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Abstract—In the smart grid system, dynamic pricing can be
an efficient tool for the service provider which enables efficient
and automated management of the grid. However, in practice,
the lack of information about the customers’ time-varying load
demand and energy consumption patterns and the volatility of
electricity price in the wholesale market make the implementation
of dynamic pricing highly challenging. In this paper, we study
a dynamic pricing problem in the smart grid system where
the service provider decides the electricity price in the retail
market. In order to overcome the challenges in implementing
dynamic pricing, we develop a reinforcement learning algorithm.
To resolve the drawbacks of the conventional reinforcement learn-
ing algorithm such as high computational complexity and low
convergence speed, we propose an approximate state definition
and adopt virtual experience. Numerical results show that the
proposed reinforcement learning algorithm can effectively work
without a priori information of the system dynamics.

I. INTRODUCTION

In the smart grid system, thanks to the real-time information
exchange through communication networks, customers can
schedule the operation of their appliances according to the
change of electricity price via the automated energy man-
agement system equipped in households, which we refer to
as demand response [1]. From the customers’ perspective,
previous works on the load scheduling focus on directly
controlling the energy consumption of the residential appli-
ances. For example, in our previous work [2], we proposed
two different load scheduling algorithms for a collaborative
and a non-collaborative smart grid system by taking into
account the customers’ bidirectional energy trading capability
via electric vehicles. Most of these works aim at maximizing
the social welfare of the smart grid system assuming that the
pricing policies are predetermined in the electricity market
by the service provider. Consequently, the service provider is
regarded as a passive and indifferent entity whose role in the
smart grid system is significantly limited.

On the contrary, from the service provider’s perspective,
dynamic pricing is an attractive tool that enables efficient grid
operation in terms of both efficient energy consumption and
automated management. Our paper is related to this second
strand of literature. Specifically, we focus on a scenario where
the service provider can adaptively decide the retail electricity
price based on the customers’ load demand level and the
wholesale price such that it minimizes either the customers’
disutility (in the case of a benevolent service provider) or its
own cost (in the case of a profit-making service provider).
Although dynamic pricing does not directly control each
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customer’s load scheduling, the appropriate pricing can give
considerable benefits to the smart grid system by encouraging
the customers to consume energy in a more efficient way.

Recently, there have been several works on dynamic pricing
for smart grid [3][4][5][6][7][8]. In [3] and [4], dynamic
pricing problems were studied aiming at maximizing the social
welfare. Considering a smart grid system with multiple resi-
dences and a single service provider, optimal dynamic pricing
schemes were proposed based on the dual decomposition
approaches. The authors in [5] focused on the smart grid sys-
tem with non-cooperative customers where the conventional
optimization approach cannot be applied to as in [3]. To
overcome the lack of cooperation of customers, a simulated
annealing-based dynamic pricing algorithm was developed. In
a similar context, the authors in [6] modeled a dynamic pricing
problem as a Stackelberg game where the service provider
decides the retail price and each selfish customer decides the
schedule for its appliances according to the price. In [7], the
authors developed an incentive-based dynamic pricing scheme
which allows the service provider to decide the incentive for
the customers who shift their appliances’ usage from peak
hours to off-peak hours. In [8], the authors introduced a two-
timescale dynamic pricing scheme to incorporate both the
customers with day-ahead scheduling and the customers with
real-time scheduling. To take into account the uncertainties of
energy supply and demand, the authors formulated a Markov
decision process (MDP) problem and developed an online
algorithm.

Despite those previous efforts, there still exist several crit-
ical challenges in implementing dynamic pricing for demand
response. First, in the practical smart grid system, it is not easy
for the service provider to obtain the customer-side informa-
tion such as their current load demand levels and the transition
probability of the demand levels, and the customer-specific
utility models including the willingness to purchase electric
energy given their load demand level and retail price. Second,
even if the service provider can obtain those information, it
will surfer from various system dynamics and uncertainties.
The service provider which lies between the utility company
and the customers may not obtain the perfect information of
those system dynamics a priori. Finally, the service provider
is required to have the ability to estimate the impact of its
current pricing decision on the customers’ future behavior.
In fact, the current price influences not only the customers’
current energy consumption but also their energy consumption
for the next several hours or the next day. However, it is not
easy for the service provider to calculate the optimal price
considering the future influence of the current price without
the detail customer-side information. Thus, most of existing
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works on dynamic pricing for smart grid have been studied in
myopic approaches where the algorithms for dynamic pricing
and demand side load scheduling are conducted within a given
time period without considering the long-term performance of
the smart grid system.

