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Abstract—We obtain the robust Nash equilibrium (RNE) for
a wide range of multi-user communications networks under
uncertainty by utilizing the robust optimization theory for the
worst-case uncertainties. To do so, we consider the uncertainty
as a distance between the estimated and the actual values of
the system parameters as a general norm function, and utilize
the finite-dimensions variational inequalities (VI) to derive the
conditions for existence and uniqueness of RNE. Two effects of
uncertainty on the performance of the system are investigated:
the difference between the achieved social utility at the RNE and
the Nash equilibrium (NE) of the nominal game, and the distance
between the deployed strategies of users at the RNE and at the
NE. We quantify these two effects for the cases of unique NE
and multiple NEs, and show that when the NE is unique, the
achieved social utility at the RNE is always less than that of
the NE. Interestingly, the worst-case robustness approach may
lead to a higher social utility at the RNE in the multiple NEs
scenario. Considering uncertainty at RNE introduces coupling
between users, and hence, developing distributed algorithms for
reaching RNE is more challenging as compared to the NE in
the nominal game. However, for some special forms of utilities
and norm functions, we propose simultaneous and sequential
distributed algorithms; and investigate the performance of the
robust game for power control in interference channels, and for
flow control in Jackson networks.

Index Terms—Robust game theory, sensitivity analysis, uncer-
tainty region, variational inequality.

I. INTRODUCTION

During the past decade, game theory has been widely used
to analyze the performance of multi-user communication net-
works. In this context, transmitter-receiver pairs are considered
as rational and self-interested players that aim to maximize
their own utility by choosing their transmission strategy. To
analyze the equilibrium of such a system, the notion of Nash
equilibrium (NE) is frequently used, at which no user can
attain a higher utility by unilaterally changing its strategy [1].

In addition, deriving the conditions for uniqueness and
Pareto optimality of the NE are critical for any communi-
cations network analyzed via game theory. Such issues are
investigated in [2]–[6] for different system models of flow
and congestion control, network routing, and power control
problems. Besides, in [7] many such games in communications
networks are considered that exhibit some unique features
such as: 1) each user has a multi-dimensional strategy subject
to a single sum resource constraint; 2) each user’s utility in
each dimension is impacted by an additive combination of

its own action and other users’ actions; 3) users’ utilities are
separable across different dimensions; and 4) each user’s utility
is obtained by summation over all dimensions.

Undoubtedly, there are many sources of uncertainties in
such networks that emanate from, inter alia, lack of coor-
dination between users, asynchronous transmissions of peers
in the network, and variations in system parameters. Hence,
determining the effect of uncertainties in such environments
and proposing an appropriate approach to overcome their
undesirable effects are important and under-explored areas
of research. To tackle uncertainty, there are two distinct
approaches in the robust optimization theory: the Bayesian (or
probabilistic) approach, where the statistics of uncertainties are
considered and the performance is stochastically guaranteed;
and the worst-case-uncertainty approach, where the uncertain
parameters are modeled as deterministic values bounded in a
closed region (called the uncertainty region) and the perfor-
mance is guaranteed for any realization of uncertainty within
that region [8]. In many deployment scenarios, the worst-
case-uncertainty approach is more practical to characterize the
network’s performance [9], [10].

Recently, for the problem of allocating transmit power
levles in interference channels, the Bayesian and the worst-
case uncertainty approaches are proposed by [9], [11]–[13],
where the uncertain parameters are the channel gains between
different transmitter and receiver pairs. In this paper, we use
the worst-case uncertainty approach to introduce a robust
equilibrium for a general class of games defined in [7]. Our
main objective in this paper is to present a complete analysis of
robust Nash equilibrium (RNE) in robust games as compared
to that of NE in nominal games with complete information. In
doing so, we endeavor to answer the following basic questions
that are pertinent to robust games: 1) How should we express
the uncertainty region so that the RNE is tenable to analysis
and can be shown to always exist? 2) What is the condition for
uniqueness of the RNE in a robust game for a given uncertainty
region? 3) How are the RNE and the NE related, and what
is the impact of robustness on the social utility and on users’
strategies at the RNE as compared to the NE? 4) Is there
a distributed algorithm for reaching the RNE, and what are
the conditions for its convergence? We will show that the
uniqueness condition for the RNE and the NE can be unified
by using variational inequalities (VI), obtain the upper bound



of the difference between strategies of users at the RNE and
at the NE, and demonstrate that when the RNE and the NE
are unique, the social utility at the RNE is less than that of
the NE.

