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Abstract

In this paper we introduce a new class of
online learning problems called sequential
multi-armed bandit (S-MAB) problems. Un-
like conventional multi-armed bandit (MAB)
problems in which the reward is observed
exactly after each taken action, the S-MAB
problem proceeds in rounds. In each round,
the learner sequentially selects from a set of
available actions. Upon each action selection
a feedback signal is observed, whilst the re-
ward of the selected sequence of actions is
only revealed after a stop action that ends the
current round. The reward of the round de-
pends both on the sequence of actions and the
sequence of observed feedbacks. The goal of
the learner is to maximize its total expected
reward over all rounds by learning to choose
the best sequence of actions based on the
feedback it gets about these actions. First,
we show that combinatorial MABs (C-MAB)
are a special case of S-MABs in which the
feedback does not matter. Then, we define an
oracle benchmark, which sequentially selects
the actions that maximize the immediate re-
ward. Finally, we propose our online learning
algorithm whose regret is logarithmic in time
and linear in the number of actions with re-
spect to the oracle benchmark. We evaluate
the performance of the proposed model using
a personalized online teaching system. Our
illustrative results show that online adapta-
tion of the teaching materials (actions) based
on student feedback can significantly enhance
teaching effectiveness.

Preliminary work. Under review by AISTATS 2014. Do
not distribute.

1 Introduction

Many sequential decision making problems can be
formalized as a MAB problem such as clinical tri-
als [8], dynamic spectrum access [1] and web adver-
tising [9,12]. A common assumption in all these prob-
lems is that each decision step involves taking a single
action after which the reward is observed. However,
unlike these problems in many other applications such
as online education [10] and healthcare [11], each de-
cision step involves taking multiple actions for which
the reward is only revealed after the action sequence
is completed.

For instance, in online education, a sequence of teach-
ing materials are given to the students to improve their
understanding of a course subject. While the final
exam is used as a benchmark to evaluate the overall
effectiveness of the given sequence of teaching materi-
als, a sequence of intermediate feedbacks like students’
performance on quizzes, homework grades, etc., can be
used to guide the teaching examples online. Similarly,
in healthcare a sequence of treatments is given to a
patient over a period of time. The overall effectiveness
of the treatment plan depends on the given treatments
as well as their order [11]. Moreover, the patient can
be monitored during the course of the treatment which
yields a sequence of feedbacks about the selected treat-
ments, while the final outcome is only available in a
follow-up after the treatment is completed.

In conclusion, in such sequential decision making prob-
lems the order of the taken actions matters. Moreover,
the feedback available after each taken action drives
the action selection process. We call online learn-
ing problems exhibiting the aforementioned properties
sequential multi-armed bandits (S-MAB). An S-MAB
problem proceeds in rounds ρ = 1, 2, . . ., in which the
learner selects actions sequentially in each round, one
after another, with each action belonging to the ac-
tion set A. After each taken action a ∈ A, a feedback
f ∈ F is observed about the taken action. Based on
this feedback, the learner either decides to select an-
other action in A or select a stop action which ends the
current round and starts the next round. The reward
for round ρ is observed only after the stop action is
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Figure 1: An illustration of the order of actions, feed-
backs and rewards for the S-MAB problem. RW (ρ)
is the cumulative reward at the end of round ρ, aρ,t
is the tth action selected in round ρ, fρ,t is the feed-
back to the tth action in round ρ, and ca is the cost of
selecting action a.

taken. The goal of the learner is to maximize its total
expected reward over all rounds by learning to choose
the best sequence of actions given the feedback. An
illustration that shows the order of actions, feedback,
rewards and the rounds is given in Fig. 1.

The S-MAB problem is a generalization of the com-
binatorial MAB (C-MAB) problem [5]. In a C-MAB
problem the learner chooses a sequence of actions and
observes both the final reward and the rewards associ-
ated with each individual action. The difference from
C-MAB problems is that (i) the sequence of actions is
not chosen all at once, the chosen sequence depends
on the feedback received after each action, (ii) there
is no individual reward observation, a (random) global
reward is observed after the stop action is taken, (iii)
the reward not only depends on the entire sequence of
actions but it also depends on the observed sequence
of feedbacks.

For S-MABs we define an oracle benchmark which
knows the reward distribution of all sequences of ac-
tions and feedbacks, and selects the next action in the
sequence to be the action that myopically maximizes

the immediate reward. Due to this behavior, we call
this benchmark the best first (BF) benchmark.1 We
prove the optimality of the BF benchmark for the S-
MAB problems with discounted rewards. Then, we
introduce a learning algorithm which learns online the
actions that myopically maximizes the immediate re-
ward. We prove that the regret of the proposed learn-
ing algorithm with respect to the BF benchmark in-
creases logarithmically in the number of rounds.

