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ABSTRACT

Websites derive revenue by advertising or charging fees for
services and so their profit depends on their user base — the
number of users visiting the website. But how should web-
sites control their user base? This paper is the first to ad-
dress and answer this question. It builds a model in which,
starting from an initial user base, the website controls the
growth of the population by choosing the intensity of refer-
rals and targeted ads to potential users. A larger population
provides more profit to the website, but building a larger
population through referrals and targeted ads is costly; the
optimal policy must therefore balance the marginal benefit
of adding users against the marginal cost of referrals and
targeted ads. The nature of the optimal policy depends on
a number of factors. Most obvious is the initial user base;
websites starting with a small initial population should offer
many referrals and targeted ads at the beginning, but then
decrease referrals and targeted ads over time. Less obvious
factors are the type of website and the typical length of time
users remain on the site: the optimal policy for a website
that generates most of its revenue from a core group of users
who remain on the site for a long time — e.g., mobile and
online gaming sites — should be more aggressive and protec-
tive of its user base than that of a website whose revenue is
more uniformly distributed across users who remain on the
site only briefly. When arrivals and exits are stochastic, the
optimal policy is more aggressive — offering more referrals
and targeted ads.
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1. INTRODUCTION

Many popular websites such as Facebook, Google, and
Netflix * derive a significant portion of their revenue through
advertising or by charging subscription fees to their users?.
Given such a revenue model it is critical for the websites
to obtain and maintain a healthy user base. Hence, a crit-
ical question that needs to be answered by such websites
is: how can the websites control their user base? The user
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traffic on a website comes from two channels: sponsored
and non-sponsored. Sponsored traffic is steered to the web-
site through targeted ads, referrals, paid keywords, discounts
etc. Hence, the website needs to decide how aggressively it
should advertise as well as send referrals to control the user
base given the incurred costs.

This paper aims to study and design policies which can
be deployed by websites to control their user base through
referrals and targeted ads in order to maximize their profits.
Among the works on user base dynamics in the economics
literature, the ones that relate the most to this work are
[5] and [3]. In [5] the authors analyze the effects of search
frictions in building a customer base on the firm’s profits,
investment, sales, etc. In [3] the authors study informative
advertising and analyze the effect of a decline in the cost
of information dissemination on the firm and customer dy-
namics. The key results in [5][3] are derived by calibrating
models based on data, while this work instead provides a
theoretical foundation for understanding user base dynam-
ics. Also, the focus of these works [5][3] are on a firm selling
a product to homogeneous users; in contrast the users on
the website in our model can be heterogeneous and generate
varying revenue depending on the number of advertisements
they click.

We propose a dynamic continuous time model for the pop-
ulation of users present on a website. We assume that the
website starts with a small initial user base and at every mo-
ment in time, the website can reach out to potential users
via referrals and targeted ads. The website does this by
paying a cost to incentivize its current users to send refer-
rals to friends or by paying for targeted ads on other plat-
forms. Thus, the website must adopt a policy that balances
the marginal benefit of increasing its user base versus the
marginal cost of providing the referrals and targeted ads.
Our model accounts for the fact that users are heteroge-
neous, and therefore provide different benefits to the website
3. We model this by making the natural assumption that
the benefit function of the website is concave in the popula-
tion level: the value from adding new users decreases with
an increasing population level.

If the website starts with a low initial population, we show
that the optimal policy will be to give many referrals per unit
time initially and then decrease the referrals over time. This

3For instance, in mobile gaming apps half of the rev-
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is applicable for most websites that are new to the market
and are unlikely to be able to acquire a high initial popu-
lation. We also analyze how the website’s optimal policy
depends on the average time that a user stays on the web-
site before exiting. We show that this depends critically on
the revenue distribution of the website across its users. For
instance, some websites rely heavily on a small set of users
for revenue, e.g. mobile and online gaming websites, which
rely on a small group of players who spend a lot on games.
For such websites the optimal policy will increase the refer-
rals and targeted ads if the average stay time of the users
decreases. On the other hand, some websites obtain revenue
from its users more uniformly, e.g. subscription based web-
sites such as Netflix. For such websites the optimal policy
will become more aggressive — to send more referrals and
ads if the average time that a user stays on the website in-
creases. We also extend our model to allow for stochastic
user arrivals/exits, and we show that the above results are
robust: if there is high uncertainty in user arrivals, we show
that the website’s policy will be to send more referrals and
ads on average.

2. MODEL

We assume that there is a continuum of potential users
and the firm can attract these users by posting ads on search
engines (Google) and other websites (Facebook) or by giv-
ing referrals. New users can visit the website either through
such sponsored media or arrive directly through exogenous
methods, such as arriving upon the website through a non-
sponsored link. We assume that the rate of such arrivals is
a constant #. This is a simplifying assumption made due to
page limitations and the key results of this work continue
to hold even under more general arrival rates that depend
on the population levels such as 0.p° with 0 < s < 1. The
users are heterogeneous, i.e. the revenue that the users gen-
erate for the website (e.g., the number of ads a user clicks)
varies across the users. Every user who visits the website
stops using the website after a random time. This time is
a random variable drawn from an exponential distribution
and the average time a user stays is 7. Denote the total
mass of the users using the website at time ¢ as p(t), where
p: [0,00) — [0,00). The initial user base is denoted as p(0).
This total mass of the users represents the unique user statis-
tic, which is often used as a metric to evaluate a website’s
popularity *.