The rest of this paper is organized as follows. In Section II,
we present the system model. In Section III, we introduce
the notion of robust games and the RNE via the worst-
case uncertainty approach, and obtain the conditions for the
RNE’s existence. Section IV covers the conditions for RNE’s
uniqueness, followed by Section V, where for the case of linear
interactions between users, the RNE is obtained via affine
variational inequalities (AVI), and distributed algorithms for
reaching the RNE are proposed. In Section VI, we provide
simulation results to validate our analysis for the power allo-
cation problem and for Jackson networks. Finally, conclusions
are drawn in Section VII.

II. SYSTEM MODEL

Consider a strategic-form game G = {N , (vn(a))n∈N ,A},
where N = {1, · · · , N} denotes the set of selfish users (i.e.,
players of the game), A =

∏
n∈N An is the joint strategy

space of the game, An ⊆ RK is the strategy space of user n,
vn(a) : A → R is the nth user’s utility function that depends
on the chosen strategy vector a = [an,a−n] of all users, an ∈
An is the action of user n, a−n ∈ A−n denotes the actions
of all users except user n, and A−n =

∏
m∈N ,m̸=n Am is the

strategy space of all users except user n. In a non-cooperative
strategic game, each user aims to maximize its own utility as

max
an∈An

vn(an,a−n), ∀n ∈ N . (1)

Interactions between users are studied using the notion
of NE, which corresponds to the strategy profile a∗ =
(a∗1, · · · ,a∗N ) such that for any other strategy profile, we have
vn(a

∗
n,a

∗
−n) ≥ vn(an,a

∗
−n) for all n ∈ N .

Definition 1. The game G is said to be additively coupled
(ACG) [7] when
1. For all user in N , the strategy space is

An =

{an = (a1n, · · · , aKn )|akn ∈ [aminn,k , a
max
n,k ]

K∑
k=1

akn ≤ amaxn }(2)

2. The utility function of each user is vn(an,a−n) =∑K
k=1[y

k
n(a

k
n + fk

n(a−n)) − gkn(a−n)], where ykn : R → R
is an increasing, twice differentiable, and strictly concave
function in an, which represents the direct effect of each user’s
strategy on its utility function; and fk

n(a−n) : R(N−1)K → R
and gkn(a−n) : R(N−1)K → R are both twice differentiable
functions of system parameters, and denote the effect of other
users’ strategies on the utility of user n. Different examples
of this type of game are introduced by [7].

Since vn(an, a−n) is a continuous function in a, which is
quasi-concave for an ∈ An, and the strategy space of users is
convex and compact, it can be proved that a NE always exists
[1]. The conditions for uniqueness of NE and a distributed

algorithm for reaching NE can be obtained by using the best-
response algorithms and principles of contraction mapping
[5]–[7], (see [1] for more detail).

III. ROBUST GAMES

As stated earlier, users may encounter different sources
of uncertainty caused by variations in a−n and/or in system
parameters, which cause variations in the utility of each user,
and prevent users from attaining their expected performances.
To tackle such issues, we assume that all uncertainties for a
given user can be modeled by variations in fk

n , i.e., f̃k
n(a−n) =

fk
n(a−n) + f̂k

n(a−n) , where f̃k
n(a−n) is the actual value,

fk
n(a−n) is the nominal value estimated by user n, which is

the same as in the nominal game, and f̂k
n(a−n) is the error

due to uncertainty for user n, which may not be the same for
all users. In what follows, we omit a−n from f̃k

n and f̂k
n for

simplicity in notations.
In robust optimization for the worst-case uncertainty, error

variations are assumed to be bounded, hence the actual values
of uncertain parameters are always bounded in an uncertainty
region defined as [14]

