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Abstract—In this paper, we consider a wireless amplify-and-
forward relay network with one relay node and multiple source-
destination pairs/users and propose a compensation framework
such that the relay has incentives to forward the users’ signals.
Specifically, depending on the quality of the received signals, the
relay sets the prices to maximize its revenue and correspondingly
charges the users utilizing the relay for their transmissions. Given
the specified price, the users competitively employ the relay node
to forward their signals. We model each user as a strategic player,
which aims at maximizing its own net utility through power
allocation, and apply non-cooperative game theory to analyze the
competition among the users. It is shown that, in the game played
by the users, there always exists a unique Nash equilibrium point
that can be achieved through distributed iterations. Then, subject
to the availability of complete information about the users at the
relay, we propose a low-complexity uniform pricing algorithm
and an optimal differentiated pricing algorithm, in which the
relay charges the users at a sub-optimal uniform price and at
different prices, respectively.

I. INTRODUCTION

In many wireless networks, the transmission between two
distant users may have to be accomplished with the help of an
intermediate node, i.e., relay, due to transmit power or other
constraints [1]. Nevertheless, without a proper compensation
framework, the relay may have no incentives to accommodate
the users by forwarding their signals to the destinations at
the expense of its own energy. Hence, pricing becomes an
effective mechanism that reimburses the relay for using its
resources by making payments1, thereby providing the relay
with the incentives for forwarding the users’ signals [4]–[6].

It is worth noting that pricing mechanisms have been widely
applied in the context of relay networks [4]–[6]. For instance,
considering a multi-relay network, the authors in [4] cast
the problem of distributed power control and relay selection
into the Stackelberg formulation. In particular, the payment
made by the user serves as a reimbursement that gives the
relay an incentive to participate in the cooperation. Similar
compensation frameworks enabling the relay to forward the
users’ signals are proposed in the literature as well, e.g., [5][6].
In [8], an auction-based spectrum sharing protocol is proposed
such that the each user submits an optimal bid to the network
manager to maximize the utility. The auction framework is
also extended to a relay network setting [9].

†This work is supported in part by NSF under Grant No. 0830556.
1The payments can be tokens, virtual money, etc., which can be used in the

future by the relay to purchase resources from other nodes in the network.

In this paper, we focus on a relay network with one relay
node and multiple source-destination pairs/users2, and propose
a pricing mechanism that gives the relay incentives to forward
the users’ signals. In the pricing mechanism, the price is
determined by the relay to maximize its revenue, and each user
is modeled as a strategic player in a non-cooperative game.
Specifically, with the knowledge of its local channel state
information (CSI), each user maximizes its utility by choosing
its optimal power level, given the power allocation strategies
of the other users. This process iterates until convergence. It is
shown that, in the non-cooperative game, there always exists
a unique Nash equilibrium point (NEP) that can be achieved
through the iterative power allocation process. Next, with
incomplete information about the users (i.e., the number of
users and the sum signal to interference plus noise ratio (SINR)
when all the users transmit with their maximum powers)
at the relay, we propose a low-complexity uniform pricing
algorithm, i.e., the relay charges all the users at the same
price. Then, we extend the pricing algorithm to differentiated
pricing by assuming that the relay has complete information
about the users (i.e., channel coefficients, power constraints,
etc.). Finally, extensive simulations are conducted to verify the
performance of the proposed pricing algorithms.

The main contributions of this paper are threefold: (i) we
focus on a relay network with multiple users modeled as
strategic players competing for the network resource, i.e.,
relay, and study the NEP of the game; (ii) we propose a
pricing mechanism that provides the relay with the incentives
to forward the users’ signals; (iii) we propose two pricing
algorithms, i.e., uniform pricing with incomplete information
and differentiated pricing with complete information.

The rest of this paper is organized as follows. Section II
describes the network model and problem formulation. In
Section III, a distributed power allocation algorithm along with
two pricing algorithms are developed. Simulation results are
shown in Section IV and concluding remarks are offered in
Section V.