In order to overcome the aforementioned challenges of dy-
namic pricing, in this paper, we use reinforcement learning to
allow the service provider to learn the behaviors of customers
and the change of wholesale price to make an optimal pricing
decision. We consider various stochastic dynamics of the
smart grid system including the customers’ dynamic demand
generation and energy consumptions, and wholesale price
changes. Based on the considered system model, we formulate
an MDP problem where the service provider decides the retail
electricity price based on the observed system state transition
to minimize its expected total cost or the customers’ disutility.
Contrary to the previous works [3]-[8] with simplified models,
in this paper, we consider a more realistic system model to
incorporate the customers’ demand generation and load de-
mand change as well as the wholesale market dynamic where
the wholesale electricity price can be changed by the utility
company at each time-slot. To solve the MDP problem without
a priori information about the change of the customers’ load
demand level, we adopt the Q-learning algorithm, and to
resolve the existing drawbacks of the conventional Q-learning
algorithm, we propose the following two improvements. First,
to reduce the complexity of the Q-learning algorithm which
mainly comes from the large number of customers, we propose
an alternative state definition based on the observed total
energy consumption. Second, to improve the learning speed,
we adopt virtual experience in Q-learning updates.

The rest of this paper is organized as follows. In Section
II, the system model is presented. In Section III, we define
the dynamic pricing problem and develop the reinforcement
learning-based dynamic pricing algorithm. We provide numer-
ical results in Section IV and finally conclude in Section V.

II. SYSTEM MODEL

We consider a smart grid system which consists of one
service provider and a set of customers I as in Fig. 1. The
smart grid system operates in a time-slotted fashion, where
each time-slot has an equal duration. At each time-slot t, the
service provider buys electric energy from the utility company
through a wholesale electricity market and provides it to the
customers through a retail electricity market. In the retail
electricity market, at each time-slot t, the service provider
determines the retail pricing function at : R+ → R+ and
charges each customer i an electricity bill at(eti), where eti
denotes customer i’s energy consumption at time-slot t. We
define the set of retail pricing functions as A and assume that
the number of retail pricing functions, |A|, is finite.

At each time-slot, each customer generates its electricity
load demand and decides the amount of energy consumption
based on its current load demand level and the retail pricing
function. We assume that the customers’ average demand
generation rate and the wholesale pricing function at a time-
slot can vary depending on its actual time in a day. Moreover,
this time-dependency of customers’ energy consumption may
influence the utility company’s decision on the wholesale
pricing function. To model this time-dependency of the de-
mand generation rate and the wholesale pricing function, we
introduce a set of periods H = {0, 1, · · · , H − 1} each of
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Fig. 1. Smart grid system.

which represents an actual time in a day. We map each time-
slot t to one period h ∈ H denoting the period at time-slot t by
ht. We assume that the sequence of periods ht, t = 0, 1, 2, · · ·
is predetermined and repeated every day. For example, if one
day consists of H = 24 periods (i.e., 24 hours), each time-
slot t is mapped to one period in H = {0, 1, · · · , 23} and the
mapping between time-slots and periods can be represented as

ht = mod (t,H), ∀t ≥ 0. (1)

A. Model of Customer’s Response

In each time-slot, each customer has an accumulated load
demand 1, which is defined as the total amount of energy
that it wants to consume for its appliances in that time-slot.
We denote the amount of the accumulated load demand of
customer i at time-slot t by dti ∈ Di, where Di is the
set of customer i’ accumulated load demand levels. Once
customer i consumes energy eti at time-slot t, it implies
that the corresponding amount of customer i’s load demand
is satisfied and the rest of the accumulated load demand
dti − eti is not satisfied and we call it the remaining load
demand. When the remaining load demand of a customer is
greater than 0, it causes some degree of dissatisfaction to the
customer at that time-slot. To capture this dissatisfaction from
the remaining load demand, we introduce a disutility function
for ui : R+ → R+ for each customer i. We assume that ui(·)
is an increasing function of the remaining load demand dti−e

t
i.