ℜn = {f̃n ∈ RK | ∥f̂n∥ ≤ ϵn}, ∀n ∈ N (3)

where f̃n = [f̃1
n, · · · , f̃k

n ], fn = [f1
n, · · · , fk

n ], and f̂n =
[f̂1

n, · · · , f̂k
n ]; and ∥ · ∥ denotes any definition of norm. Since

norm is a convex function, the uncertainty region described
by (3) is a closed and convex set [15].

For different sources of uncertainty, different forms of
uncertainty regions are introduced in [10], [16]. For example,
uncertainty in the channel gain caused by estimation errors
due to Gaussian noise can be modeled by a spherical region
centered at the nominal (estimated) channel gain, whose radius
is a function of the noise power and its distribution, i.e., the
weighted norm with p = 2.

The effect of uncertainty in f̃n is highlighted by a new
variable in the utility function of each user denoted by
un(an,a−n, f̃n) =

∑K
k=1[y

k
n(a

k
n + f̃k

n) − gkn(a−n)]. The
objective of the worst-case-uncertainty approach is to find
the optimal strategy for each user that optimizes each user’s
utility under the worst performance for any error in the
uncertainty region. Therefore, the utility function in the worst-
case-uncertainty approach can be formulated [17] as

ũn = max
an∈An

min
f̃n∈ℜn

un(an,a−n, f̃n) (4)

We refer to the corresponding game whose utility function is
(4) as the robust additively coupled game (RACG), denoted by
G̃ = {N , (ũn)n∈N ,A}. Note that the strategy space of users
in RACG is the same as that in ACG, but the solution to (4)
for user n is a pair (ã′n, f̃

′
n) ∈ An ×ℜn that satisfies [18]

max
an∈An

un(an,a−n, f̃
′
n) = un(ã

′
n,a−n, f̃

′
n) =

min
f̃n∈ℜn

un(ã
′
n,a−n, f̃n)

which is the saddle point of (4). Using the above, the equi-
librium of the robust game G, i.e., the RNE is defined below.



The RNE of the RACG corresponds to the strategy profile
ã∗ = (ã∗1, · · · , ã∗N ) if and only if for any other strategy profile
ãn we have [17]

min
f̃n∈ℜn

un(ã
∗
n, ã

∗
−n, f̃n) ≥ min

f̃n∈ℜn

un(ãn, ã
∗
−n, f̃n), ∀ ãn ∈ An

(5)
Lemma 1: When the uncertainty region for the system pa-
rameters is as in (3), the RNE’s existence in the RACG is
guaranteed.

Proof: See Appendix A.

IV. RNE’S UNIQUENESS CONDITIONS

For the RNE, the best-response of the utility function for
each user cannot be derived in a closed-form, hence obtaining
the uniqueness conditions via the fixed-point algorithm and
contraction mapping is not possible [5], [7]. To resolve this, we
model the ACG’s NE using the notion of variational inequality
(VI), and derive the NE’s uniquness conditions. We also study
the RACG’s RNE using sensitivity analysis of VI, and obtain
its characteristics. Recall that the utility of user n is vn and
un for the nominal and the robust games, respectively.

A. ACG’s NE Analysis
The ACG’s NE can be obtained by solving V I(A,F),

where Fn = (−∂v(an,a−n)
∂an

), F = (Fn)
N
i=1 (Proposition 1.4.2

in [18]). Hence, the conditions for RNE’s uniqueness can
be obtained from monotonicity in mapping F (Propositions
12.9 and 12.12 in [19]). Consider the following definitions of
mapping F

αn(a) , smallest eigenvalue of −∇2
an
vn

=⇒ αmin
n , inf

a∈A
αn(a) ∀n ∈ N (6)

βnm(a) , ∥∇anamvn∥ ∀n ̸= m

=⇒ βmax
nm , sup

a∈A
βn(a) ∀n ∈ N (7)

From the above, we define the N ×N matrix

[Υ]nm =

{
αmin
n if m = n

−βmax
nm if m ̸= n

When Υ is a P-matrix, the mapping F is strictly monotone
and the NE is unique (Theorem 12.5 in [19]).

