
as in part a). which, if β∗ takes a higher

value than β
′′

, takes a higher value than α∗ thus, contradicting
optimality.

To show that GPP and LPP are equivalent, we use the
following fact, since LPP consists of a subset of the con-
straints then the solution of LPP is an upper bound of the
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Figure 4. Problems used to transit from the Coupled Problem (CP) to
Decoupled Problem (DP).

solution to GPP. We need to show that the gap between
the solution of LPP and GPP is always 0. Note that for an
optimal solution of LPP, γ∗ = (γ∗1 , .., γ

∗
N ) we know that

γ∗i = γ∗j ∀j ∈ N (i) (component-wise). If we can show
that γ∗i = γ∗j ∀j ∈ {1, ..., N} then LPP and GPP will be
equivalent, since it will also satisfy all the constraints of
GPP. Assume that this does not hold then ∃ i, j such that
γ∗i 6= γ∗j . Since, the interference graph is connected ∃ a path
i → j = {i1, ..., is} which implies, γ∗i = γ∗i1 ... = γ∗j . This
leads to a contradiction, thereby establishing the claim.

Lastly, to show that DP is equivalent LPP. Given γ∗, define
κ = γ∗ and a θ = (θ1, ..., θH) to satisfy Dkκk − θk =
0, ∀k ∈ {1, ..,H}, where κk = (γ∗,k1 , .., γ∗,kN ). It can be
shown using the same approach as we did for GPP and CP
that (κ,θ) is indeed optimal argument for DP. Assume that
(κ,θ) is not the optimal solution then we know that there
exists (κ∗,θ∗) for which the objective in DP takes a higher
value. If this is the case, let us define γ

′
= κ∗, here γ

′

satisfies the constraints in LPP. Also, since the objective in
DP at (κ∗,θ∗) takes a higher value than that at (κ,θ), this
yields that the objective in LPP at γ

′
should take a higher

value than that at γ∗, which contradicts optimality of γ∗. On
the same lines, it can be easily shown that from (κ∗,θ∗) we
can construct the optimal solution γ∗ of the LPP. This, will
establish equivalence between LPP and DP. Hence, all the four
problems are equivalent. This is shown in Fig. 4.

(Q.E.D)
The above theorem is important, because it shows that the

CP, which cannot be solved without global information and
global message exchange, is now transformed into an equiva-
lent problem, DP which can be solved by ADMM with local
message exchange. We denote the optimal solution to the DP
by WG

distributed and corresponding optimal argument, i.e. frac-
tions of time allocated to the MISs as γ∗ = (γ∗,1, .., γ∗,H).
We solve the DP by ADMM briefly described next (more
detail in Table I at the end), and prove the rate of convergence,
namely how fast the error from the optimal solution WG

distributed
decreases as the number of iterations increase.

We associate with each constraint Dkβk − θk = 0
a price vector which we denote as follows,
λk = (λke1z(e1), λ

k
e1t(e1), ..., λ

k
eMz(eM ), λ

k
eM ,t(eM )). We

can write the augmented Lagrangian for DP as follows,
Ly(β, θ, λ) = −

∑N
i=1Wi(Ri

′
βi) +

∑H
k=1(λ

k)
′
(Dkβk −

θk) + y
2

∑H
k=1 ||(Dkβk − θk)||2, here λ = (λ1, .., λH).

The ADMM procedure relies on computing the optimal vector

βi(t) = (β1
i (t), ..., βHi (t)), by each UE-i in the current time

slot t given the price variables and auxiliary variables at time
t−1, i.e. λkei(t−1) and θkei(t−1)∀k ∈ {1, ...,H}, ∀e ∈ Ẽ(i),
here Ẽ(i) is the set of edges with UE-i as a vertex.
Then, the price variable λkei(t − 1) and auxiliary variable
θkei(t − 1) is updated parallelly by each UE-i based on
the βki (t) and the neighbor j’s βkj (t), here e = (i, j),
∀e ∈ Ẽ(i), ∀k ∈ {1, ..,H}. This iteration of updating βi(t)
and price, auxiliary variables is repeated P times. DP is
feasible if the set of vectors satisfying the constraints in DP
is non-empty.