Based on the disutility ui(d
t
i − eti) and the electricity bill

at(eti) that customer i has to pay to the service provider, we
define customer i’s cost at each time-slot t as

φti(d
t
i, e

t
i) = ui(d

t
i − eti) + at(eti). (2)

We assume that each customer tries to minimize its cost at
each time-slot by deciding the amount of its energy consump-
tion and let êti(d

t
i) denote customer i’s energy consumption

decision that minimizes its cost 2, i.e.,

êti(d
t
i) = argmin

0≤et
i
≤min(emax

i
,dt

i
)

φti(d
t
i, e

t
i), (3)

1For the convenience, ‘accumulated load demand’ and ‘load demand’ are
used interchangeably in the rest of this paper.

2Customer i’s energy consumption decision is also a function of the retail
pricing function at. However, for the simple expression, we represent it as
êt
i
(dt

i
).
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where emax
i is the maximum amount of energy that customer

i can consume at each time-slot due to physical limitations of
the grid.

We assume that a portion of each customer’s remaining load
demand at a time-slot is carried forward to the next time-slot.
We call the corresponding load demand the demand backlog
and represent it as λi(d

t
i − êti(d

t
i)), where 0 ≤ λi ≤ 1 is

the backlog rate of load demand that determines the amount
of demand backlog of customer i. At each time-slot t, each
customer i randomly generates its new load demand, Dt

i(h
t),

and its distribution is assumed to be dependent on the current
period ht. At the beginning of each time-slot t+1, according to
the demand backlog at the previous time-slot t, λi(d

t
i−ê

t
i(d

t
i)),

and the newly generated load demand, Dt+1
i (ht+1), customer

i’s accumulated load demand dt+1
i is updated as

dt+1
i = λi(d

t
i − êti(d

t
i)) +Dt+1

i (ht+1). (4)

Here, if λi = 0, no remaining demand at a time-slot is carried
forward generating no demand backlog, whereas if λi = 1, all
the remaining demand at a time-slot is carried forward to the
next time-slot.

It is worth noting that the transition probability of the load
demand from dti to dt+1

i depends only on the accumulated
load demand dti , the period ht, and the retail pricing function
at at time-slot t, and we represent it as pdi

(dt+1
i |dti, h

t, at).

B. Wholesale Electricity Market

At each time-slot t, the service provider buys electric energy,
which corresponds to the total amount of energy consumption
of customers,

∑

i∈I ê
t
i(d

t
i), from the utility company in the

wholesale electricity market as illustrated in Fig. 1. The utility
company charges the service provider an wholesale electricity
cost based on a wholesale pricing function ct : R+ → R+,
where ct is a function of the total amount of energy con-
sumption

∑

i∈I ê
t
i(d

t
i). We assume that ct is selected among

a finite number of wholesale pricing functions in set C and its
transition probability from ct to ct+1 depends on the current
wholesale pricing function, ct, and the current period, ht, and
thus it can be represented as pc(c

t+1|ct, ht).
We define the service provider’s cost function at each time-

slot t as a function of the customers’ load demand vector
d̄t = [dti]i∈I , the wholesale electricity pricing function ct, and
the retail pricing function at, i.e.,

ψt(d̄t, ct, at) = ct
(

∑

i∈I

êti(d
t
i)
)

−
∑

i∈I

at(êti(d
t
i)), (5)

where the first term denotes the total wholesale electricity cost
that the service provider has to pay to the utility company and
the second term denotes the service provider’s revenue from
selling energy to the customers.

III. REINFORCEMENT LEARNING ALGORITHM

In this section, based on the smart grid system introduced
in the previous section, we first formulate a dynamic pricing
problem in the framework of MDP. Then, by using rein-
forcement learning, we develop an efficient and fast dynamic
pricing algorithm which does not require the information about
the system dynamics and uncertainties.