B. RACG’s RNE Analysis
When the system encounters uncertainty, the actual values

f̃k
n are used instead of the nominal values fk

n in the mapping
F . So considering uncertainty in interactions between users as
defined in (3) can be viewed as perturbations in the mapping
F of the nominal game. As such, the RNE in G̃ is equivalent
to the perturbed solution of V I(A,F), denoted by V I(A, F̃),
where F̃ is the perturbed F with the value f̃k

n = fk
n + f̂k

n .
Theorem 1: For G̃, when Υ is a P-matrix, for any value of

∆ = [ϵ1, · · · , ϵN ], we have: 1) both RNE and NE are unique;
2) the social utility at RNE is always less than that at NE; and
3) the distance between the strategy spaces at RNE and at NE
is

∥a∗ − ã∗∥2 ≤ min{ ∥∆∥22
csm(F)

} (8)

where csm is the strong monotonicity constant for mapping F .
Proof: See Appendix B.

From Theorem 1, the performance of RACG can be ex-
amined and compared to that of ACG through the difference
between the social utility at RNE and at NE, and their upper
bound variations using (8). Note that a∗n is the attractor
for all solutions V I(A, F̃) (Proposition 2.4.10 in [18]), i.e.,
lim∆→0 sup{∥a∗ − ã∗∥2 : a∗, ã∗ ∈ A} = 0 , meaning that
when uncertainty approaches zero, RNE converges to NE (see
the illustrative example for Theorem 1 in Section IV of [20]).
Besides, when the uncertainty region is closed and convex,
the RNE’s uniqueness condition is the same as of the NE.
In general, for multiple NE cases, one cannot analytically
determine whether introducing robustness against uncertainty
would increase or decrease the social utility at RNE, because
social utility is a non-smooth and non-convex function with
many local optima. As such, depending on the amount of
uncertainty, the equilibrium may switch from one local optima
to another.

V. LINEAR INTERACTIONS BETWEEN USERS

Let fk
n be a linear function of other users’ strategies, i.e.,

fk
n =

∑
m ̸=n

F k
mna

k
m, (9)

where F k
mn ∈ R is a real value that depends on the system

parameters. Moreover, let the utility of each user be [21]

ykn =

{
log(αk

n + F k
nna

k
n), if θ = 1

(αk
n+Fk

nna
k
n)

θ+1

θ+1 if − 1 < θ < 0 or θ < −1
(10)

We model the uncertain parameter by F̃ k
mn = F k

mn + F̂ k
mn,

and describe the uncertainty region by

ℜk
n = {F̃mn| , ∥F̂mn∥ ≤ ϵkn}, ∀k (11)

where F̃mn = [F̃ 1
mn, · · · , F̃K

mn], F̂mn = [F̂ 1
mn, · · · , F̂K

mn], and
ϵkn is the bound on the error for each k.

Proposition 1: When utility function is (10) and interactions
between users are linear, we have
1) The game G̃ converges to its unique equilibrium if ∥Mmax+
E∥2 < 1 where

[Mmax]mn =

{
maxk∈[1,··· ,K]

Fk
mn

(Fk
nn)

1+ 1
θ

if m ̸= n

0 otherwise

[E]mn =

{
∥ϵn∥∞ if m = n

0 otherwise

where ϵn = [ϵ1n, · · · , ϵKn ].
2) The total utility at RNE is always less than that at NE,
and the upper bound of the strategy space of each users is
∥a∗ − ã∗∥ ≤ ∥E∥2

2

λmin(Mmax) , when M is a positive definite matrix.
Proof: See Appendix C.