In standard MAB problems [2,8], the number of possi-
ble actions is small, hence one is interested in achiev-
ing regret whose time order is small. However, in the
S-MAB problem, the number of possible sequences
of actions is exponential in the maximum sequence
length. Moreover, the set of possible action-feedback
sequences is even larger. Due to this, it is very impor-
tant to design learning algorithms whose regret scales
at a much slower rate. Our proposed algorithm’s regret
is linear in the number of actions times the number of
possible feedbacks, which makes it practical in settings
where a long sequence of actions should be taken in
each round such as healthcare (for each patient) and
online education (for each student).

The rest of the paper is organized as follows. Related
work is given in Section 2. In Section 3 the S-MAB
problem is formalized, the BF benchmark is defined
and proven to be optimal for the S-MAB problem with
discounted rewards. Then, we propose an online learn-
ing algorithm in Section 4 and prove a regret bound
for it with respect to the BF benchmark. Illustrative
results on the efficiency of the proposed learning algo-
rithm for an online education application is shown in
Section 5 based on an online learning platform we de-
veloped for students taking a digital signal processing
(DSP) class. Finally, concluding remarks are given in
Section 6.

2 Related Work

In standard MAB problems [2,8] actions are taken se-
quentially over time, and a reward is observed after
each action is taken, which is then used to update
the decision rule. In contrast, in an S-MAB prob-
lem, the reward is observed only after a specific stop
action which ends the current round and starts the
next round is taken. This reward depends on the se-
quence of actions taken and feedbacks observed in the
current round. Another class of MAB problems in
which the reward depends on the sequence of actions
that are taken are the C-MAB problems [5, 6]. How-
ever, in these problems it is assumed that (i) all the
actions in the sequence are selected simultaneously;

1Since the BF benchmark chooses the myopic best ac-
tion it is similar to the best first search algorithms for
graphs [14].
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hence, no feedback is available between the actions,
(ii) the global reward function has a special additive
form which is equal to a weighted sum of the indi-
vidual rewards of the selected actions, (iii) individual
action rewards are observed in addition to the global
reward. As we will show in Section 3, the C-MAB
problem is a special case of the S-MAB problem.

Other MAB problems which involve large action sets
are [4,7]. In these works, at each time step the learner
chooses an action in a metric space and obtains a re-
ward that is a function of the chosen action. Again,
no intermediate feedback about the chosen sequence
of actions is available before the reward is revealed.
Another related MAB problem is MAB with knap-
sacks [3,13]. In these problems, there is a limit on the
budget, which limits the number of times a particular
action can be selected. The goal is to maximize the
total reward given the budget constraints. However,
similar to standard MAB problem, in these problems
it is also assumed that the reward is immediately avail-
able after each selected action, and the current reward
only depends on the current action unlike S-MABs in
which the current reward depends on a sequence of
actions and feedbacks. Although the S-MAB prob-
lem also have a budget constraint which restricts the
length of the sequence of actions that can be taken
in each round, this constraint is completely different
from the budget constraint in MAB with knapsacks.
In the S-MAB problem, the budget is renewed after
each round; and hence, does not limit the number of
rounds in which a certain action can be selected as in
MAB with knapsacks.

3 Problem Formulation

The system operates in rounds (ρ = 1, 2, . . .). At
each round the learner selects actions sequentially over
time until it takes a stop action which ends the cur-
rent round and starts the next round. Let A de-
note the set of actions excluding the stop action. Let
A := A ∪ {stop}. The number of actions is A = |A|,
where | · | is the cardinality operator. After each ac-
tion is taken a feedback f ∈ F is observed about that
action. There is a possibility that no feedback is ob-
served, which is denoted by ∅, hence ∅ ∈ F . Let
F = |F|. We assume that both sets A and F are
finite. Upon taking action a the learner incurs a cost
ca > 0. Each round ρ is composed of a finite number
of slots t = 1, 2, . . . , Tρ, where Tρ denotes the number
of actions selected before the stop action, which is a
random variable that depends on the sequence of feed-
backs observed in response to the selected actions. We
assume that there is a limit on the number of actions
that can be selected in each round ρ, i.e., Tρ ≤ lmax

for some lmax > 0.

For a round ρ, let aρ,t, 1 ≤ t ≤ Tρ denote the tth
action chosen in round ρ, and fρ,t, 1 ≤ t ≤ Tρ denote
the feedback to the tth chosen action in that round.
The next action aρ,t+1 ∈ A may depend on the set
of previously selected actions and observed feedbacks.
Let aρ := (aρ,1, . . . , aρ,Tρ) be the sequence of actions
chosen in round ρ. Let aρ[t] := (aρ,1, . . . , aρ,t) be the
sequence of first t ≤ Tρ actions chosen in round ρ. We
define fρ as the sequence of feedbacks observed about
the chosen actions in round ρ and fρ[t] as the sequence
of first t feedbacks in round ρ.