The revenue that the website generates per unit time in-
creases with the mass of the users. It is denoted as b(p),
where b : R — [0,00) is a continuously differentiable in-
creasing function. Moreover, as mentioned in the introduc-
tion b(p) is assumed to be a concave function in p. The
long-term benefit of the website considering a discount rate
of p can be computed as B(p(.)) = [;° b(p(t))e "*dt. The
website chooses the intensity of advertisements (measured
in terms of number of sponsored links, referrals, targeted
ads) to be posted on other platforms at each time ¢ and
as a result it controls the rate of sponsored arrivals A(t),
where A : [0,00) — R4 is a continuous and bounded func-
tion. The rate of change of population on the website is
D=9+ A1) - %p. The first two terms in the differential
equation represent the rate of direct and sponsored arrivals
respectively, while the third term represents the users ex-

“http://www.pcmag.com /encyclopedia/term/53438 /unique-
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iting the website. The firm bears a cost per unit time for
the advertisements, which increases with the sponsored user
arrivals A(t). It is given by c¢(\), where ¢ : R — [0,00) is
a continuously differentiable increasing function. Given the
heterogeneous pool of potential users it is harder to increase
the intensity of arrivals when \ is large. Hence, we assume
that the cost ¢()\) is strictly convex in A (as in [5]). We also
assume that there is no cost when there are no sponsored
arrivals ¢(0) = 0, and that the cost becomes unbounded as
the sponsored arrivals approach oo, i.e. limy_ ¢(A) = oo.
The long-term discounted average cost to the website is
C(A()) = fooo c(A(t))e Ptdt.

The firm desires to maximize its total discounted profit,
ie. B(p(.)) — C(A(.)). The continuous-time optimization
problem of the firm is stated as follows

B(p(.)) = C(A())

max
A(t)ERYL,VE>0

dt

Next, we analyze the behavior of the optimal policy.
3. RESULTS

We can show that the optimal policy exists (See [1] for de-
tails) and is denoted by A0y (t). Denote the corresponding
population dynamic as p,)(t). If the optimal policy and
the corresponding population dynamic converge, the steady
state is achieved. The next theorem provides conditions for
the existence of the steady state and also establishes that
the steady state is unique. This theorem uses the the steady
state population level p, which is given by

X() = ()5~ (-~ ) =0 1)
Pty n

subject to dr _ 0+ A\(t) — %p(t), p(0) is given

with b (p) = dl;(f) and ¢ (\) = dfi(;‘).

THEOREM 1. Steady state: Existence and Uniqueness

i) If 0 < b (0) < oo and limp_00 X(p) < O then there
exists a unique solution p to the steady state equation (1).

ii) If p(0) < p then the optimal policy Ap0)(t) decreases
with time and converges to A= %1370 and the corresponding
population dynamic p,(o)(t) increases and converges to p.

For the proofs of all the theorems refer to the online ver-
sion [1]. Theorem 1 proves that if there is a positive marginal
benefit from increasing the user base at very low population
levels and if there is a negative marginal benefit from in-
creasing the user base at very high populations then there
exists a population level (between very low and very high
population levels) where the marginal benefit is zero, which
corresponds to the unique steady state. In addition we see
that if the initial population level is low, which is true for
most of the websites when they are launched, then the firm is
more aggressive with advertising in the initial stages (closer
to the launch) in comparison to the later stages (closer to the
steady state). For the rest of the paper it is assumed that the
firm starts with a low initial population, i.e. p(0) < p. Also,
we will use the terms advertisements and referrals, firm and
website interchangeably henceforth.

3.1 Policy for Different User Behaviors

There are several interesting questions that one can ask
about how the optimal policy depends on the user’s behav-
ior: What happens to the policy if the average time that a



user stays on the website decreases? Or if the direct arrivals
to the website increase? How does the new policy compare
with the old policy both in the steady state (i.e. t — o0)
and at a finite time t?7 We first address these questions at
time t — o0, i.e. in the steady state.

3.1.1 Comparison of the policy in the steady state

If the average stay time of the users decreases then the
firm is faced with the following question: Is spending more
on advertisements worth it? The answer is not straightfor-
ward because of the following dilemma. The average stay
time of the users reduces which discourages the firm, but
the users leaving at a faster rate will also reduce the popula-
tion and the total benefit may thus fall sharply. We answer

this question next.

d*b(p) db(p) _1

Define an operator ®g,,,,(b(p),p) = P+ G
n

The next theorem shows that if ) decreases and ®g ,,,,(b(p), P)
< 0 then the intensity of ads increases, otherwise the inten-
sity decreases.

THEOREM 2. Policy comparison with change inn in steady
state t — oo: Local Behavior

i) If the average time that a user stays on the website 7
is decreased by € > 0 and if ®o,,(b(p),p) < O then the
advertisements in the steady state increase.

i1) If the average time that a user stays on the website
n is decreased by € > 0 and if ®g, ,(b(P),p) > O then the
advertisements in the steady state decrease.

We assume that the change in 7, i.e. € to be small (See
[1] for details). Theorem 2 is interpreted as follows. If

Dy, (b(P), ) < 0 then the percentage increase in the marginal

benefit resulting from a decrease in the user population is

4%b(p)
. . a2 |p=p .
high, i.e. —2"" < ——2%—_ Therefore the website
S lp=p (p+3)Dm

should send out more ads if the average stay time reduces.
Conversely, if ®¢ ., ,(b(p),p) > 0 then the percentage in-
crease in marginal benefit resulting from a decrease in pop-
ulation is not sufficient to compensate for the marginal cost
of additional ads. Therefore, the firm reduces the ads.