The optimal solution of this type of game is

l̃kn = [(
1

F k
nn

)1+
1
θ λ

1
θ
n − αk

n

F k
nn

−
∑
m ̸=n

F k
mna

k
m +∑

m̸=n

max
F̃mn∈ℜk

n

(F̃ k
mn − F k

mn)a
k
m]

amax
nk

amin
nk

, (12)

where the Lagrange multiplier λn for each user is chosen in
such a way to satisfy the sum constraint

∑K
k=1 a

k
n = amaxn .

The last part of (12) can be considered as the dual of linear
norm [22]; hence, for linear norm with order p, it changes to
linear norm with order q = 1 + 1

p−1 [14].
The distributed and iterative algorithms for this type of

utility functions and linear norms are obtained by using
(12). In this context, two frequently used iterative algorithms
are sequential algorithms, where users update their strategies
sequentially according to a given schedule; and synchronous
algorithms, where all users update their strategies at the same
time, as shown in Table I. If Proposition 1.a holds, the best-
response solution for (12) is a block-contraction mapping,
meaning that from any arbitrary feasible point, the distributed
algorithms converge to the unique fixed point (Proposition 1.1,
Chapter 3 in [23]).

TABLE I
DISTRIBUTED ALGORITHMS

Algorithm 1: Synchronous Distributed Algorithm
For t = 0, set any feasible power allocation ãn(0) for all n ∈ N .

For t = 1, · · · , T :
Calculate ãn(t) from (12) ∀n ∈ N ,

and send the updated value of ãn(t) to other users.
End.

Algorithm 2: Sequential Distributed Algorithm
For t = 0, set any feasible power allocation ãn(0) for all n ∈ N .

For t = 1, · · · , T : ∀n ∈ N , consider w = mod(t,N),
if n = w, calculate ãn(t) from (12), ∀n ∈ N ,

and send updated value ãn(t) to other users
Otherwise, ãn(t+ 1) = ãn(t).

End.

VI. SIMULATION RESULTS

We use simulations to study the impact of robustness in
power control in wireless networks, and also in Jackson
networks, and to get an insight into the performance of G̃
for different bounds on uncertainty as compared to that of G.
In the following simulations, uncertainty for all users denoted
by ϵ is assumed to be the same and is normalized, and each
uncertainty region is modeled by a linear norm with order 2,
i.e., an ellipsoid.

A. Power Control

For power control, we begin by studying the effect of
uncertainty on the performance of both robust and non-robust
approaches in terms of utility variations at their equilibriums.
To do so, we consider N = 2 users and K = 6, and the amount
of uncertainty is assumed to be ϵ = 50% at the RNE. After
convergence to the RNE and to the NE, the system parameter
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Fig. 1. The impact of channel variations in robust and non-robust games.

0 10 20 30 40 50 60 70 80 90
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

ε  %

S
o

ci
a

l u
til

ity
 a

t 
R

S
E

 /
 S

o
ci

a
l u

til
ity

 a
t 

N
E

 

 

Unieque NE 
Multiple NE point

Fig. 2. Comparing RNE and NE for different uncertainty regions for unique
NE and multiple NEs.

varies uniformly from 50% to 150%, which causes variations
in the utility of each user at the NE and at the RNE, as shown
in Fig. 1. Note that the total system utility varies considerably
at the NE of the nominal game for both ϵ = 50% and 150%,
meaning that communication is very unreliable from the user’s
perspective. In contrast, the total system utility at the RNE of
the robust game is stable in both cases. Although we assumed
ϵ = 50% in RACG, reliable transmissions is provided even at
values higher than ϵ = 50%, e.g., up to 150%.