The set of all sequences of actions is denoted by S.
Since every sequence of actions must end with the stop
action we have

|S| =
lmax∑
t=1

At =
(
Almax+1 −A

)
/(A− 1). (1)

For any sequence of actions a ∈ S, let F(a) be the set
of sequences of feedbacks that may be observed, and
F := ∪a∈SF(a). Given a sequence of actions a ∈ S
and sequence of feedbacks f ∈ F(a) in round ρ, the
reward is drawn from an unknown distribution Fa,f

independently from the other rounds. The expected
reward is given by ra,f .

We will first show that the C-MAB problem [5] is a
special case of the S-MAB problem.

Definition 1. In the C-MAB problem, the learner
must select M actions (without replacement) for M
positions from a set of actions N such that |N | = N ≥
M . The expected reward of action a ∈ N in position
t ∈ {1, . . . ,M} is given by θa,t > 0. For a sequence
of actions a = (a1, . . . , aM ), where at denotes the ac-
tion assigned to the tth position, the expected reward
is given by θa =

∑M
t=1 θat,t.

The next theorem shows that the C-MAB problem is
a special case of the S-MAB problem.

Theorem 1. Consider the C-MAB problem given in
Definition 1. Define an S-MAB problem with A = N ,
F = ∅, ca = 0, for all a ∈ A, lmax = M and

ra,f =

|a|∑
t=1

θat,tI(at 6= at′ for t 6= t′),

for a such that |a| = M and for all f ∈ F(a), where
I(·) is the indicator function; and ra,f = 0 for all a
such that |a| < M . These two problems are equivalent
in the sense that every sequence of feasible actions a
in the S-MAB problem, i.e., sequence of actions with
nonzero reward, has the same reward in the C-MAB
problem.

Proof. F = ∅ implies that the feedback has no effect
on the reward, hence the reward only depends on the
sequence of taken actions. For all a such that |a| <
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M or a such that the same action is taken in two or
more positions, the reward in the S-MAB problem is
zero. These sequences of actions are not feasible since
θa,t > 0 for all a ∈ N and t = 1, . . . ,M guarantees
that at least one sequence of actions have a positive
reward. For any sequence of actions a and sequence
of feedbacks f such that |a| = M , we have ra,f =∑M
t=1 θat,t = θa > 0.

3.1 The Best First Benchmark

Since the number of possible sequences of actions and
feedbacks is exponential in lmax, it is very inefficient
to learn the best sequence of actions by trying each
of them separately to estimate ra,f for every a ∈ S
and f ∈ F(a). In this section we propose an ora-
cle benchmark called the best first (BF) benchmark
whose action selection strategy can be learned quickly
by the learner. The pseudocode for the BF benchmark
is given in Fig. 2.

1: while ρ ≥ 1 do
2: Select action a∗1 = arg maxa∈A ya,∅
3: Observe feedback f∗1 .
4: while 1 < t ≤ lmax do
5: if

ra∗[t−1],f∗[t−1] ≥
maxa∈A(y(a∗[t−1],a),f∗[t−1] − ca) then

6: a∗t = stop //BREAK
else

8: a∗t = arg maxa∈A(y(a∗[t−1],a),f∗[t−1] − ca)
end if
t = t+ 1

11: end while
12: ρ = ρ+ 1
13: end while

Figure 2: Pseudocode for the BF benchmark.

Let S[t] ⊂ S be the set of sequences of actions of
length t followed by the stop action. When we need
to explicitly state the length of the chosen sequence of
actions, we will use the notation a[t] ∈ S[t]. We will
also use fa[t′] to denote the sequence of feedbacks to
the first t′ actions in a. Let

ya[t],fa[t][t−1] := Ef [ra[t],(fa[t][t−1],f)],

be the ex-ante reward given the sequence of actions
a[t] before the feedback for at is observed, where the
expectation is taken with respect to the distribution
of the feedback for action at.

The BF benchmark incrementally selects the next ac-
tion based on the sequence of feedbacks observed for
the previously selected actions. The action it selects
is a∗1 = arg maxa∈A ya,∅, where ∅ denotes that no pre-
vious feedback is available. Let a∗ = (a∗1, a

∗
2, . . . , a

∗
T )

be the sequence of actions selected by the BF bench-
mark, where T is the random time slot in which the
stop action is selected, which obviously depends on the

Figure 3: Decision graph for the BF benchmark and
the best fixed sequence of actions.

observed sequence of feedbacks. In general a∗t , depends
on both a∗[t−1] and fa∗[t−1][t−1]. We assume that the
following property holds for the expected reward for
the sequence of actions selected by the BF benchmark
and the sequence of feedbacks observed from these ac-
tions.