The above theorem characterizes the local behavior of the
firm’s policy under the impact of small changes in the aver-
age stay time. Next, we characterize how the firm’s global
behavior under the impact of arbitrary changes in average
stay time. We focus on a specific benefit function for bet-
ter exposition, while the results presented extend to a larger
class of functions. Consider a benefit function defined for
p>0,as b(p) =p® with 0 <a < 1. For a fixed a, we define
a threshold 77 = ﬁ. Then the following is true for the
behavior of the firm.

RESULT 1. Policy comparison with change in n in steady
state t — 0o: Global Behavior

If the average stay time of the users decreases upto 7 then
the firm should increase the intensity of advertisements in
the steady state, while if the average stay time falls below 7
then the firm should decrease the advertisements.

Next, we analyze the firm’s behavior depending on its
revenue distribution across the users, which is reflected by
a. If a is small then the firm’s benefit saturate very fast.
This occurs if the firm relies heavily on a set of core users
for revenue. Example of such websites are online and mobile
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Figure 1: Impact of average stay time on firm’s behavior in
steady state

gaming, since these websites rely heavily on their core users.
Observe that a small value of a implies that the threshold 7
is very small as well. Hence, for such firms a reduction in the
average stay time leads to an increase in the advertisements
in the steady state. On the other hand, consider the case
when a is large and close to 1. If a is close to 1 then the
firm’s benefit saturates slowly. This occurs if the firm relies
uniformly on all the users for revenue. Examples include
subscription based websites such as Netflix. Observe that a
large value of a implies a high threshold 7. Hence, for such
firms an increase (decrease) in the average stay time leads
to a increase (decrease) in the advertisements in the steady
state. As an example, the increase in the content quality
and thus user stay time on Netflix led Netflix spending on
expanding its user base ®. Fig. 1 shows the example of
the above two types of websites. Next, we understand the
effect of an increase in the direct arrivals on the intensity of
advertisements in steady state.

THEOREM 3. Policy comparison with change in 6 in steady
state t — 0o: Global Behavior

If the intensity of the direct arrivals 6 is increased then
the intensity of advertisements in the steady state decreases.

The intuition behind Theorem 3 is as follows. An increase
in the direct arrivals makes the firm decrease the advertise-
ments in a controlled manner, such that the total population
on the website for the new higher level of direct arrivals is
higher than the case with original lower level. Hence, the
firm can reduce its cost while simultaneously increasing the
total population.

We have analyzed the impact of the revenue distribution
of the firm and the average stay time of the users on the
firm’s policy in steady state. Now we want to understand
the impact on the policy while it is on the path to steady
state. For this, we will assume quadratic benefit and cost
functions from now on due to space limitations. However,
the results obtained extend to a larger class of benefit and
cost functions.

3.1.2  Comparison of the policy on the path to steady
state

Websites are hosted on servers and the traffic that can be
handled by a server is limited. Hence, we assume that the
website has a maximum capacity, which corresponds to the
maximum mass of users that the website can support with

®http://www.forbes.com /sites/petercohan/2015/01/21/4-
reasons-to-invest-in-netflix/
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Figure 2: Impact of average stay time of the user 1 on firm’s
behavior out of the steady state when n > ™"

a non-negative marginal benefit. The benefit per unit time
is a continuously differentiable concave function b: Ry — R
defined as b(p) = 4> — (v — p)?, where ~ is the capacity of
the website. In the previous subsection the benefit function
was increasing in p, while this is no longer the case when
capacity is incorporated in the model. We will assume that
the capacity is sufficiently large, which will ensure that the
results of the previous section continue to hold. We discuss
the impact of firm choosing to invest in increasing the ca-
pacity in the online version of the paper [1]. We also assume
that the cost per unit time for sponsored arrivals is quadratic
(as in [5]) and is given as c(\) = c.\%.

We will assume through out this section that the capacity
is sufficiently high, i.e. v > 6n. This condition ensures that
if there are no advertisements given at any time then the
population in the steady state is less than the capacity. Un-
der this assumption we can show that the result in Theorem
1, 2 and, 3 continue to hold. Hence, in the optimal policy
the advertisements will decrease with time and achieve the
steady state value A (from Theorem 1). If the average stay
time of the users were to decrease then the firm will continue
to increase the advertisements A\ until the stay time falls be-
low a threshold, beyond which the advertisements decrease.
Next, we analyze the effect of a decreased stay time on the
policy outside the steady state.

THEOREM 4. Policy comparison with change in n: at fi-
nite time t

i) If the average stay time of the user decreases to a value
above the threshold n'" then the intensity of advertisements
increases at all time instances t larger than some finite t*.

i1) If the average stay time of the user n decreases to a

value below the threshold nth then the intensity of advertise-
ments at every time instance t decreases.
See the expression for n'" and ¢* in the online version [1].
This theorem generalizes the result in subsection 2.2.1., where
the behavior was analyzed in the steady state. In Fig. 2
we can see that if the average stay time of the user n re-
duces but does not fall below 7" then the firm spends more
on advertisements — this would happen when the website is
sufficiently old, i.e. ¢ > t*. This behavior from an incum-
bent website could serve as a barrier to entry to an entrant
website, whose arrival possibly results in the decrease in the
average stay time. Fig. 3 shows the second case, i.e. if the
average stay time of the user decreases below the threshold
nth the website gives out less referrals in the new optimal
policy.