II. SYSTEM MODEL

Consider a relay network consisting of one relay node and Q
source-destination pairs, as illustrated in Fig. 1. Similar models
are considered in the literature as well (e.g., [3]), and note
that the following analysis can be extended to a multi-relay

2We interchangeably use “user” to represent the source-destination pair.
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Fig. 1. Network model

network as long as different network clusters, each of which
consists of one relay and multiple users, are transmitting over
different channels [3].

A. Network Model

The source and destination are indexed by Si and Di, re-
spectively, for i = 1, 2 · · ·Q, and the relay node is represented
by R. We denote the coefficients for the Si − R and the
R − Di channels by gi and hi, respectively. The transmit
powers of Si and R are pi and pR, respectively. Local CSI,
i.e., gi and hi, is available at user i, but neither gj nor hj is
known to user i, if j 6= i, due to the distributed nature of the
considered problem. Furthermore, we assume the zero-mean
complex additive white Gaussian noise (AWGN) at each node
to have a variance of N0. Due to the half-duplex constraint,
we consider orthogonal relaying transmissions, e.g., the source
nodes and the relay node transmit in two non-overlapping time
slots. The direct link between Si and Di is neglected due to,
for instance, the shadowing effects [1]. We adopt the classical
amplify-and-forward strategy as the relaying operation, which
has been shown to be an appealing technique due to its low
cost and easy implementation as compared to the decode-and-
forward protocol [2]. Hence, the signals received at R and Di

can be written, respectively, as

yR =
Q∑

j=1

gj
√

pjxj + nR and yi = αhiyR + ni, (1)

where xi is the unit-variance transmit signal from Si to Di,
α =

√
pR∑Q

j=1
|gj |2pj+N0

is the amplification factor of R, nR

and ni are the statistically-independent AWGN terms at R
and Di, respectively. Assuming that Di is only interested in
the signal xi without applying interference cancelation [11],
we can express the receive SINR at Di as

γi =
|gi|2|hi|2pRpi

|gi|2N0pi + (|hi|2pR + N0) · Ii
, (2)

where Ii =
∑Q

j=1,j 6=i |gj |2pj + N0. In general, the utility
function is increasing and concave in the receive SINR [8].
Specifically, we adopt in the sequel the achievable rate3 as the

3Note that the achievable rate is a widely-used utility function (see, e.g.,
[9][12]) and the analysis herein can be applied, after minor modifications, to
other forms of utility functions as well.

utility function of user i

Ri(pi; p−i) =
1
2
log (1 + γi) (3)

where 1
2 is the spectral loss factor due to the half-

duplex constraint [2], γi is given in (2), and p−i =
(p1 · · · pi−1, pi+1 · · · pQ) is the power allocation vector of all
the users except for user i.

Before proceeding to the problem formulation, we briefly
note that the relay amplifies and forwards the noise as well
as the desired signal, whereas the source transmits noiseless
signals in single-hop interference channels [11]. Hence, the
analysis here can be regarded as a generalization of the exist-
ing results on Gaussian interference channels. In particular,
if |hi|2 → ∞, the dual-hop relay channel reduces to the
conventional multi-access interference channel and the receive
SINR of user i becomes γi = |gi|2pi∑Q

j=1,j 6=i
|gj |2pj+N0

.

B. Problem Formulation

It is known that the receive SINR, which is partially
determined by the relay’s power, measures the quality of the
received signal and thus influences the utility of each user.
Hence, it is reasonable to assume that the payment made to
the relay is a function of the receive SINR. Mathematically, the
payment that user i needs to make to the relay, which sets the
price πi, is defined as πiγi. This payment rule charges each
user in proportion to its receive SINR, which was similarly
referred to as “SINR auction” in [8][9]. Other similar payment
rules can be found in [7]. Given the payment rule, the net
utility function of user i can therefore be expressed as

ui(pi; p−i) =
1
2
log (1 + γi)− πiγi, (4)

where the first term is the achievable rate of user i. From
the relay’s perspective, in order to maximize the revenue4

collected from the users, the relay needs to set an optimal
price vector Π∗ =

{
π∗1 , π∗2 · · ·π∗Q

}
such that

Π∗ = arg max
Πº0

(
Q∑

i=1

πiγi(pi; p−i)

)
. (5)

III. PRICING AND DISTRIBUTED POWER CONTROL

In this section, we cast the user-level distributed power
control problem into the framework of non-cooperative game
theory, and jointly optimize the user’s net utility and the relay’s
revenue.