A. Problem Formulation

We formulate the dynamic pricing problem in the smart
grid system as an MDP problem, which is defined by a set
of decision maker’s actions, a set of system states and their
transition probabilities, and a system cost function for the
decision maker. In our MDP problem, the decision maker is
the service provider whose action is choosing a retail pricing
function at ∈ A at each time-slot t. We define the state of
our smart grid system at time-slot t as the combination of the
accumulated load demands vector, d̄t, the current period ht,
and the wholesale pricing function, ct, i.e.,

st = (d̄t, ht, ct) ∈ S, (6)

where S =
∏

i∈I Di × H × C. Since the transition of each

customer’s load demand (from dti to dt+1
i ), that of the period

(from ht to ht+1), and that of the wholesale pricing function
(from ct to ct+1) depend only on the state st and action at at
time-slot t, the sequence of states {st, t = 0, 1, 2, · · · } follows
a Markov decision process with action at. The transition
probability from state st = (d̄t, ht, ct) to state st+1 =
(d̄t+1, ht+1, ct+1) with given action at can be represented as

ps(s
t+1|st, at) =ph(h

t+1|ht)pc(c
t+1|ct, ht) (7)

×
∏

i∈I

pdi
(dt+1

i |dti, h
t, at),

where ph(h
t+1|ht) denotes the transition probability of the

period from ht to ht+1. We define the system cost for the
service provider at each time-slot t as the weighted sum of the
service provider’s cost and the customers’ cost at the time-slot:

rt(st, at) = (1− ρ)ψt(d̄t, ct, at) + ρ
∑

i∈I

φti(d
t
i, ê

t
i), (8)

where ρ denotes the weighting factor that determines the
relative importance between the service provider’s cost and
the customers’ cost.

We denote the stationary policy that maps states to actions
(retail pricing functions) by π : S → A, i.e, at = π(st).
The objective of our dynamic pricing problem is to find an
optimal policy π∗ for each state s ∈ S that minimizes the
expected discounted system cost of the service provider as in
the following MDP problem (P):

(P) : min
π:S→A

E

[

∞
∑

t=0

(γ)trt(st, π(st))

]

, (9)

where 0 ≤ γ < 1 is the discount factor which represents the
relative importance of the future system cost compared with
the present system cost.

The optimal stationary policy π∗ can be well defined by
using the optimal action-value function Q∗ : S × A → R

which satisfies the following Bellman optimality equation:

Q∗(s, a) = r(s, a) + γ
∑

s′∈S

p(s′|s, a)V ∗(s′), (10)

where V ∗(s′) is the optimal state-value function [9], which is
defined as

V ∗(s′) = min
a∈A

Q∗(s′, a), ∀s′ ∈ S. (11)
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Since Q∗(s, a) is the expected discounted system cost with
action a in state s, we can obtain the optimal stationary policy
as

π∗(s) = argmin
a∈A

Q∗(s, a). (12)

In this paper, we use the well-known Q-learning algorithm
to solve our MDP problem (P) without information of state
transition probabilities. We refer the readers to [10] for more
detail on the Q-learning algorithm. In the following subsec-
tions, in order to resolve the critical issues which make it
difficult to apply the conventional Q-learning algorithm to our
smart grid system, we propose an alternative state definition
based on the observed total energy consumption as well as
adopt virtual experience in Q-learning updates.

B. Energy Consumption-Based Approximate State (EAS)

When the size of the state space is large, the Q-learning
algorithm requires not only a large memory space to store the
state-action function Q(s, a), but also a long time to converge.
Moreover, in the practical smart grid system, it is difficult for
the service provider to acquire or use the information about
the customers’ current load demands due to privacy. In order
to resolve these difficulties, in this section, we propose an
alternative definition of the system state, which is based on
the observed total energy consumption,

∑

i∈I ê
t−1
i , and the

previously chosen action at−1. For notational convenience, we
will omit dti in êti(d

t
i) in the rest of this section.