Next, we understand the effect of an increase in the direct
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Figure 3: Impact of average stay time of the user n on firm’s
behavior out of the steady state when n < n'"

arrivals on the policy outside the steady state. It can be
shown that there will be a decrease in the advertisements
at all times (See [1]). This generalizes Theorem 3. The
intuition for this result is the same as that for Theorem 3.
Uncertain user arrivals/exits: We can show that even
under uncertain arrivals/exit of the users the key results
presented in the deterministic setting will continue to hold
(See [1]). The population dynamic with uncertain user ar-
rival/exit changes into the following stochastic differential
equation dP = (0 + A(t) — %P)dt + o PdW;. Here W, is the
Weiner process/Brownian motion. The firm’s objective in
this case is to maximize the expectation of the long term
total discounted profit (benefit-cost). If we consider the
quadratic benefit and costs considered in the previous sec-
tion, Theorem 4 can be extended to the stochastic setting as
well (See [1]). In this case the comparison is done between
the expectation of the intensity of sponsored arrivals. An in-
teresting result emerges is when we compare the intensity of
the advertisements under varying levels of uncertainty o. It
can be shown that increasing the level of uncertainty makes
the optimal policy more aggressive in giving advertisements
(See [1]).
4. CONCLUSION

This paper has been the first to systematically character-
ize how a website should build its user base. We showed
that the optimal policy requires that websites starting with
small initial populations send ads aggressively in the begin-
ning and then decrease them with time. For websites that
derive revenue from a set of core users, e.g. mobile and
online gaming, the optimal policy increases ads when the
average stay time of the user on the site decreases, while for
websites with a more uniform revenue distribution across
users the optimal policy decreases ads. These results extend
to a stochastic setting with noise in population dynamics,
and it is shown that more uncertainty in user arrivals/exits
leads to a more aggressive optimal policy for ads.
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6. PROOFS

Lemma 1.
always exists.

For the proposed model the optimal policy

Proor. Existence of the optimal policy

We first show that the optimal policy A(.) exists. To be
able to do so we will use the sufficient conditions arrived at
in [4].The search space of optimal policy A(.) is restricted
to measurable functions and the optimal policy is positive
uniformly bounded above by M. The population mass at
time ¢ p(t) is restricted to be absolutely continuous func-
tion on interval [0,7] and this has to hold for all such in-
tervals. The initial condition on p(t) is given, i.e. p(0).
The trajectory of p follows the following differential equa-
tion 2 = hg ,(\,p) = 0+ \(t) — %p. We now show that the
assumptions in [4] hold for our model as well.

A1. The function hg (A, p) is linear in p and is indepen-
dent of time ¢, therefore clearly the function is continuous
in (¢,p). The function is also linear in A.

Let S(t) = [0, P] denote the set that the population at
time ¢ is restricted to be in, where § > 0. In our original
problem we did not have such a set to restrict the popula-
tion trajectory. Hence, imposing such a constraint may not
lead to an equivalent problem. Note that if U is chosen suffi-
ciently high then the two problems are equivalent. Observe
that if the intial populatlon level is p(0) then any trajectory
of p(t) which follows = hg,,(A, p) will always be bounded
above by P = max{p( ) (04+U)n}+4. This can be justified
as follows. Consider the case when p(0) < (0 + U)n. Let
us assume that the population p(¢) in this case does exceed
P, which is equal to (0 + U)n + §. Since p(t) has to exceed

(60 + U)n it has to be true that there exists a ¢ at which
p(t) = (0+U)nand 2|,_, > 0. This is due to the continuity
of p(.). However, notlce that he,, (X, (0+U)n) = 0+A(t)— 2 oP
is non-positive because A < U. This contradicts the claim.
Consider the case when p(0) > (6+U)n. In this case we need
to show that the population trajectory p(t) always stays less
than or equal to p(0). Let us assume otherwise, i.e. the pop-
ulation did exceed p(0). It can be shown that for the popu-
lation to exceed and attam a level higher than p(0), the rate
of change of population & <2 has to be positive at a certain
time when p(t) = p(O) This cannot be true because A < U
which will make the d—f = ho,n(X, (0 4+ U)n) < 0. Note that
in the above case we arrived at a bound P, which depends
on p(0). We can make this bound independent of p(0) by
assuming that the initial population p(0) < Pi, < oo.

Therefore, if S > P then the problem with constraint on
p(t) € S(t) will still be equivalent.

A2. Since S(t) is closed for all ¢ the second assumption in
[4] is satisfied as well.

A3. Since p(0) is fixed then assumption 3 is automatically
satisfied.

Let U(t,p) denote the set in which the A(¢) is restricted

to be in. In our case let us assume that U(¢,p) = [0,U].
Since A(.) is upper bounded by U this implicit constraint
suffices for the equivalence of the two problems if we add
the constraint that A(¢) € U(t, p).

A4. Since the set valued function U(t, p) = [0, U] is closed
and bounded and takes a fixed value, we can deduce that
it is a continuous mapping and the output of the mapping
U(t,p) is convex and compact.