A. Distributed Power Control

Given the price set by the relay, we mathematically char-
acterize the competition among the strategic users using the
following the non-cooperative game

Guser = {Ω, {Pi}i∈Ω, {ui(pi; p−i)}i∈Ω} (6)

4The relay incurs a fixed cost, e.g., power consumption, when forwarding
the users’ signals, and thus, revenue maximization is virtually equivalent to
profit maximization [15].
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where Ω , {1, 2 · · ·Q} is the set of active users (i.e., Si−Di

pair), Pi is the set of admissible power allocation strategies of
user i defined as {pi : 0 ≤ pi ≤ pmax

i } and ui(pi; p−i) is the
net utility function of user i given in (4). The optimal power of
user i in response to the power levels of all the other users is
referred to as the best response function denoted by Bi(p−i).
In the non-cooperative game, the NEP is a critical operating
point at which the outcome of the game becomes stabilized
[16], and it is achieved when user i, given p−i, cannot increase
its net utility ui(pi; p−i) by unilaterally changing its own
power pi, for all i ∈ Ω. Mathematically, the NEP, denoted
by p∗ = (p∗1, p

∗
2 · · · p∗Q), of the game Guser in (6) is formally

defined as [16]

ui(p∗i ; p
∗
−i) ≥ ui(pi; p∗−i), ∀ pi ∈ Pi, ∀ i ∈ Ω . (7)

In particular, regarding the existence of NEP in the user game,
we have the following theorem whose proof is omitted due to
the space limitations and available in [14].
Theorem 1. Given any non-negative price vector Π º 0 set
by the relay, there always exists at least one NEP in the non-
cooperative game Guser played by the users. ¥

Next, we shall give the closed form of best response of user
i, i.e., Bi(p−i), in the following. Note first that we can prove
there exists a unique Bi(p−i), given any p−i and πi. To be
more specific, depending on the price πi set by the network,
the unique Bi(p−i) can be easily derived and expressed in a
compact form as

Bi(p−i) =

[
δi(πi)

(|hi|2pR + N0

) · Ii

|gi|2 · [|hi|2pR −N0 · δi(πi)]

]pmax
i

0

(8)

where Ii =
∑Q

j 6=i |gj |2pj + N0, [ · ]ba = max{min{·, b }, a }
and δi(πi) is a non-increasing function of πi defined as

δi(πi) =





0, if 1
2 < πi,

1
2πi

− 1, if (1 + γi(pmax
i ;0))−1

< 2πi ≤ 1,

γi(pmax
i ;0), 0 ≤ 2πi ≤ (1 + γi(pmax

i ;0))−1
,
(9)

in which γi(pmax
i ;0) is obtained by plugging (pi; p−i) =

(pmax
i ;0) into (2). In addition to the existence of NEP in the

game Guser, whether and how the non-cooperative game can
eventually arrive at the NEP is another question we have yet
to answer. To this end, we present an iterative algorithm that
reaches the unique NEP of Guser and can be formally described
as follows.

Algorithm I: Iterative Distributed Power Allocation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Step 1: n = 0; choose any feasible p0 =
(
p0
1, p

0
2 · · · p0

Q

)

Step 2: p
(n+1)
i = Bi(pn

−i), for i = 1, 2 · · ·Q
Step 3: n = n + 1; go to Step 2 until convergence
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To complete the algorithm description, we give Theorem 2
regarding the convergence of the proposed algorithm.
Theorem 2. Given any non-negative price vector π º 0 and
starting from any initial point p0, the iteration specified by

p
(n+1)
i = Bi(pn

−i), for i ∈ Ω, always converges to the unique
NEP of the game Guser as n →∞.