Assumption 1. For any two sequences of action-
feedback pairs (a∗,f) and (a∗,f ′), where a∗ is the set
of actions selected by the BF benchmark and f and f ′

are two feedback sequences that are associated with this
set of actions, if ft = f ′t, then we have

arg max
a∈A

y(a∗[t],a),f [t] = arg max
a∈A

y(a∗[t],a),f ′[t].

For any t, if ra∗[t],f∗[t] ≥ y(a∗[t],a),f∗[t] − ca for all a ∈
A, then the BF benchmark will select the stop action
after the tth action. Otherwise, it will select the action
which maximizes y(a∗[t],a),f∗[t]−ca. The total expected
net reward, i.e., the expected total reward minus costs
of choosing actions, of the BF benchmark for the first
n rounds is equal to

RWBF(n) :=

n∑
ρ=1

E

YA∗ρ,F ∗ρ − ∑
a∈A∗ρ

ca

 ,
where A∗ρ is the random variable that represents the se-
quence of actions selected in round ρ by the BF bench-
mark, F ∗ρ is the random variable that represents the
sequence of feedbacks observed for the actions selected
in round ρ, and YA∗ρF ∗ρ is the random variable that rep-
resents the reward obtained in round ρ.

Although the BF benchmark may not always select the
optimal sequence actions, it can perform better than
the best fixed sequence of actions that is not adapted
based on the observed feedbacks. This is illustrated in
the following example.

Example 1. Consider A = {a, b}, F = {0, 1},
ca = cb = c and lmax = 2. Assume that the ex-
pected rewards are given as follows: r(a,a)|(f1,f2) = 0
and r(b,b)|(f1,f2) = 0 for any f1, f2 ∈ F ; ra,0 = 0,
rb,0 = 0, ra,1 = 12, rb,1 = 6, r(a,b),(1,1) = 13,
r(a,b),(1,0) = 12, r(a,b),(0,1) = 10, r(a,b),(0,0) = 9. Let
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P(f |a) denote the probability that feedback sequence f
is observed for the sequence of actions a. Assume that
we have P(1|a) = 0.5, P(0|a) = 0.5, P((0, 0)|(a, b)) =
0.3, P((0, 1)|(a, b)) = 0.2, P((1, 1)|(a, b)) = 0.4,
P((1, 0)|(a, b)) = 0.1.

The decision rules of the BF benchmark and the best
fixed sequence of actions are shown in Figure 3. The
BF benchmark selects a as the first action. Then, if
feedback is 0 it selects b before selecting the stop ac-
tion. Else, it selects the stop action after a. Hence the
expected reward of the BF benchmark in a single round
is

RWBF(1) = 0.5× 12 + 0.3× (9− c) + 0.2× (10− c)
− c = 10.7− 1.5c.

The best fixed sequence of actions is (a, b) which gives
a single round expected reward that is equal to

0.3× 9 + 0.4× 12 + 0.2× 10 + 0.1× 11− 2c = 11− 2c.

Thus, for c > 3/5 the BF benchmark is better than the
best fixed sequence of actions.

Although the BF benchmark is not optimal in gen-
eral, there exists a special class of S-MAB problems
for which it is optimal. We call these problems, S-
MAB with discounted rewards.

Definition 2. S-MAB with discounted rewards is an
S-MAB problem whose expected reward for any se-
quence of actions a and feedbacks f is given by ra,f =∑|a|
t=1 δ

t−1θat,ft , where 0 ≤ δ < 1 is the discount fac-
tor, and θa,f ≥ 0 is the expected reward of action a
when feedback to action a is f .

In the next theorem we show that the BF benchmark
is optimal for the S-MAB problem with discounted
rewards.

Theorem 2. The BF benchmark is optimal for the
S-MAB problem with discounted rewards for any dis-
count factor 0 ≤ δ < 1.

Proof. Consider any sequence of actions a[t] and feed-
backs f [t]. Given these, the optimal action to select
at t+ 1 is arg maxa∈A(Ef [θa,f ]− ca) if δtEf [θa,f ] > ca
for some a ∈ A. Otherwise the optimal action is the
stop action. This implies that for all 1 ≤ t ≤ lmax, the
optimal action coincides with the action chosen by the
BF benchmark.

3.2 Definition of the Regret

Consider any learning algorithm α which selects a se-
quence of actions Aα

ρ based on the observed sequence
of feedbacks F α

ρ . The regret of α with respect to the
BF benchmark in the first n rounds is given by

E[R(n)] := RWBF (n)−
n∑
ρ=1

E

YAα
ρF

α
ρ
−
∑
a∈Aα

ρ

ca

 . (2)

Any algorithm whose regret increases at most sublin-
early, i.e., O(nγ), 0 < γ < 1, in the number of rounds
will converge in terms of the average reward to the av-
erage reward of the BF benchmark as n→∞. In the
next section we will propose an algorithm whose regret
increases only logarithmically (better than sublinear)
in the number of rounds.