A5. Since the set U(t,p) and S(t) are uniformly bounded
then we can say that the assumption 5 is satisfied.

A6. The function B(p(0)) = 0 in our case and hence,
continuity is obvious.

AT. ¢(t,p, ) = (c(A) — b(p))e ** is continuous in (¢, A, p).
This follows from the definition of the functions b(.) and ¢(.).
Also the convexity ¢(.) is sufficient to show that ¢(t,p, A) is
convex in A.

A8. Consider the negative part of the function ¢(t, p, A) =
(c(\)—b(p))e ", which is equal to —b(p)e ** and we need to

"

show that negative part of ¢(¢, p, ) i.e. limp_, fg/ —b(p(t))e Ptdt

goes to zero. Observe that 0> [ —b(p(t))e™"'dt > [¥ —b(P

= —b(P)e="T %. Hence, clearly the limit of the term goes
to 0. Note that this limit will be 0 for all population trajec-
tories.

In addition we also know that there is a feasible trajectory
i.e. which satisfies all the conditions above and gives a finite
value of the objective consider the case when the A\(t) =0

then V(p(0)) = [;°b 077 (1—e 77) +p(0)e” g n)e *tdt. Since
b(On(l—e n )+p(0) - ) < b(P) we know that the integral
exists.

Given all the conditions in [4] are satisfied the optimal
policy has to exist.

O

Theorem 1. Steady state: Existence and Uniqueness

i) If 0 < b'(0) < oo and limp 00 X(p) < O then there
exists a unique solution p to the steady state equation (1).

ii) If p(0) < p then the optimal policy A,y (t) decreases
with time and converges to A= }];379 and the corresponding
population dynamic p,(0)(t) increases and converges to p.

PROOF In the steady state d—’; = 0 which implies A =
2 — . In order to arrive at the steady state solution we
would use the HJB equation, which is a necessary condition
which the optimal value function needs to satisfy. It is given

as follows.
pV(p) =

max(b(p) — ¢(A) + v’ (p)(0 + X — Aap)

X>0
Note that the above equation assumes that the value func-
tion is differentiable. Next, we show that the optimal value
function is differentiable in our problem. In [2] the authors
showed sufficient conditions on the problem that are required
for a value function to bs} differentiable at a point. Define the
D

set in which the (p(t), ) are constrained to be in. p(t) is

constrained to be in the set S and ‘;f is constrained to be in

[0— % —68,0+U+6]. The upper bound on %2 comes from the
constraint that A < U and the populatlon 1s lower bounded
by 0. While the lower bound follows from the fact that
p(t) < P. Denote the set in which (p(t), Zt) are constrained
to be in as T. Hence T is given as T' = S X (—o0,6 + U]

Ve Ptdt



A1l. The first assumption requires the set 7' to be convex
and have a non-empty interior. Clearly the set T is convex
and has a non-empty interior.

A2. Let the flow benefit function be given as u(p, %7 t) =

(b(p) — c(N)e™ " = (b(p) — c(%f + 2 —@))e"". Note that

7
b(p) is concave and —c(p + %) is concave in (p, Z—’t’). Hence,
the sum of both the funcitons has to be concave in (p, %).
Also, b(p)e™*" is continuously differentiable. This is because
we assume that b(p) is continuously differentiable and e **
is continuosly differentiable in ¢. Similar argument holds for
the other part of the function c(% + £ —0)e”’t. Hence, the
flow benefit function is continuously differentiable. There-
fore, the second assumption is satisfied.

A3. The optimal policy p(.), A(.) exists starting from p(0).
This follows from the Lemma 1, where we showed that the
optimal solution exists. The previous lemma holds for any
value of p(0) < oo, hence the optimal policy exists for all
p(0) < oo and therefore V(p) is well defined. Note that
V(p)l = | [y~ (b(p(t)) —c(A(t)))e™**dt| exists and is bounded
because p() and A are bounded.

A4. In this assumption it is required to show that the
solution starting at p(0), i.e. pp(o)(t) and the corresponding
dpg% are interior in the sense stated in [2]. Note that by
the construction of the set S the entire trajectory of p,q)(t)
is in the interior, because the p(t) > —d and p(t) < P.
Hence, at no point does the trajectory hit the boundary,
thereby showing that this assumption is true as well. Similar
argument holds for the % as well.

Given the above four above assumptions, the value func-
tion is differentiable at p(0). The above argument can be
extended to any p(0) provided we assume that p(0) < Pj,.
This will ensure that the bound P can be now modified to
max{Pin, (0 + U)n} +4.

The optimal solution to the HJB equation A = ¢/~* (V/ (p))-

This follows from FOC and the fact that ¢’ is invertible and
¢~!(x) is positive when z > 0. This can be justified as

follows. c is strictly convex, therefore ¢ is strictly increas-
ing, which implies that ¢ is invertible. It is assumed that
¢ (0) = 0 and limz— oo ¢ (z) = oo, using this and stricly in-
creasing nature of ¢ , it is clear that ¢~'(z) > 0 for z > 0.

However, we also need to show that v’ (p) is positive. This
means that the value function is increasing with an increase
in the initial population base, this seems intuitive owing to
the increasing nature of the benefit function as a function of
population. We show this below.