Theorem 3: If DP is feasible, then the ADMM algorithm
in Table I converges to the optimal value WG

distributed with a
rate of convergence O( 1

P ).
Proof 3: We only need to show that the assumptions in

[29], namely the feasibility of DP, along with compactness
of T ,Θ to ensure convergence at rate O( 1

P ). Both T ,Θ
are closed and bounded polyhedron implying that they are
compact. (Q.E.D)

Step 4. Determining the cycle length and transmission
times: MISs are scheduled in cycles in the order of their
indices, with the numbers of slots allocated in a cycle propor-
tional to the optimal fractions of time, γ∗ = (γ∗,1, .., γ∗,H).
B. Performance Guarantees for Large Networks and Proper-
ties of Interference Graphs

In this subsection, we provide performance guarantees for
our proposed framework described in Subsection V-A. Specif-
ically, we prove that the network performance, WG

distributed,
achieved by the proposed distributed algorithm has a constant
competitive ratio with respect to the optimal value, Wopt, of
the PDP. Moreover, we prove that the competitive ratio does
not depend on the network size. Our result is strong, because
the PDP is NP-hard and requires global information to solve,
while our proposed framework requires the UEs to have only
local information based message exchange, and converges in
polynomial time.

Before characterizing the competitive ratio analytically, we
define some auxiliary variables. Define the upper and lower
bounds on the UEs’ maximum transmit power levels and
throughput requirements as, 0 < pmaxlb ≤ pmaxi ≤ pmaxub ,∀i ∈
{1, ..., N} and, 0 < Rminlb ≤ Rmini ≤ Rminub ,∀i ∈ {1, ..., N}
respectively. Let Dij is the distance between UE i and SBS
j. Define upper and lower bounds on the distance between
any UE and its serving SBS and the noise power at the
SBSs as, 0 < Dlb ≤ DiT (i) ≤ Dub,∀i ∈ {1, ..., N} and,
σ2
lb ≤ σ2

j ≤ σ2
ub,∀j ∈ {1, ...,K} respectively. We assume that

the channel gain is gij = 1
(Dij)np

, np is the path loss exponent.
Definition (Weak Non-neighboring Interfer-

ence): The interference graph G exhibits ζ Weak
Non-neighboring Interference (ζ-WNI) if for each UE i
the maximum interference from its non-neighbors is bounded,
i.e.

∑
j 6∈N (i),j 6=i gjT (i)p

max
j ≤ (2ζ − 1)σ2

ub, ∀i ∈ {1, ..., N}.

Define ∆max =
log2(1+

pmaxlb
(Dub)np2ζσ2

ub

)

Rminub

−1. Then we state the
theorem for network performance criterion, sum throughput.



Theorem 4: For any interference graph, if the maximum
degree ∆ ≤ ∆max and it exhibits ζ-WNI then, our proposed
framework of interference management described in Subsec-
tion V-A achieves a performance WG

distributed ≥ Γ ·Wopt, where
Γ =

Rminub

log2(1+
pmax
ub

(Dlb)npσ2
lb

)
is the constant competitive ratio, which

is independent of the network size.
Proof 4: Here, we need to show three things,
i). if ∆ ≤ ∆max then the distributed policy yields a feasible

solution,
ii). the size of any MIS is ≥ N

∆+1 , thereby using this to
show that the distributed policy, if feasible will yield a network
performance of at least N

∆+1 log2(1 +
pmaxlb

(Dub)np2ζσ2 ) and
iii). the upper bound on the network performance, sum

throughput here is N log2(1 +
pmaxub

(Dlb)npσ2 ).
i). In the Phase 1 of the algorithm the maximum number

of colors used is ∆ + 1, since each UE selects colors from
subset of {1, ...,H} ∩ {1, ..., di + 1}. The first ∆ + 1 output
MISs, {I ′1, ..., I

′

∆+1} span all the UEs in the network. If the
fraction of time assigned to each of these ∆ + 1 MISs is,
α
′

k =
Rminub

log2(1+
pmax
lb

(Dub)np2ζσ2
ub

)
, ∀k ∈ {1, ..,∆ + 1} then such

an assignment satisfies the constraint that sum of fractions
assigned to all the colors cannot be more than 1, i.e. since
∆ ≤ ∆max =⇒ (∆ + 1)

Rminub

log2(1+
pmax
lb

(Dub)np2ζσ2
)
≤ 1.