4 A Learning Algorithm for the
S-MAB Problem

In this section we propose Feedback Adaptive Learning
(FAL) (pseudocode given in Fig. 4), which learns the
sequence of actions to select based on the observed
feedbacks to the previous actions (as shown in Fig.
1). In order to minimize the regret given in (2), FAL
balances exploration and exploitation when selecting
the actions. Consider the tth action selected in round
ρ. FAL keeps the following sample mean reward esti-
mates: (i) r̂t,a,f (ρ) which is the sample mean estimate
of the rewards collected in the first ρ − 1 rounds in
which the stop action is taken after action a is se-
lected as the tth action and feedback f is observed,
(ii) ŷf,t,a(ρ) which is the sample mean estimate of the
rewards in the first ρ− 1 rounds in which the stop ac-
tion is taken after action a is selected as the tth action
after observing feedback f for the t−1th action. In ad-
dition to these, FAL keeps the following counters: (i)
Tt,a,f (ρ) which counts the number of times action a is
selected as the tth action and feedback f is observed
in the first ρ − 1 rounds in which the stop action is
taken after the tth action, (ii) Tf,t,a(ρ) which counts
the number of times action a is selected as the tth ac-
tion after feedback f is observed from the previously
selected action in the first ρ − 1 rounds in which the
stop action is taken after the tth action.

Next, we explain how exploration and exploitation is
performed. Consider the event that FAL selects ac-
tion aρ,t = a and receives feedback fρ,t = f . It
first checks if Tt,a,f (ρ) < D log(ρ/δ), where D > 0
and δ > 0 are constants that are input parameters
of FAL whose values will be specified later. If this
holds, then FAL explores by taking the stop action
and obtaining the reward Y (ρ), by which it updates
r̂t,a,f (ρ + 1) = (r̂t,a,f (ρ) + Y (ρ))/(Tt,a,f (ρ) + 1). Else
if Tt,a,f (ρ) ≥ D log(ρ/δ), FAL checks if there are any
actions a′ ∈ A for which Tfρ,t,t+1,a′(ρ) < D log(ρ/δ).
If there are such actions, then FAL randomly selects
one of them to explore by observing the feedback, and
then taking the stop action, and obtaining the reward.
The obtained rewad Y (ρ) is used for both updating
r̂t+1,a′,fρ,t+1(ρ+1) and ŷfρ,t,t+1,a′(ρ+1). If none of the
above events happen, then FAL exploits at step t. To
do this it first checks if r̂t,a,fρ,t(ρ) ≥ ŷfρ,t,t+1,a′(ρ)−ca′ ,
for all a′ ∈ A. If this is the case, it means that select-
ing one more action does not increase the expected
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1: Input D > 0, δ > 0, A, F , lmax.
2: Initialize: r̂t,a,f = 0, ŷf,t,a = 0, Tt,a,f = 0, Tf,t,a =

0, ∀a ∈ A, f ∈ F , t = 1, . . . , lmax. fρ,0 = ∅, aρ[0] =
∅, ∀ρ = 1, 2, . . ..

3: while ρ ≥ 1 do
4: U1 = {a ∈ A : T∅,1,a < D log(ρ/δ)}
5: if U1 6= ∅ then
6: Select aρ,1 randomly from U1, observe fρ,1.
7: Select the stop action, get reward Y (ρ), t∗ = 1,

//BREAK
8: else
9: Select aρ,1 = arg maxa∈A(ŷ∅,1,a − ca), observe

fρ,1.
10: end if
11: t = 2
12: while 2 ≤ t ≤ lmax do
13: Ut = {a ∈ A : Tfρ,t−1,t,a < D log(ρ/δ)}
14: if Tt−1,aρ,t−1,fρ,t−1 < D log(ρ/δ) then
15: Select the stop action, get reward Y (ρ), t∗ =

t− 1, //BREAK
16: else if Ut 6= ∅ then
17: Select aρ,t randomly from Ut and observe the

feedback fρ,t.
18: Select the stop action, get reward Y (ρ), t∗ =

t, //BREAK
19: else
20: if r̂t−1,aρ,t−1,fρ,t−1 ≥ ŷfρ,t−1,t,a′ − ca, ∀a′ ∈

A then
21: Select the stop action, get reward Y (ρ),

t∗ = t− 1, //BREAK
22: else
23: Select aρ,t = arg maxa′∈A(ŷfρ,t−1,t,a′−ca′

and get the feedback fρ,t.
24: end if
25: end if
26: t = t+ 1
27: end while
28: Update r̂t∗,aρ,t∗ ,fρ,t∗ , ŷfρ,t∗−1,t