Let p1 < p2 and let’s assume V(p1) > V(p2). Let the op-
timal policy starting at an initial population of p1 be Ap, (¢).
Suppose we followed the same policy Ap, (¢) at the initial
population p2 the population levels achieved by the trajec-
tory starting at ps will always be greater than or equal to
the trajectory at p1. The trajectory starting at p2 has to be
strictly greater for a finite duration, before which it inter-
sects with the trajectory of pi. After the time the two tra-
jectories intersect the two trajectories follow the same path.
It may also happen that the trajectory of ps always stays
higher. Since the population levels are always higher and
the costs for the referrals is the same in the two cases, the
value function at p» is bound to be higher. This contradicts
the assumption. Hence, p1 < p2 implies V(p1) < V(p2).

Hence, we know that in steady state the following has to

hold.

Since V’(ﬁ) is not known the above equations are not
sufficient to derive p. Since we know that in steady state

b(p)—c(2—0
42 — ), therefore we know that V (p) = (mf("’). Define

dt
b)) —c(2-0)

another function W(p) = . Observe that if the

policy was A = £ — 6 then the corresponding 157 (b(p(t) —
c(A(t)))e Ptdt = %(b(p) —c(2—0)) =W(p). It is clear that
since V/(p) is the superemum over all the policies, the follow-
ing has to hold V(p) > W(p). And the equality holds at p,
ie. V(p) = W(p). Since b(p) is concave and —c(2 —0) is also
concave in p. Therefore, W (p) is concave and continuously
d/ifferent,iable in p. We can conclude that V' (p) = w' (p) =
%:(%_6). Therefore, the condition cl(% —0) = V,(ﬁ)
b (@)-1c (2-0)

simplifies to c/(% —-0) = >

to

. This is equivalent

1 /

X(p) =10 (p) p—0)=0 2

Next, we see that given the conditions in the theorem
there will be a unique solution to the above equation. If
0<b (0) < oo then X(0) > 0 because ¢ (z) for x < 0 is
zero (c(z) is zero for all x < 0) and since lim, o X(p) < 0
. From the continuity of X (p) it follows that there exists a
steady state p. Observe that X (p) is decreasing in p, which
follows from concavity of b(p) and fc(%p — 0). Hence, we
can see that the steady state will be unique. This shows the
first part of the theorem.

For the second part, we need to show that if p(0) < p
then the Ap«)(t) will decrease with time and settle to A
while the corresponding population py ) (t) will increase and
converge to p. 2 =v(p) =0 + c'il(V/ (p)) — £. From the
analysis presented above we know that v(p) is a decreasing
function which starts at a positive value and then decreases
to a negative value and intersects at the steady state value
of the population. Note that if p(0) < p then the v(p(0)) > 0
is positive initially. Consider the population level v(p — €)
where p — p(0) > € > 0 then it can be seen easily that
the population will grow as fast as % > v(p — ¢€). Hence,
this can be done for any e, which proves convergence. A =
c’fl(V,(p)), note that V' (p) is a decreasing function in p.
For this we need to show that V is concave, which follows
from [2]. We also give the formal argument here.

Consider two initial population levels p1,p2 and the cor-
responding optimal referral policy and population trajecto-
ries are given as (A1(t), A2(t)) and (p1(t), p2(t)) respectively.
Let us consider convex combination of p; and p2, ps =
kp1 + (1 — k)p2. We know that the value function V(p3) >
I3 e P (b(ps(t)) — c(A3(t))), where ps(t) is the population
trajectory when As(t) = kA1(t) 4+ (1 — k) A2(¢). From the lin-
earity of the differential equation for p, we can see that ps(t)
will be kp1(t) + (1 — k)p2(t). V(ps) > fooo e Pt (b(kp1(t) +
(1 = kr)p2(t)) — c(A3(t) = kA1(t) + (1 — K)A2(t))) and from
the concavity of b(p) and —c(\) we can say that V(p3) >
&V (p1) + (1 — k)V(p2). Hence V is concave. Hence, as pop-



ulation increases A will decrease with time and converge.

O

Theorem 2. Policy comparison with change in 7 in steady
state t — oo: Local Behavior

i) If the average time that a user stays on the website n
is decreased by € > 0 and if ®g, ,(b(p),p) < O then the
advertisements in the steady state increase.

ii) If the average time that a user stays on the website 7
is decreased by € > 0 and if if ®g, ,(b(p),p) > 0 then the
advertisements in the steady state decrease.

PROOF. i) In steady state the value function can be com-
puted as follows V (p) = ch(i), where A = +D— 0. Differ-
entiating V (p) w.r.t p, we get pV' (p) = b (») — cl(;\)% (See
Proof of Theorem 1.). We also know that v’ (p) = c/()\),

substituting V' (p) we get ¢ (A)(p + %) = b (p). Expressing

this equation in terms of only \, we get b’ (0 + Nm). =

+1
¢'(A). Note that g(A\) = b ((6 + M)t - () is a
n

continuously differentiable decreasing function in A We
are interested in determining how the behavior of the op-
timal referrals change when the rate at which users leave
Ad = % is increased by a small amount. Note that we

1 dg (>\)

will use Ay = = in the equations that follow. Let

n
1 ’ (6+A) 04+ 1
_m(b ( Ad ) +b v Ad )(P+)\d)
0+ (9+A) Y EDN 1
v ) +0 (3 Gran

equivalent to @g,n,p(b(ﬁ) p) = @ b(p) pm + db;p) pil < 0. In
n

). Let us cons1der the

case when b ( ) < 0, which is

this case %(:) > 0 and we claim that the optimal M will
increase. We know that changing Aq will lead to a new value
for A, which will be unique. Let us assume that A decreases,
which would mean that ¢ (A) will decrease as well. Also we

dg ()\

know that > 0, which means that g(1) at the new

value of \ Wlll be positive. This violates the condition for
optimality, hence A increases.