Using the fact that network exhibits ζ−WNI we can write
the minimum instantaneous throughput that can be obtained
by UE-i as, log2(1 +

pmaxi

(DiT (i))np2ζσ2
ub

), and minimum instan-

taneous throughput of any UE as, log2(1 +
pmaxlb

(Dub)np2ζσ2
ub

).

Thus, given the fractions assigned to the MISs, α
′

k =
Rminub

log2(1+
pmax
lb

(Dub)np2ζσ2
ub

)
, ∀k ∈ {1, ..,∆ + 1}, which span all

the UEs. each UE i’s throughput requirement is satisfied,
,

Rminub

log2(1+
pmax
lb

(Dub)np2ζσ2
ub

)
log2(1 +

pmaxi

(DiT (i))np2ζσ2
ub

) ≥ Rminub .

ii). Assume that ∃ an MIS whose size is S < N
∆+1 . Each

UE in the MIS can exclude a maximum of ∆ UEs from being
included in the MIS. This implies that S(∆ + 1), represents
the total number of UEs excluded and the UEs in the MIS
which put together should exceed N . Since this is not the case
here, the contradiction implies that S ≥ N

∆+1 . This combined
with minimum instantaneous throughput of any UE, we get
the lower bound N

∆+1 log2(1 +
pmaxlb

(Dub)np2ζσ2
ub

),for our policy.
iii). The upper bound on the optimal network perfor-

mance is obtained by summing maximum instantaneous
throughput of any UE log2(1 +

pmaxub

(Dlb)npσ2
lb

) for all UEs,

N log2(1 +
pmaxub

(Dlb)npσ2
lb

). Computing the ratio of the lower

bound of proposed scheme N
∆+1 log2(1 +

pmaxlb

(Dub)np2ζσ2 ) and

N log2(1 +
pmaxub

(Dlb)npσ2 ), we get
log2(1+

pmaxlb
(Dub)np2ζσ2

)

(∆+1) log2(1+
pmax
ub

(Dlb)npσ2
)

which

is no less than, Γ =
Rminub

log2(1+
pmax
ub

(Dlb)npσ2
)

since ∆ ≤

∆max. (Q.E.D)

Length = 20 m
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= 2 m

5 m 5 m

Figure 5. Illustration of the setup used in Section VI.
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196 %
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Figure 6. Comparing minimum average throughput achieved by proposed
policy with state of the art for large networks.

Note that the analytical expression of competitive ratio, Γ
does not depend on the size of the network. The bound on
maximum number of neighbors ∆max can be interpreted as
a sufficient condition to guarantee the minimum throughput
requirement of each UE. Our results are derived under the
conditions that the interference graph has a maximum de-
gree bounded by ∆max, and that the interference from non-
neighbors is bounded (i.e. ζ−WNI). Note that these do not
restrict the size of the network, we will explain this with an
example next. Also, see that the competitive ratio, Γ holds
as long as conditions in the theorem are satisfied and it does
not explicitly depend on the rule used for constructing the
interference graph.

Example: Consider a layout of SBSs in a K × K square
grid, i.e. K2 SBSs with a distance of 5m between the nearest
SBSs. Assume that each UE is located vertically below its
SBS at a distance of 1 m. Fix the parameters pmaxi = 100 mW,
σ2
i = 3 mW, Rmini = 0.1bits/s/Hz, ∀i ∈ {1, ..,K2}, np = 4.