∗,aρ,t∗ using Y (ρ)

(sample mean update).
29: Tt∗,aρ,t∗ ,fρ,t∗ + +, Tfρ,t∗−1,t

∗,aρ,t∗ + +.
30: ρ = ρ+ 1
31: end while

Figure 4: Pseudocode for FAL.

reward enough to compensate for the cost associated
with selecting one more action. Hence, FAL takes the
stop action after the tth action. If the opposite case
happens, then it means that selecting one more action
can improve the reward sufficiently enough for it to
compensate the cost of selecting the action. Hence,
FAL will select one more action which is given by
aρ,t+1 = arg maxa′∈A(ŷfρ,t,t+1,a′(ρ) − ca′). The next
decision to take (whether to select another action in
A or to select the stop acion) will be based on the
feedback to aρ,t+1 which is fρ,t+1. This goes on un-
til FAL takes the stop action, which will eventually
happen since at most lmax actions can be taken in a
round. This way the length of the sequence of selected
actions is adapted based on the sequence of received
feedbacks and costs of taking the actions. Since FAL’s
objective is to maximize the net reward (reward minus
costs of selecting actions) from a sequence of actions,
it captures the tradeoff between the rewards and the
costs in selecting its actions.

4.1 Regret Bound For FAL

The regret of FAL can be written as the sum of two
separate regret terms: total regret in rounds when
FAL explores, i.e., Re(n), and total regret in rounds
when FAL exploits, i.e., Rs(n). Hence, we can write
E[R(n)] = E[Re(n)] + E[Rs(n)]. In order to derive the
regret bound for FAL, we assume that the following
holds.

Assumption 2. Unique optimal action for every
history of sequence of actions and feedbacks.
Let Q∗1 := arg maxa∈A ya,∅, and for any a[t] ∈ S[t]
and f [t] ∈ F(a[t]), t ≥ 1 let

Q∗t+1(a[t],f [t]) := arg max
a∈Ā

{
r(a[t],stop),f [t],

{y(a[t],a′),f [t] − ca′}a′∈A
}
,

where r(a[t],stop),f [t] := ra[t],f [t]. We assume that
|Q∗1| = 1 and |Q∗t+1(a[t],f [t])| = 1 for all a[t] ∈ S[t]
and f [t] ∈ F(a[t]), 1 ≤ t ≤ lmax − 1.

For a sequence of numbers {r}r∈R, let min2({r}r∈R)
be the difference between the highest and the second
highest numbers. Consider any sequence of actions
a∗[t] ∈ S[t] and feedback f [t] ∈ F(a∗[t]), where a∗[t]
is the sequence of the first t actions selected by the BF
benchmark. Let ∆min,1 := min2({ya,∅}a∈A), and

∆min,t := min
a∗[t]∈S[t],f [t]∈F(a∗[t])(
min2(ra∗[t],f [t], {y(a∗[t],a),f [t] − ca}a∈A)

)
,

for 1 < t < lmax. Let ∆min := mint=1,...,lmax−1 ∆min,t.
Given that the constant D that is input to FAL is such
that D ≥ 4/∆2

min, and assuming that the support set
of the rewards is [0, 1], we have the following bounds
on the regret.

Theorem 3. Setting the parameters of FAL as D ≥
4/∆2

min and δ =
√
ε/(A

√
2β), where β =

∑∞
t=1 1/t2,

we have the following bounds on the regret of FAL.
(i) Re(n) ≤ 2lmaxFAD log(n/δ) with probability 1.
(ii) Rs(n) = 0 with probability at least 1− ε.
(iii) E[R(n)] ≤ 2lmaxFAD log(n/δ) + εn.

Proof. The proof involves showing that when the FAL
estimates the expected rewards for the sequences of
actions it selects such that they are within ∆min/2 of
the true expected rewards, then it will always select
the same sequence of actions as the BF benchmark
does.

To proceed, we define the following sets of rounds. Let
E1(n) be the set of rounds in {1, . . . , n} for which
FAL explores the action selected in the first slot of
that round, i.e., ρ ∈ {1, . . . , n} for which T∅,1,a(ρ) <
D log(ρ/δ) for some a ∈ A such that after this action,
the stop action is taken. Let Et(n), 1 < t ≤ lmax
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be the set of rounds in {1, . . . , n} for which FAL ex-
plores in the tth slot of that round, i.e., the set of
rounds for which FAL exploited up to the t− 1th slot
and r̂t−1,aρ,t−1,fρ,t−1