Proof: The proof is mainly based on the standard inter-
ference function [10] and can be found in [14]. ¥

Before concluding this section, we note that, as shown in
(8), the local information required to compute Bi(p−i) at user
i includes the local CSI (i.e., gi and hi), the relay’s transmit
power pR, the price πi set by the network and the multi-user
interference plus noise

∑Q
j=1,j 6=i |gj |2pj + N0. In particular,

user i can obtain the local CSI through channel estimation
(e.g., sending pilot signals) [9]. The relay’s transmit power pR
and the price πi are transmitted via control channels to user
i prior to the users’ transmissions. Regarding the multi-user
interference, the relay node can broadcast to all the users its
amplification factor α such that user i, for i ∈ Ω, acquires the
value of

∑Q
j=1,j 6=i |gj |2pj + N0 by computing pR

α2 − |gi|2pi.
It can therefore be seen that the proposed algorithm can be
applied in a distributed manner. It should also be noted that
Algorithm I is re-executed only when the price set by the relay
is updated or the network condition changes, e.g., channel
coefficients vary or additional users enter the system.

B. Uniform Pricing With Incomplete Information

In many wireless networks with limited information ex-
change among different nodes, the relay only has incomplete
information about the users (e.g., the maximum power con-
straints of the users are private and thus unknown to the
relay). Under such constraints, we propose a uniform pricing
algorithm, i.e., the relay sets and broadcasts a uniform price,
i.e., π1 = π2 · · · = πQ = π, to all the users.

Due to the lack of private information about the users,
e.g., power strategy space, the relay cannot analytically
compute the NEP of the user-level game Guser or di-
rectly set an optimal uniform price5 such that π∗ =
arg maxπ≥0

(
π

∑Q
i γi(p∗i ; p

∗
−i)

)
. As a consequence, we pro-

pose a low-complexity algorithm that can yield a close-
to-optimal uniform price. Before stating the algorithm, we
first define the lower and upper bounds on the optimal
uniform price, i.e., πa = 1

2 mini∈Ω {1 + γi (pmax)}−1 and
πb = 1

2 maxi∈Ω {1 + γi (pmax)}−1, respectively, and sum-
marize two instrumental properties of the revenue function
ρ(π) = π

∑Q
i=1 γi(π) in the following theorem whose proof

can be found in [14].
Theorem 3. The revenue function has the following proper-
ties6:

1. ρ(π) = π
∑Q

i=1 γi(pmax) when 0 ≤ π ≤ πa;
2. There exists a certain value of price π̂ satisfying
{

π̂ < πb, ∃i, j ∈ Ω s.t. γi (pmax) 6= γj (pmax)
π̂ = πb, ∀i, j ∈ Ω s.t. γi (pmax) = γj (pmax) , (10)

such that ρ(π) = Q · ( 1
2 − π

)
. ¥

5Note that, without knowing the power strategy of the users, the relay can
only obtain the optimal uniform price through exhaustive search, which incurs
a high implementation complexity.

6 γi(p
max) is obtained by plugging pmax =

(
pmax
1 , pmax

2 · · · pmax
Q

)
into

(2).
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Theorem 3 can be simply interpreted as follows: the optimal
price of the relay lies in a certain interval that depends on
the channel conditions and transmit power constraints. The
non-trivial properties also form the basis of the proposed
sub-optimal uniform pricing algorithm. Specifically, if we
artificially increase πa and decrease π̂ simultaneously until
they meet at π and assume that

ρ(π) =
{

π ·∑Q
i=1 γi(pmax), if 0 ≤ π ≤ π

Q · ( 1
2 − π

)
, if π < π ≤ 1

2

, (11)

we can easily obtain the “optimal” uniform price as

π∗ ≈ π =
Q

2
[∑Q

i=1 γi(pmax) + Q
] . (12)