We construct the interference graph based on the distance rule
[30], namely there is an edge between two pairs if the distance
between their SBSs exceeds 6m, which gives us the maximum
degree ∆ = 4. We can also verify that the interference graphs
under any number K2 of SBSs exhibit ζ-WNI with ζ = 0.15
and ∆ < ∆max, where ∆max = 48. Given ∆ = 4 and ζ =
0.15, from Theorem 4, we get the performance guarantee of
0.17 for any network size K2. Note that the number 0.17 is
a performance guarantee, and that the actual performance is
much higher compared to the performance guarantee as well
as those achieved by state-of-the-art policies (see Section VI).
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Figure 7. Comparing average throughput per UE achieved by proposed policy
with state of the art for large networks.

VI. ILLUSTRATIVE RESULTS

We evaluate our proposed policy for a large network for
performance criterion, minimum average throughput achieved
by any UE and average throughput per UE We compare our
policy with the optimal centralized constant power control pol-
icy [23], distributed MIS STDMA-2 [2] and distributed Power
Matched Scheduling (PMS) [20]. We do not compare with
distributed constant power control policies [4] [7], because
their performance is upper bounded by the optimal centralized
power control [23]. Also, we do not compare with distributed
MIS STDMA-1 as the transmission slots assignment in it is
unfair in compairson to MIS STDMA-2, hence it is bound to
have a lower performance.

Consider the uplink of a femtocell network in a building
with 12 rooms adjacent to each other. Fig. 5 illustrates 3 of
the 12 rooms with 3 UEs in each room. Each room has a
length of 20 meters. In each room, there are P uniformly
spaced UEs who transmit to their corresponding SBS which
is installed on the left wall of the room at a height of 2m.
Based on the path loss model in [31], the channel gain from
each SBS i to a UE j is 1

(Dij)2∆nij , where ∆ = 100.25 is
the coefficient representing the loss from the wall, and nij is
the number of walls between UE i and SBS j. Each UE has
a maximum transmit power level of 50 mW and a minimum
throughput requirement of Rmini = 0.025 bits/s/Hz and the
noise power at each receiver is 10−11mW. Here, we consider
that the UEs use a distance based threshold rule as in Section
V-B with Dth = 30 m. This results in interference graphs
which connects all the UE-SBS pairs within the room and in
the adjacent rooms. We vary the number P of UEs in each
room from 5 to 9 and compare the performance in Fig. 6.
Note that the optimal centralized constant power policy cannot
satisfy the feasibility conditions for any number of UEs in
each room. Therefore, only the performance of distributed MIS
STDMA-2 and distributed PMS is shown in Fig. 6 and Fig. 7.
We can see the performance gain of our proposed policy can
be up to 390%. Note that since the number of UEs is large a
comparison with the PDP (which is NP-hard) is not possible.

Table I
ADMM UPDATE METHOD FROM STEP 3 IN SUBSECTION V-A, FOR UE i

Initialization: βi(0) = βinit
i ,βinit

i ∈ T i and it can be chosen arbitrarily
and θkei(0) = θinit, ∀k ∈ {1, ..., H},∀e ∈ Ẽ(i), θinit ∈ Θk

e and Ẽ(i)
is the set of edges which have i as an end point and set λkei(0) = 0,
∀e ∈ Ẽ(i) ,∀k ∈ {1, .., H}
For t=0 to P-1
βi(t+ 1) = arg minβi∈T i

−(Wi(R
′
iβi)−∑H

k=1

∑
e∈Ẽ(i)

(
λkei(t)D

k
eiβ

k
i + y

2
(Dk

eiβ
k
i − θkei(t))2

)
βi(t+ 1) is transmitted to all the interfering neighbors, N (i).
λkei(t) is transmitted to the neighbor with the edge e,
∀k ∈ {1, ..., H}and ∀e ∈ Ẽ(i)

Update ∀k ∈ {1, ..., H} and ∀e ∈ Ẽ(i)

λkei(t+ 1) = 1
2

(λkei(t) + λkej(t))− y
2

(
Dk

eiβ
k
i (t+ 1)+

Dk
ejβ

j
i (t+ 1)

)
, here j is the other end point of e.