(ρ) ≤ D log(ρ/δ) or ŷfρ,t−1,t,a ≤
D log(ρ/δ) for some a ∈ A such that the stop action is
taken either after the t−1th slot or the tth slot depend-
ing on which action in which slot is under-explored.
Let τ1(n) be the set of rounds in {1, . . . , n} for which
FAL exploits for the first slot of the round, i.e., T∅,1,a ≥
D log(ρ/δ) for all a ∈ A. Let τt(n) be the set of rounds
in {1, . . . , n} for which FAL exploits for the tth slot in
that round, i.e., r̂t−1,aρ,t−1,fρ,t−1(ρ) ≥ D log(ρ/δ) and
ŷfρ,t−1,t,a ≥ D log(ρ/δ) for all a ∈ A such that FAL
has not taken the stop action before slot t − 1. Let
Zt(n) := τt(n) − τt+1(n) − Et+1(n), 1 ≤ t < lmax

denote the set of rounds in {1, . . . , n} for which FAL
takes the stop action after the t−1th action is selected
at rounds when it exploits. Let Zlmax(n) := τlmax(n).
The set of all rounds for which FAL explores until
the nth round is equal to E(n) :=

⋃lmax

t=1 E1(n), where
Et(n) ∩ Et′(n) = ∅ for t 6= t′. The set of all rounds
for which FAL exploits until the nth round is equal
to Z(n) :=

⋃lmax

t=1 Zt(n), where Zt(n) ∩ Zt′(n) = ∅
for t 6= t′. We also have Z(n) := τ1(n), τt(n) =
τt+1(n) ∪ Et+1(n) ∪ Zt(n) for 1 ≤ t < lmax.

In the following we will bound Rs(n). We define the
events which correspond to the case that the estimated
rewards for the sequences of actions that will also be
selected by the BF benchmark are within ∆min/2 of
the expected final exam scores. Let a∗ρ be the sequence
of actions that will be selected by the BF benchmark
in round ρ. Let

Perf1(n)

:= {|ŷ∅,1,a(ρ)− ya,∅| < ∆min/2,∀a ∈ A,∀ρ ∈ τ1(n)},

and

Perft(n) :=
{
|r̂t−1,aρ,t−1,fρ,t−1(ρ)− ra∗ρ[t−1],fa∗ρ[t−1][t−1]|

< ∆min/2, |ŷfρ,t−1,t,a(ρ)− y(a∗ρ[t−1],a),fa∗ρ[t−1][t−1]|

< ∆min/2,∀a ∈ A,∀ρ ∈ τt(n)}

Let Perf(n) =
⋂lmax

t=1 Perft(n). On event Perf(n), FAL
selects sequence of actions in the same way as the BF
benchmark does. Hence, the contribution to the regret
given in (2) on event Perf(n) is zero.

Next, we lower bound the probability of event Perf(n).
Using the chain rule we can write

P(Perf(n))=P(Perflmax
(n),Perflmax−1(n), . . . ,Perf1(n))

= P(Perflmax
(n)|Perflmax−1(n), . . . ,Perf1(n))

× P(Perflmax−1(n)|Perflmax−2(n), . . . ,Perf1(n))

× . . .× P(Perf2(n)|Perf1(n))× P(Perf1(n)). (3)

For an event E, let Ec denote its complement. Note
that we have

P(Perf1(n)c) ≤
∑

ρ∈τ1(n)

∑
a∈A

P(|ŷ∅,1,a(ρ)− ya,∅| < ∆min/2)

≤
∑

ρ∈τ1(n)

2A exp(−2D log(ρ/δ)∆2
min/4)

≤
∑

ρ∈τ1(n)

2Aδ2/ρ2 ≤ 2Aβδ2, (4)

since D ≥ 4/∆2
min and β =

∑∞
ρ=1 1/ρ2. Hence, we

have P(Perf1(n)) ≥ 1 − 2Aβδ2. On event Perf1(n),
it is always the case that the first selected action by
FAL is chosen according to the BF benchmark, in-
dependent of whether the FAL explores or exploits
in the second slot of those rounds. Hence given
Perf1(n), the sample mean reward estimates that are
related to Perf2(n) are always sampled from the dis-
tribution in which the first action is selected accord-
ing to the BF benchmark. Because of this, we have
P(Perf2(n)|Perf1(n)) ≥ 1 − 2Aβδ2. Similarly, it can
be shown that P(Perft(n)|Perft−1(n), . . . ,Perf1(n)) ≥
1− 2Aβδ2. Combining all of this and using (4) we get

P(Perf(n))≥(1− 2Aβδ2)A≥1− 2A2βδ2 = 1− ε, (5)

since δ =
√
ε/(A

√
2β).

Next we bound Re(n). From the definition of
Et(n), t = 1, . . . , lmax, we know that |E1(n)| ≤
FAD log(n/δ). Similarly, for Et(n), t = 2, . . . , lmax,
we have |Et(n)| ≤ 2FAD log(n/δ). Hence, we have
|E(n)| ≤ 2lmaxFAD log(n/δ). Since the worst-case re-
ward loss due to a suboptimal sequence of actions is
at most 1, we have Re(n) ≤ 2lmaxFAD log(n/δ). Fi-
nally, the regret bound on E[R(n)] holds by taking the
expectation.