The main idea of this alternative state definition comes
from the fact that, since each customer’s disutility function
ui is a decreasing function of êti, from the load demand
update process in (4), the retail pricing function and each
customer i’s energy consumption at time-slot t − 1 in a
tuple (êt−1

i , at−1) characterizes the past accumulated load

demand dt−1
i . Hence, if the service provider knows new load

demand Dt
i(h

t) at time-slot t, it can regard a different tuple

(êt−1
i , at−1, Dt

i(h
t)) as a different actual accumulated load

demand of customer i at time-slot t. Similarly, once a tuple
(
∑

i∈I ê
t−1
i , at−1,

∑

i∈I D
t
i(h

t)) is observed by the service
provider, it approximately reflects the customers’ overall load
demands at time-slot t. It is worth noting that since Dt

i(h
t)

is independent random variable for each customer i, by the
law of the large number, the average of the sum of new
load demands,

∑

i∈I D
t
i(h

t)/|I|, goes to its expected value as
the number of customers gets larger. This implies that in the
practical smart grid system with a large number of customers,
a tuple (

∑

i∈I ê
t−1
i , at−1) provides enough information for the

service provider to infer the customers’ overall load demand
level at time-slot t. Hence, instead of the original state st in
(6), we can use a new state definition based on the observed
energy consumption by which the service provider does not
need to know either each customer’s load demand or its
disutility function.

To reduce the number of system states, we discretize the
observed energy consumption

∑

i∈I ê
t−1
i into a finite number

of energy levels in E 3 The set of observed energy consumption
level by using a quantization operation qE(·). Then, we refer

3In our system model, the method of discretization of the observed energy
consumption is not limited to a specific method. A simple example is to use
an equally divided levels between the maximum and minimum amounts of
the energy consumption.

Algorithm 1 Q-Learning Algorithm with Virtual Experience

1: Initialize Q arbitrarily, t = 0
2: for each time-slot t
3: Choose at according to policy π(xt)
4: Take action at, observe system cost r(xt, at) and next state xt+1

5: Obtain experience tuple σt+1 = (xt, at, rt, xt+1)
6: Generate set of virtual experience tuples θ(σt+1)
7: for each virtual experience tuple σ̃t+1 ∈ θ(σt+1)
8: v = r(xt, at) + γmaxa′∈A Q(xt+1, a′)−Q(xt, at)
9: Q(xt, at)← Q(xt, at) + αtv

10: end
11: end

to tuple (qE(
∑

i∈I ê
t−1
i ), at−1) as the approximate demand at

time-slot t and represent it as

dtapp =
(

qE

(

∑

i∈I

êt−1
i

)

, at−1
)

. (13)

Based on the approximate demand, we now define the energy
consumption-based approximate state (EAS) of the smart grid
system as

xt = (dtapp, h
t, ct) ∈ X , (14)

where X = E × A × H × C denotes the set of the EASs.
Note that EAS extremely reduces the number of states from
|S| = |

∏

i∈I Di ×H × C| to |X | = |E × A ×H × C|, while
allowing the service provider to easily infer the customers’
current load demands level without using direct signaling from
the customers. Now, we can simply substitute the original state
definition st by EAS xt in the Q-learning algorithm.

C. Accelerated Learning using Virtual Experience

Although the EAS xt significantly reduces the state space,
the learning speed of the Q-learning algorithm might be
seriously limited by its inherent structure in which only
one state-action pair is updated at each time-slot. In this
subsection, in order to improve the speed of the Q-learning
algorithm, we adopt virtual experience which was introduced
in [11]. The Q-learning algorithm with virtual experience
enables the service provider to update multiple state-action
pairs at each time-slot by exploiting a priori known partial
information of the state transition probability px(x

t+1|xt, at).
In this subsection, we consider the case where the service
provider knows the transition probability of the wholesale
pricing function pc(c

t+1|ct, ht) a priori. Note that this is
not a too restrictive assumption because the service provider
can gather sufficient data for the transition probability of the
wholesale pricing function while participating in the wholesale
electricity market.