Next, in Fig. 2, we compare the effect of uncertainty when
Proposition 1 holds, with that of the case when it does not
hold, in terms of the ratio of the total achieved utility at
the RNE and at the NE for different amounts of uncertainty.
Simulations are performed for N = 4 and K = 16 in Rayleigh
fading channels for bounded and uniformly generated errors
for each cross sub-channel gain between two users. The ratio
of the total achieved utility in Fig. 2 is obtained by averaging
over 100 channel realizations. Note that when NE is unique,
the total throughput of the system gradually decreases, but for
the case of multiple NEs, no uniformity is observed.
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Fig. 3. The effect of uncertainty on the total delay of Jackson networks
when ϵ = 70%.
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B. Jackson Networks: M/M/1

To show the effect of uncertainty on the system performance
in Jackson networks, we consider a network with N = 5
nodes and K = 3 traffic classes. Fig 3 shows the effect of
uncertainty in transmission rates of users on the convergence
of Jacobi scheme and the gradient approach for reaching NE.
Without considering uncertainty, neither of the two algorithms
converge to NE. Fig. 4 shows RNE for ϵ = 70%. Note that
in both cases, RNEs converge to the vicinity of the nominal
NE, and that RNEs are stable.

VII. CONCLUSION

We showed that the notion RNE can be used in a wide range
of problems in communication networks, in which each entity
(user/player/node) selfishly competes with others to maximize
its own utility by optimally selecting its bounded multidimen-
sional strategy, where the system information is uncertain. In
doing so, we considered uncertainty in the system’s parameters
by additive errors bounded in closed and convex regions,
and applied the robust worst-case-uncertainty approach to the

optimization problem of each entity. We also showed that the
theory of finite-dimension VI and its sensitivity analysis can be
used to obtain the conditions for the existence and uniqueness
of the robust equilibria.

APPENDIX A
PROOF OF LEMMA 1

As stated earlier, RNE is the saddle point of (4) for all
users, and can be obtained by solving V I(Â, F̂) [18], where
F̂ = (F̂n)

N
n=1, and

F̂n ≡

 −∂un(an,a−n ,̃fn)
∂an

∂un(an,a−n ,̃fn)

∂ f̃n

 , (13)

where Â =
∏

n∈N Ân, and Ân = An ×ℜn. Since yn and fn
are twice differentiable functions, F̂ is a continuous mapping.
Also, the strategy space Ân is closed and convex because An

and ℜf are closed and convex sets for all users. Therefore
V I(Â, F̂) always obtains the solution (Corollary 2.2.10 in
[18]). Hence, RNE always exists for RACGs.

APPENDIX B
PROOF OF THEOREM 1

1) Consider the bounded perturbation of mapping F(a)
and F̃(a) caused by variations in system parameters as
Q = ∥F(a) − F̃(a)∥2 ∀an ∈ A. Since the strategy space
of all users in each dimension is bounded as in (2), and the
uncertainty region is bounded and convex, this region is also
bounded, i.e., qmax = maxa∈A minf̃n∈ℜn

∥F(a) − F̃(a)∥2 ≤
∞, ∀n ∈ N . Any solution to the robust optimization for
worst-case-uncertainty in (4) corresponds to a realization of
V I(A, F̃) = V I(A,F+q), where q = q×(1T

K)N1 and q ∈ Q
and q ≤ qmax. When F(a) is continuous and strictly monotone
on the closed convex set A, meaning that Υ is a P matrix, the
solution to V I(A,F + q), denoted by Φ(q), is a monotone
and single-valued mapping on its domain (Excercise 2.9.17 in
[18]), i.e.,

∀qi = qi × (1T
K)N1 ,qj = qj × (1T

K)N1 , qi, qj ∈ Q
=⇒ (Φ(qi)− Φ(qj))(qi − qj) = 0, (14)

Thus, when qi ̸= qj , we have Φ(qi) = Φ(qj), which is single
valued on Q, meaning a unique solution for all q ∈ Q. This
completes the proof of the uniqueness of RNE under the P
property of Υ.

2) Recall that when Υ is a P matrix, F(a) is strictly
monotone, and the utility is strictly convex. Since A is convex
in RK , and F(a) : K → RK is a continuous mapping on A,
the solution to V I(A,F+q) is always a compact and convex
set (Corollary 2.6.4 in [18]). Also, since a∗n is the optimum
value of this convex set for V I(A,F), i.e., q = 0, any point in
this set is less than a∗n, which is the solution to V I(A,F+q).
Note that ã∗n belongs to this set. Since Υ is a P matrix and
F is strictly monotone, we have

∀ an ≤ a∗n =⇒ un(an,a−n) ≤ un(a
∗
n,a

∗
−n) ∀a ∈ A (15)



which is also valid for ã∗n. As such, the utility at the RNE is
less than that at the NE.