Theorem 3 provides bounds on the exploration, ex-
ploitation and the total regret of FAL. The regret
bounds are in the order of lmaxA, which is significantly
lower than Almax which is the order of the number of
sequences of actions as given in (1). This implies that
FAL learns to exploit the actions that are selected by
the BF benchmark much faster than standard MAB
algorithms [2, 8], whose rates of exploration for the
problem we consider will be in the order of Almax . The
learner can set ε to a desired value based on the num-
ber of times it wants to explore and the confidence level
it wants to achieve for the rounds that it exploits. The
following corollary gives a logarithmic in the number
of rounds bound on the regret, which is achieved for a
specific horizon n by setting the value of ε = 1/n.

Corollary 1. Given the number of rounds n as an
input, setting the parameters of FAL as D = 4/∆2

min
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and δ = 1/(A
√

2nβ), where β =
∑∞
t=1 1/t2, we have

E[R(n)] ≤ 1 + 2lmaxFAD log(A
√

2β)

+ lmaxFAD log(n).

Proof. The result is obtained by setting ε = 1/n and
using the results of Theorem 3.

Corollary 1 implies that the expected total loss of FAL
with respect to the BF benchmark grows at most loga-
rithmically in the number of rounds. Hence as n→∞,
the average regret converges to zero.

5 Illustrative Results

In this section we illustrate the performance of FAL
in a real-world online education platform that we de-
signed for remedial teaching. We call this implemen-
tation of FAL – eTutor, and its operation is shown in
Fig. 5. We deployed our eTutor system for remedial
studies for students who have already studied digital
signal processing (DSP) one or more years ago, and
the goal of this implementation of the eTutor is to re-
fresh discrete Fourier transform (DFT) material in the
minimum amount of time. In order to learn what se-
quence of teaching materials (actions) is best to show
to the students, we differentiate students according to
their contexts. Student contexts belong to X = {0, 1},
where for a student ρ, xρ = 0 implies that she is not
confident about her knowledge of DFT, and xρ = 1 im-
plies that she is confident about her knowledge of DFT.
For each context we run a different instance of the FAL
algorithm to learn the best sequence of teaching ma-
terials to show to the students based on the feedback
they give. A contains three (remedial) materials: one
text that describes DFT and two questions that re-
freshes DFT knowledge. If a question is shown to the
student and if the student’s answer is incorrect, then
the correct answer is shown along with an explanation.
For each a ∈ A, we set the cost to be ca = λ × θa,
where θa (in minutes) is the average time it takes for
a student to complete material a, and 0 < λ < 1 is a
constant that represents the tradeoff between time and
final exam score. For instance, in remedial teaching,
reducing the time it takes to teach a concept is as im-
portant as improving the final exam score. The value
of θa is estimated and updated based on the responses
of the students. Performance (reward) of the students
after taking the remedial materials are tested by the
same final exam.

We compare the performance of eTutor with a random
rule (RR) that randomly selects the materials to show
and a fixed rule (FR) that shows all materials (text
first, easy question second, hard question third).2 The

2Since the other MAB algorithms are not adaptive to
the feedbacks, they cannot do better than the best fixed
rule in the long run.

Figure 5: Operation of the eTutor.

Algorithm average final time spent in minutes
score (max=100) taking the course

eTutor 75.8 8.5
RR 62.5 10.2
FR 75.0 17.0

Table 1: Comparison of eTutor with RR and FR.

average final score achieved by these algorithms for
n = 500 students and λ = 0.04 is shown in Table
1. From this table we see that eTutor achieves 15.7%
and 1.1% improvement in the average final score for
n = 500 compared to RR and FR, respectively. The
improvement compared to FR is small because FR
shows all the materials to every student. The aver-
age time spent by each student taking the course is
8.5 minutes for eTutor which is 16.7% and 50% less
than the average time it takes for the same set of stu-
dents by RR and FR, respectively. eTutor achieves
significant savings in time by showing the best mate-
rials to each student based on her context instead of
showing everything to every student.

6 Conclusion

In this paper, we proposed a new class of online learn-
ing problems called sequential multi-armed bandits.
Although the number of possible sequences of ac-
tions increases exponentially with the length of the
sequence, we proved that efficient online learning algo-
rithms which have regret that grows linearly with the
number of actions and logarithmically in time exist.
We illustrate the proposed S-MAB model in an online
education platform. Possible future research directions
include applying S-MAB problems to other settings
such as healthcare. For instance, an effective sequence
of actions that maximizes the patients’ recovery rate
can be learned in medical treatments using FAL.
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