θkei(t+ 1) = 1
y

(λkei(t+ 1)− λke,i(t)) +Dk
eiβ

k
i (t+ 1)

end

VII. CONCLUSION
We propose a framework for distributed interference man-

agement in large-scale small cell networks, in which each UE
has only local knowledge about the network and communicates
only with its interfering neighbors. First, we propose a novel
distributed algorithm for the UEs to generate a set of MISs
that span all the UEs. The distributed algorithm for generating
MISs requires O(logN) steps (which is much faster than
state-of-the-art) before it converges to the set of MISs with
a high probability. Second, we reformulate the problem of
determining the optimal fractions of time allocated to the
MISs in a novel manner such that the optimal solution can
be determined by a distributed algorithm based on ADMM.
Remarkably, we prove that the proposed policy can achieve a
constant competitive ratio with respect to the policy design
problem which is NP-hard. Our simulations show that our
policy can achieve large performance gains (up to 390%).

APPENDIX

Discussion on minimum average throughput: We now
discuss as to how the proposed framework can be extended
to incorporate inseparable function like minimum average
throughput. The coupled problem with minimum average
throughput objective is restated below:

Coupled Problem (CP)

maxα min
i∈{1,..,N}

Wi(

H∑
k=1

αkR
k
i )

subject to
H∑
k=1

αkR
k
i ≥ Rmini , ∀i ∈ {1, ...N}

H∑
k=1

αk = 1, αk ≥ 0, ∀k ∈ {1, ...,H}

Transforming the above problem into an equivalent problem
with auxiliary variable t is given as



Table II
GENERATING MISS IN A DISTRIBUTED MANNER, ALGORITHM FOR UE i

Initialization: Txitent = φ, Txifinal = φ, tentative and final choice
of UE i, RxN (i)

tent = φ ,RxN (i)
final = φ tentative and final choice

made by the neighbors, C0
i = {1, ..., H} ∩ {1, .., di + 1} the current

list of subset of available colors, Ci = φ, list of colors used by i, ,
Fi

colored = φindicator if i has acquired a color, C10i = {1, ..., H},
the current list of all available colors
for n = 0 to dc1 log 4

3
Ne

Txitent = φ, Txifinal = φ
if(Fi

colored = φ)
Txitent = rand{Cn

i }, rand represents randomly select
a color and inform the neighbors about it.

RxN (i)
tent = {Txktent, ∀k ∈ N (i)}
If(Txitent 6= RxN (i)

tent (j), ∀j ∈ N (i)), UE-i checks if there
is a conflict with any of the neighbor’s choice

Txifinal = Txitent, Ci = {Txifinal},if no conflict then
UE-i transmits its final color choice to the neighbors,

else
Txifinal = φ

end
end
RxN (i)

final = {Txkfinal,∀k ∈ N (i)}
Cn+1

i = Cn
i ∩ {RxN (i)

final ∪ Txifinal}
c

C1n+1
i = C1ni ∩ {RxN (i)

final ∪ Txifinal}
c

if(Txifinal 6= φ)
Fi

colored = 1
end
end

Table III
PHASE 2 OF THE DISTRIBUTED MIS GENERATION

Phase 2-Initialization: Txset
tent,i = φ,Txset

final,i = φ, the set of tentative
and final colors chosen by i,Rxset

tent,i = φ, Rxset
final,i = φ, the set of

tentative and final colors chosen by the neighbors,x = 1

1−(c)H (1−c)H
2

for n = dc1 log 4
3
Ne+ 1 to dc1 log 4

3
Ne+ dc2 logxNe+ 1

Txset
tent,i = φ,Txset

final,i = φ,
for m = 1 to |C1ni |
with probability c, Txset

tent,i(m) = C1ni (m), randomly selecting and
informing the neighbors about tentative choice

with probability 1− c, Txset
tent,i(m) = φ

end
Rxset

tent,i = ∪k∈N (i)Txset
tent,k, set of tentative color choices of

the neighbors of i
for r = 1 to |Txset

tent,i|
If(Txset

tent,i(r) 6= Rxset
tent,i(j)∀j ∈ N (i) )