Generally speaking, setting (12) as the price can only
result in a sub-optimal revenue for the relay. Nevertheless,
the high computational complexity incurred by the exhaustive
search is avoided and only limited information is needed to
calculate (12): the number of active users in the network,
i.e., Q, and the value of

∑Q
i=1 γi(pmax). The relay can set

a sufficiently low price πl, given which the NEP is pmax, and
find

∑Q
i=1 γi(pmax) by computing ρ(πl)

πl
. The uniform price

is determined in a similar way in the context of conventional
cellular systems in [7]. Moreover, we note that, when there
are a sufficient large number of users in the network or
the users operate in low SINR regions, (12) is also a good
approximation of the optimal uniform price. Specifically, when
the number of users in the network is large, the sub-optimality
of (12) can be explained as follows. It is natural that the
level of interference observed by user i, i.e.,

∑Q
j=1,j 6=i |gj |2pj ,

increases when there are more active users. Hence, given a
large value of Q, maxi=1,2···Q γi(pmax) becomes a small non-
negative number due to the strong interference caused by the
other users. Correspondingly, the difference between the lower
bound and the upper bound on the optimal uniform price is
not significant, i.e., π̂ − πa is a small number. Thus, the sub-
optimal price (12), which lies between πa and π̂, is close
to the optimal one. Note that the small non-negative number
π̂−πa is also a upper bound on the gap between (12) and the
optimal uniform price. Similar statements can be made when
the network operates in low SINR regions as well. As in the
existing literature (e.g., [7]), it is challenging to determine a
priori the exact gap between (12) and the optimal uniform
price, and hence, we shall alternatively verify in numerical
results that the loss of revenue is not significant in all the
cases when the relay chooses (12), rather than the optimal
one obtained through exhaustive search, as its uniform price.

C. Differentiated Pricing With Complete Information

It has been shown in [13] that the system performance
can be improved if some users have complete information
about the network. In the following analysis, we extend
the uniform pricing to differentiated pricing by assuming
that the relay knows the maximum power constraints of all
the users7, in addition to the channel coefficients. Under

7To implement the protocol, the user may be required to report its maximum
transmit power level to the relay before entering the network.

the differentiated pricing rule, we need to identify an op-
timal price vector Π∗ set by the network such that Π∗ =
arg maxΠº0

(∑Q
i=1 πiγi(p∗i ; p

∗
−i)

)
. Differentiated pricing is

also referred to as price discrimination in the economics
literature [15]. Before developing the differentiated pricing
algorithm, we first express the optimal value of πi in terms of
p∗, for all i ∈ Ω, in the following proposition, the proof of
which is omitted here for brevity and can be found in [14].
Proposition 1. Assume that Π∗ = {π∗1 , π∗2 · · ·π∗Q} is the
optimal price vector, which generates the maximum revenue
for the network, and that p̃∗ = {p̃∗1, p̃∗2 · · · p̃∗Q} is the unique
corresponding power allocation vector at the NEP of the user
game Guser. Then, Π∗ can be expressed in terms of p̃∗ as
follows

π∗i =
1

2(1 + γi(p̃∗))
, ∀i ∈ Ω, (13)

where γi(p̃∗) is obtained by substituting p̃∗ into (2). ¥
Now, following Proposition 1, the problem of maximizing∑Q
i=1 πiγi(p∗i ; p

∗
−i) subject to Π º 0 can be reformulated as

max
Q∑

i=1

γi(p̃∗)
2(1 + γi(p̃∗))