3) Since F is strongly monotone, there is a unique so-
lution denoted by ã∗ = Φ∗(q), which can be considered
as the robust solution for G̃ in the worst-case-uncertainty
when ∥q∥2 ≤ ∥∆∥2. Now, both a∗n and ã∗n must satisfy the
following inequalities

0 ≤ (Φ∗(q)− Φ∗(0))(F(Φ∗(0))) (16)
0 ≤ (Φ∗(0)− Φ∗(q))(F(Φ∗(q)) + q) (17)

where 0 = (0K)N1 and 0K is the K × 1 all zero vector. By
some rearrangements of the above inequalities, we have

(Φ∗(0)−Φ∗(q))(F(Φ∗(0))−F(Φ∗(q))) ≤ (Φ∗(0)−Φ∗(q))q
(18)

Since Φ∗(q) is the co-coercive function of q (Proposition
2.3.11 in [18]), the left hand side of (18) is always less than
csm∥Φ∗(0)−Φ∗(q)∥2. Using Schwartz inequality for the right
hand side, we have

∥(Φ∗(0)− Φ∗(q))q∥2 ≤ ∥Φ∗(0)− Φ∗(q)∥2∥q∥2. (19)

Since Φ∗(0) and Φ∗(q) correspond to a∗n and ã∗n, respectively,
(8) can be obtained.

APPENDIX C
PROOF OF PROPOSITION 1

1) For the utility function (10), the NE is obtained using
AV I(A, (wn +Mn(an))

N
n=1) where wn = (αk

n(F
k
nn)

θ)Kk=1,
and Mn = (

Fk
mna

n
m

(Fk
nn)

1+ 1
θ
)Kk=1 [24].

2) Recall that any mapping M̃(an) = (M̃n(an))
N
n=1 is

said to be block contraction with module α, if there exists
α ∈ [0, 1) such that ∀a(1)n ,a

(2)
n ∈ A ∥M̃(a

(1)
n )−M̃(a

(2)
n )∥2 ≤

α∥A(1)
−n − A(2)

−n∥2. Using best response algorithm for the
RACG, we have

eBRn ,∥ wn − M̃n(A(1)
−n)− wn + M̃n(A(2)

−n) ∥2≤

∥[
∑
m ̸=n

F k
mnα

n
m

(F k
nn)

1+ 1
θ

(ak(1)mn − ak(2)mn ) + ϵn∥∥a1−n∥2 − ∥a2−n∥2∥2

≤
∑
m ̸=n

(max
F k
mnα

n
m

(F k
nn)

1+ 1
θ

)∥a(1)−n − a
(2)
−n∥2 +

ϵn∥∥a1−n∥2 − ∥a2−n∥2∥2 ≤∑
m ̸=n

(max
F k
mnα

n
m

(F k
nn)

1+ 1
θ

) + ∥ϵn∥∞)∥A(1)
−n −A(2)

−n∥2.

The above inequality can be written in vector form for all users
as 0 ≤ eBR ≤ (Mmax + E)e, where eBR = [eBR1 , · · · , eBRN ]

and e = [∥a(1)−1−a
(2)
−1∥2, · · · , ∥a

(1)
−N−a

(2)
−N∥2]. Using Schwartz

inequality for any weighted norm, we write

∥eBR∥2 ≤ ∥(Mmax +E)e∥2 ≤ ∥Mmax +E∥2∥e∥2. (20)

Since ∥Mmax + E∥2 < 1, the best response algorithm for the
RACG is contraction mapping, and therefore the RACG has
a unique RNE.

3) The first part can be obtained the same as in Part 2 of
Theorem 1. For the upper bound See Appendix E in [20].
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