Note that in the above the critical thing to showing the
result is @y, ,(b(p),p) < 0 and we only allowed for a small
change in Ay because we only have local information about
the derivative at p.

ii) Consider the other case ®¢ ., ,(b(p),p) = %ﬁn +

AUPS
db(p) 1 dg (A)
dps p++ drg

> 0. In this case < 0, which means that A

cannot increase because this would make g(\) negative. [

Result 1. Policy comparison with change in 7 in steady
state t — co: Global Behavior

If the average stay time of the users decreases upto 7 then
the firm should increase the intensity of advertisements in
the steady state, while if the average stay time falls below 7
then the firm should decrease the advertisements.

ProOF. For the above result we will consider benefit func-
tion to take the form, b(p) = p®. Pg,,,,(b(p)) is given
as (p* 7 'n)((a — 1) + pn1+1)' Observe that if n > 7 then
Dg.y,,(b(p)) < 0, which leads to an increase in the policy.
For the other part also we can see that if n < 77 a decrease
in the average stay time makes the firm increase the adver-
tisements in the policy. [

Theorem 3. Policy comparison with change in 0 in steady
state t — oco: Global Behavior

If the intensity of the direct arrivals 6 is increased then the
intensity of advertisements in the steady state decreases.

PrOOF. Note that in this proof as well, we would substi-

tute n = )\—ld We know that in the steady state the following
b (%). P+1>\d = CI(S\) holds. If € is increased then the term
on the left b (%)-H&

that b (p) < 0. For the steady state equation to hold, i.e.
b/(%).p:)\d = cl(jx) the term on the right can only de-

crease, which happens only if X decreases. This combined
with the fact that a solution A always exists and is unique,
leads to the conclusion that A decreases. [

Theorem 4. Policy comparison with change in 7: at finite
time ¢

i) If the average stay time of the user decreases to a value
above the threshold 1" then the intensity of advertisements
increases at all time instances ¢ larger than some finite ¢*.

ii) If the average stay time of the user n decreases to a
value below the threshold n'* then the intensity of adver-
tisements at every time instance ¢ decreases.

ProOOF. Next, we study the firm’s behavior when the to-
tal capacity of the system is finite. Let us arrive at the an-
alytical form for the referrals by solving the HJB equation
for the case given as follows.

pV (p) = max(—(y —p)? — eX> + V' (p)(0 + A — Aap))

A>0

The solution for optimal A is A = max{iV/ (p),0}. It can
be shown that the value function is concave. Therefore, we
can see that A = max{Q—lcV/ (p),0} is a decreasing function
in p.

Since the optimal A is different in different regimes we give
a case by case analysis.

Assume that the rate at which users leave is high, i.e.
a low average stay time \gy > 6. Recall that we are using
Aa = 5. Let us assume that the value function V(p) = Ap®+

2Bp+C for p > 0. Let us consider the regime where v (p) =
2Ap + 2B > 0 and p > 0, which implies A = J-(24p + 2B).
Substituting A = - (2Ap + 2B) and V(p) = Ap® + 2Bp+ C
in the HJB equation we get
A2
(—1—2AX; + T)p2 +
AB B?
(2y+ — +2A0 — BX\g)p+ B0+ —
c 4c
In the above equation we used the fact that A = AP%B >0
and p > 0. If Ap+ B > 0 and p > 0 for a measurable set of
values p then the the solution to the above is found by equat-
c(2Xg+p)— 62 (2Xg+p) 2+4c

p(Ap® +2Bp + C) =

ing the coefficients we get A =

/\ﬁ_ﬂ Substituting A and B in the expressmn Ap—|—B >0

and p > 0, we get the following threshold on p, p"* = —Z =
(Ad'yfe)(2)\dc+cp+\/c(4+4c>\§+cp2+4cAdp)) (v+(Ag+p)ch) Note

2((:)\3+c/\dp+l) CA2+cAdp+l )
that pt™ > 0. Hence, we know that there exists 0 < p < pt*
For each 0 < p < p'* the equation (4) has to hold, which
is only possible if the coefficients on left of (4) are the same as



the coefficients on the right. Hence, A =

B = ﬁ% Therefore, for 0 < p < p'

will be A\ = AP+B For p > p'" the referrals will have to be
0 because we know that referrals are decreasing function of
p and they cannot go below zero. Having computed optimal
referral policy is a function of the population level, we will
now compute the optimal referral policy and the population
levels as a function of time.