⇔ max

∑Q
i=1

|hi|2pR
|hi|2pR+N0

|gi|2p̃∗i
2

(∑Q
i=1 |gi|2p̃∗i + N0

)

s.t., 0 ¹ p̃∗ ¹ pmax,
(14)

where the objective function is linear-fractional and hence
quasi-concave in p̃∗ [17]. Hence, the optimal value of p̃∗ can
be found by transforming (14) into a standard linear program
[17], and the details of solving (14) are omitted due to the
space limitations. Then, by uniqueness of the NEP of the game
Guser given any price vectors stated in Theorem 2, it can be
seen that p̃∗ is the unique NEP of the game Guser if the relay
sets Π∗ according to (13) as its pricing vector. Therefore,
we can solve (14) to find p̃∗ and then Π∗ can be determined
using (13). Furthermore, from (14), we can see that the revenue
that the relay can obtain by charging the users at the optimal
differentiated prices is upper bounded by 1

2 .
Next, we briefly discuss the complexity incurred by the relay

to set the prices. With complete information about the users,
i.e., channel coefficients and power strategy space, the relay
can directly compute the optimal differentiated price vector
Π∗, by solving the linear-fractional optimization problem in
(14), and thus, it only needs to broadcast once the optimal
price vector to the users. However, in the case of uniform
pricing, the relay needs to set a sufficiently low price before
identifying the sub-optimal uniform price, since only incom-
plete information about the users is available by the relay.

IV. NUMERICAL RESULTS

For the convenience of illustration, gi and hi are modeled
as independently Rayleigh distributed random variables, for
i ∈ Ω. The transmit power of the relay node and the maximum
transmit power of each source node, as well as the variance
of the Gaussian noise, are normalized to one. Moreover, we
assume a homogeneous network topology8, i.e., E{|g1|2} =

8The results for general network topologies and channel conditions, which
can be found in [14], are not shown in this paper due to space limitations
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E{|h1|2} = · · · = E{|gQ|2} = E{|hQ|2}, where E{·} is the
expectation operator. First, given random channel gains in a
four-user network, we illustrate in Fig. 2(a) the convergence
of the proposed distributed power allocation algorithm and the
sub-optimal uniform pricing algorithm. The upper plot shows
that the sub-optimal uniform price (dashed line) is reasonably
close to the optimal uniform price9 (solid line), which validates
the use of (12) as the uniform price by the relay.

1) Effects of Channel Gains: We consider a four-user
network and examine the effects of channel gains on the
performance in Fig. 2(b). As intuitively expected, the revenue
of the relay increases as the channel condition becomes better.
Fig. 2(b) also demonstrates that the revenue loss due to the
sub-optimality of the uniform price is not significant compared
to the optimal uniform price. Among all the three pricing
schemes, differentiated pricing generates the maximum rev-
enue for the relay at the expense of having more information
about the users. Regarding the upper bound on the revenues,
it can be observed that the maximum revenue is always less
than 1

2 regardless of the channel conditions,which verifies the
analysis.

2) Effects of Number of Users: In Fig. 2(c), we fix the
average channel gains and vary the number of active users. It
shows that the average revenue of the network is increasing
in the number of users and differentiated pricing achieves the
maximum revenue. Fig. 2(c) also indicates that the sub-optimal
revenue of the relay gained by setting (12) as the uniform
price is close to the optimal uniform one obtained through
exhaustive search.

V. CONCLUSION

In this paper, considering a wireless relay network with one
relay node and multiple source-destination users, we proposed
a pricing mechanism to provide the relay with incentives
to forward the users’ signals. We then modeled each user
as a strategic player, which aims at maximizing its own
benefit by choosing the optimal transmit power, and analyzed
the competition among the users using the notion of non-
cooperative game theory. It was proved that, in the non-
cooperative game played by the users, there always exists
a unique steady operating point, i.e., NEP, which can be

9The optimal uniform price in this paper is obtained numerically through
exhaustive search.

achieved in a distributed manner. Next, we proposed a low-
complexity algorithm, in which the relay charges the users at
a sub-optimal uniform price. The analysis was then extended
to differentiated pricing wherein the relay charges different
users at different prices. Extensive simulations were finally
conducted to verify the analysis from both the relay’s as well
as the user’s perspective.
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