We first define the experience tuple (ET) observed by the
service provider at time-slot t+1 as σt+1 = (xt, at, rt, xt+1),
where rt is the observed system cost. Then, given the actual
ET σt+1, we define a set of virtual experience tuples (virtual
ETs) θ(σt+1), which are statistically equivalent 4 to the actual
ET σt+1, i.e.,

θ(σt+1) =







σ̃t+1
d̃tapp = dtapp, h̃

t = ht,
ãt = at, r̃t = r(c̃t),

pc(c̃
t+1|c̃t, h̃t) = pc(c

t+1|ct, ht)







, (15)

where r(c) represents the system cost that is virtually calcu-
lated by using an arbitrary wholesale pricing function c. In our

4An ET σ̃t+1 = (x̃t, ãt, r̃t, x̃t+1) is said to be statistically equivalent to
ET σt+1 = (xt, at, rt, xt+1) if px(x̃t+1|x̃t, ãt) = px(xt+1|xt, at) and
the system cost r̃t can be calculated by using σt+1.
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TABLE I
COMPLEXITY COMPARISON OF THREE DIFFERENT ALGORITHMS.

Learning update
complexity per

iteration
Memory complexity

Q-learning with
original state

O(|A|) O(
∏

i∈I
|Di||H||C||A|)

Q-learning with
EAS

O(|A|) O(|E||H||C||A|2)

Q-learning with
EAS and virtual

experience
O(|θ(σ̂)||A|) O(|E||H||C||A|2)
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Fig. 2. Load demand profile.

smart grid system, if dtapp and ht are fixed, the system cost

rt can be easily calculated for an arbitrary wholesale pricing
functions c′t ∈ C by applying the same energy consumption
∑

i∈I ê
t
i to (8). Moreover, since the transition probability of

the wholesale pricing function pc(c
t+1|ct, ht) is independent

of approximate demand dtapp and retail electricity pricing

function at, we can easily generate the set of virtual ETs
θ(σt+1) in (15) from the observed actual ET σt+1. While
the observed ET σt+1 is used to update only one state-action
function Q(xt, at) in the conventional Q-learning, by using
the virtual ETs, the Q-learning algorithm can update multiple
state-action pairs at each time-slot. The Q-learning algorithm
with virtual experience is outlined in Algorithm 1. Lines 3-5
describe the operation of the conventional Q-learning where
the service provider obtains the experience tuple σt+1. Then,
in line 6, based on σt+1, a set of its virtual experiences is
generated. In lines 7-10, the action-value function Q(xt, at)
is updated for all virtual experiences in σt+1.

The complexity of the proposed reinforcement learning
algorithms are summarized in Table I. Although the Q-learning
algorithm with virtual experience has a higher update complex-
ity than the Q-learning algorithm without virtual experience,
as we will show in Section IV, it significantly reduces the
number of time-slots needed to converge, which is regarded
as a more important aspect than the computational complexity
at each time-slot in reinforcement learning algorithms.

IV. NUMERICAL RESULTS

In this section, we provide numerical results to evaluate
the performance of our dynamic pricing algorithm. One day
consists of 24 time-slots each of which lasts for one hour.
Hence, the set of periods is given as H = {0, 1, · · · , 23} and
the mapping between time-slots and periods is given as ht =
mod (t, 24).
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Fig. 3. Performance comparison of our reinforcement learning algorithm and
the myopic optimization algorithm varying λ.

We consider a smart grid system with 20 customers. The
newly generated load demand of customer i, Dt

i(h
t), follows

a Poisson distribution with expected value ωi,ht , which is
proportional to the hourly average load shapes of residential
electricity services in California [12] as shown in Fig. 2. All
customers have the same backlog rate, i.e., λi = λ, ∀i ∈ I.
Each customer i’s disutility function ui(d

t
i − eti) is given as

ui(d
t
i − eti) = κi × (dti − eti)

2, (16)

where κi is a constant that represents customer i’s disutility
sensitivity to its remaining demand. Here, we let κi = κ =
0.1, ∀i ∈ I. We model the wholesale pricing function ct as
a quadratic function of the total energy consumption

∑

i∈I ê
t
i

as in [3],[4], and [6] :

ct
(

∑

i∈I

êti

)

= µt ×
∑

i∈I

êti + νtht ×
(

∑

i∈I

êti

)2

. (17)

We set µt = 0.02, ∀t and νtht to be a random variable whose
expected value, vht , changes according to the corresponding
period ht based on the hourly average load shape in Fig. 2.
With a given period ht, νtht is uniform randomly chosen among
values in {0.25vht, 0.5vht , · · · , 1.75vht}. The discount factor
γ in problem (P) is fixed to 0.95. The retail pricing function
at is a linear function of the energy consumption êti, i.e.,

at(êti) = χtêti, (18)

where the coefficient χt can be chosen among set
{0.2, 0.4, · · · , 1.0} each element of which is directly mapped
to one retail pricing function in A.