The optimal policy and the corresponding population dy-
namic, when the average stay time of the user is low, i.e.
3 > mor Agy > 0 and the initial population is low as well,

i.e. p(0) < p'"

h the optlmal policy

is computed as follows.

d, B+ A
@ _p + (B+4p) — Aap
dt c
The steady state of the above dynamic is p = fdt‘i =
% If p(0) < p then %|,_,) is positive. The

population will increase and saturate to attain the steady
state value p. Since the population trajectory never crosses
p'", A = 42 Solving the population dynamic above, we
get

—y/c-(cp®+4c22 Hegptd)ter,

M)(l—e 5e h +

(eA2+chap+1)

p(t) =

—y/e(cp?+4c22 +ieAgptter
p(0)e e

Since the population is increasing, the optimal referrals will
decrease and saturate to attain A = Agp — 0. Optimal refer-
rals A = Ap(t) + B are given as

_(_ Qay—0)
(t) = (c)\2 —l:ic)\dp—i—l

—y/e(epZ+aerZtaerg pHtep,

(v + (Aa + p)ch) e 5 )
(eAZ +chap+1) " 2ehg + cp+ \/c.(cp? + 4cAZ + dchap + 4)

2(—p(0) +

If n < n'", where nt" = L or

o4 \/6292+C(09+’Y)w X

S i
-1 and if n decreases then we need to
argue that the optimal referrals will decrease at all times.

V262 +(p6+7)ey

max{

equivalently A\g >

Observe that if A\g > H%C then the first term
in A(t), i.e % decreases with increase in Ag. In

addition if Ag > % then % decreases as well.

- \/c. (cp2+4erZ+acAgpt+4)+ep .
2c

decreases with increase

e
AlSO’ 2c)\d+cp+\/c.(Cp2+4c)\3+4c)\dp+4)
in Ag. Note that p(0) < p ensures that
—y/e(er 2H4edFHaergptd)tep,
2(—p(0)+ (7+(Ad+ﬂ)60)) e 2¢
(C/\3+C/\dp+1) 2ckd+cp+\/cA(cp +4cA§+4c/\dp+4)

creases and this is true for all times ¢ > 0.

Consider the case when n > nt"*, where ni* =

1

~

ot €202+ (po+7)cy
this is equivalent to A\gq < —_— Observe that
. " . . (Ag7—0)
under this condition the first term in A(¢), i.e. N torgpil -

creases, while the second term can increase/decrease. How-
ever, note that as ¢ increases the effect of the change in sec-

c@AatP) =y C2(2Ad+p)2+4c ,ond term decays and after a certain threshold ¢* the effect

"of increase in the first term will dominate. []

Uncertain user arrivals/exits: In this section we allow for
uncertainty in the arrivals and exits of users. This modi-
fies the user population differential equation to the following
stochastic differential equation, dP; = (0 + A(t) — AqgP)dt +
oPdW;. (Recall that Ay = %) The HJB equation corre-
sponding to this case is

pV(p)

In the above setting we allow for negative referrals for ana-
Iytical tractability, but we do not allow that the population
becomes negative. Hence, the optimal A\ should ensure that
the population is always positive. Solving the optimal A we

get A = Y2} Tet’s assume that V(p) = Ap*+Bp+C
and substitute A = VT(CM = M in the above HJB equa—

tion. Equating coefficients on both the sides we get A =
—\/ 2 14,52 ’ !
Rt I VA M e R and B' = 24949 Note that

I 2
2cte?) (p+ra—40)

= max(y® —
A

AT —Ad < 0and 6+ % > 0, these conditions together with
the fact that the initial population p(0) > 0 ensure that the
population dynamic stays above zero (see [6]). The expected

population at a time t is given as E[P(t)] = %(1 —

_7
’

e_(Ad_AT)t) +p(0)e_(Ad_AT)t. The expected number of re-
. _ A'BlP+B
ferrals are given as E\1)] = =——57—=.
(/\d+P)6+'Y

B
If p(0) > Otae = Fy then the expected
A

a—4a Aa+p—2)(Aa—

population E[P(¢ )] dynamlc decreases with time and con-

%] i
verges to attain + 2. The corresponding trajectory of
Aa—A-
expected number of referrals will increase with time, this is

because the referrals decrease with increase in populatlon.
’

Ifp(0) <

B
i 2¢- then the expected population E[P(t)] dy-
a=

B

0+L2
namic increases with time and converges to attain 2;, .

d
The corresponding trajectory of expected number of refer-
rals will decrease with time, this is because the referrals
decrease with increase in population

THEOREM 5. The average number of referrals given to a
population of size P increases with in an increase in the vari-
ance o® of the Brownian motion.. The average number of
referrals given at any time t increases with in an increase in
the variance o of the Brownian motion provided the initial
population of the users is sufficiently high.

We know that A = 4P + £ We know that B =
2-A4947 _ and from the expression observe that if A in-
P+Ad_i,

c

292 .
9+7\/c"+("9+”“Y creases B’ 1ncreases as well. Next, we show that as o in-
- ¢

creases then A increases.

dA’ _ o ((2Aq+p)2+2(1))+203
do V(@rat+p)2+4(L+02) (L +02)?

’
Since % > 0, it shows the first part of the theorem.

(=) =X+ V )0+ A= Aap) + 5V ()0



We know that A and B increase with increase with o.
In addition if we can show that E[P(t)] increases as well,
then the E[A(t)] will increase as well. The expression for

B
E[P(t)] is sum of two terms, the first term LQAC, clearly

Ad—

increases with o. The second term is given’ by (p(0) —

!’ 7 !’
04+EB- | _(an,_A 048 o4+ B_ dB
N L () e U
A= Aa=5)? Ag—<- do

iy -
is satisfied then the second term decreases as well. This is

a sufficient condition and it can be checked by replacing in
the derivative of the second term.
Hence, the E[A(t)] will increase.