Txset
final,i(r) = Txset

tent,i(r)

else
Txset

final,i(r) = φ

end
Ci = Ci ∪ Txset

final,i
Rxset

final,i = ∪k∈N (i)Txset
final,k, set of final color choices of

the neighbors of i
C1n+1

i = C1ni ∩ {Rxset
final,i ∪ Txset

final,i}
c

end

maxα,t t

subject to Wi(

H∑
k=1

αkR
k
i ) ≥ t, ∀i ∈ {1, ..., N}

H∑
k=1

αkR
k
i ≥ Rmini , ∀i ∈ {1, ...N}

H∑
k=1

αk = 1, αk ≥ 0, ∀k ∈ {1, ...,H}

To decouple the above problem, we introduce local variables
for each UE i given as,{β1

i , ..., β
H+1
i }. Now we state a

problem which we claim is equivalent to CP,(the proof to this
claim is very similar to the proof of Theorem 2 and we will
highlight this fact in the proof clearly).

P1

maxβ

N∑
i=1

βH+1
i

subject to Wi(

H∑
k=1

βki R
k
i ) ≥ βH+1

i , ∀i ∈ {1, ..., N}

H∑
k=1

βki R
k
i ≥ Rmini , ∀i ∈ {1, ...N}

H∑
k=1

βki = 1, βki ≥ 0, ∀k ∈ {1, ...,H},∀i ∈ {1, ..., N}

βki = βkj ,∀j ∈ N (i),∀k ∈ {1, ...,H + 1}

Here, β = (β1, .., βN ), with βi = (β1
i , ..., β

H+1
i ),∀i ∈

{1, ..., N}. Now, given the two problems CP and the problem
P1 are equivalent, we focus on solving P1. P1 can be changed
to a problem similar to DP. To do that we introduce some
additional variables similar to the ones introduced for DP. If
UE i and l are connected by an edge (i, l) then for each set
I
′

k define θk(i,l)i = βki and θk(i,l)l = −βkl , note that these
auxiliary variables are introduced to formulate the problem
into the ADMM framework [29]. Define a polyhedron for each
i, T ′i = {(β1)i|s.t. 1t(β

′′

i ) = 1, (β1)i ≥ 0, R
′

i(β
′′

i ) ≥
Rmini ,Wi(R

′

i(β
′′

i )) − βH+1
i ≥ 0}, here β

′′

i = (β1
i , ..., β

H
i )

and Ri = (R1
i , ..., R

H
i ) and ()

′
corresponds to the transpose.

Let β = (β1, ..., βN) ∈ T
′
, where T

′
=

∏N
i=1 T

′

i and∏
corresponds to the Cartesian product of the sets. Also,

let βk = (βk1 , ..., β
k
N ), ∀k ∈ {1, ..,H}. Define another

polyhedron Θk
(i,l) = {(θk(i,l)i, θ

k
(i,l)l) : θk(i,l)i + θk(i,l)l =

0, −1 ≤ θk(i,l)s ≤ 1,∀s ∈ {i, l}}, Θk =
∏

(i,l)∈E Θk
(i,l)

here E = (e1, ..eM ) is the set of all the M edges in the
interference graph. A vector θk ∈ Θk is written as θk =
(θke1,z(e1), θ

k
e1,t(e1), .., θ

k
eM ,z(eM ), θ

k
eM ,t(eM )), here z(ei), t(ei)

correspond to the vertices in the edge, ei. Similarly define,
θ = (θ1, ..., θH+1) ∈ Θ

′
, where Θ

′
=

∏H+1
k=1 Θk. The

reformulated problem is stated as follows:



DP1 minβ∈T ′ ,θ∈Θ
′ −

∑N
i=1Wi(Ri

′
βi)

subject to Dkβk − θk = 0, ∀k ∈ {1, ..,H + 1}

Then, DP1 can be solved using the ADMM procedure
similar to the one described for DP.
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