We first evaluate the performance of the dynamic pricing
algorithm by comparing it with that of the myopic optimization
algorithm. In the myopic optimization algorithm, the service
provider chooses an action with the lowest expected instan-
taneous system cost, by updating the state-action function
Q(s, a) similarly to the Q-learning update with a discount
factor γ = 0. This implies that the myopic optimization
algorithm focuses only on the immediate system cost without
considering the impact of the current action on the future
system cost. In Fig. 3, we show the average system costs of
those two dynamic pricing algorithms by changing the backlog
rate, λ, from 0 to 1. We set ρ = 0.5 which corresponds to
the case where the service provider aims at minimizing the
sum of the total disutility and the wholesale cost. We can
observe that the average system costs increase as λ increases
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Fig. 5. Impact of virtual experience on the learning speed of the Q-learning
algorithm.

in both dynamic pricing algorithms because with a higher
backlog rate, the accumulated load demand causes a higher
disutility. We also observe that the performance gap between
two algorithms increases as λ increases. With a low backlog
rate, the remaining backlog is not carried forward to the next
time-slot. In this case, the solution of our reinforcement learn-
ing algorithm is the same as that of the myopic optimization
algorithm. On the contrary, in the case with a higher backlog
rate, the remaining backlog is carried forward to the next time-
slot. Hence, the service provider’s pricing decision at a time-
slot influences the accumulated load demand in the future, and
thus its future system cost. Due to this difference, especially
when λ is large, our algorithm achieves better performance
than the myopic optimization problem which considers only
the current system cost.

To study the impact of the weighting factor ρ, in Fig. 4,
we show the cost of customers, that of the service provider,
and the average retail price with varying ρ from 0 to 1. We
set λ = 0.5. We can observe that as ρ increases, the service
provider reduces the average retail price, the cost of customers
decreases, and the cost of the service provider increases. For
example, in the case with ρ = 0, the service provider aims at
minimizing its own cost. Hence, the service provider does not
consider the customers’ disutility and chooses relatively high
prices to reduce the wholesale cost which contributes to most
of its own cost. In the case with ρ = 1, the service provider
aims at minimizing the customers’ cost. Hence, the service
provider chooses relatively low prices to provide electric
energy to the customers at a low retail price as possible.

In Fig. 5, we compare the learning speed of our rein-
forcement learning algorithm with virtual experience to the
conventional Q-learning algorithm without virtual experience.
We set λ = 0.5 and ρ = 0.5. We can observe that our
algorithm with virtual experience achieves the near optimal
average system cost after about 3,000 time-slots, while the
conventional Q-learning algorithm shows a worse learning
speed. This means that even if the stochastic characteristic of
the system dynamics vary in time, the proposed reinforcement
learning algorithm can quickly adapt to the time-varying
environment by exploiting virtual experience update.

V. CONCLUSION

In this paper, we studied a dynamic pricing problem for
the smart grid system where the service provider can adap-
tively decide the electricity price according to the customers’
load demand levels and the wholesale price. We developed
a reinforcement learning-based dynamic pricing algorithm
that enables efficient dynamic pricing without requiring the
perfect information about the system dynamics a priori. To
resolve the existing drawbacks of the conventional reinforce-
ment learning algorithm, we proposed two improvements:
energy consumption-based approximate state definition and
the adoption of virtual experience update in the conventional
Q-learning algorithm. Numerical results show that the rein-
forcement learning-based dynamic pricing achieves a higher
long-term performance compared to the myopic optimization
approach especially in the system where the customers have
a high demand backlog rate. The results also show that our
algorithm results in an improved learning speed due to the
alternative state definition and virtual experience implying that
our dynamic pricing algorithm can be applied to the practical
smart grid system.
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