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Abstract—In this paper, we study a dynamic pricing and
energy consumption scheduling problem in the microgrid where
the service provider acts as a broker between the utility company
and customers by purchasing electric energy from the utility
company and selling it to the customers. For the service provider,
even though dynamic pricing is an efficient tool to manage
the microgrid, the implementation of dynamic pricing is highly
challenging due to the lack of the customer-side information and
the various types of uncertainties in the microgrid. Similarly,
the customers also face challenges in scheduling their energy
consumption due to the uncertainty of the retail electricity
price. In order to overcome the challenges of implementing
dynamic pricing and energy consumption scheduling, we develop
reinforcement learning algorithms that allow each of the service
provider and the customers to learn its strategy without a
priori information about the microgrid. Through numerical
results, we show that the proposed reinforcement learning-based
dynamic pricing algorithm can effectively work without a priori
information about the system dynamics and the proposed energy
consumption scheduling algorithm further reduces the system
cost thanks to the learning capability of each customer.

Index Terms—Smart grid, microgrid, dynamic pricing, load
scheduling, demand response, electricity market, Markov deci-
sion process, reinforcement learning.

NOMENCLATURE

Sets and Parameters:

γ Discount factor of Markov decision process

λi Demand backlog rate of customer i

A Set of actions of service provider (retail pricing func-

tions)

Ai Set of actions of customer i (energy consumption

scheduling)

C Set of cost functions of service provider

Di Set load demand levels of customer i

H Set of periods

I Set of customers

S Set of system states of microgrid

Si Set of states of customer i

X Set of energy consumption-based approximate states

(EAS)

The earlier version of this paper was presented at IEEE CCSES 2014[1].
This work was supported in part by Mid-career Researcher Program through

NRF grant funded by the MSIP, Korea (2013R1A2A2A01069053).

µi Demand extension for rate of customer i

ρ Weighting factor between costs of service provider

and customers

emax
i Maximum amount of energy consumption which can

be consumed by customer i during each time-slot

pc Transition probability of cost function

ps Transition probability of state

px Transition probability of EAS

pdi
Transition probability of load demand

pdapp
Transition probability of approximate demand

Variables:

φti Cost of customer i at time-slot t

π Stationary policy of service provider

πi Stationary policy of customer i

ψt Cost of service provider at time-slot t

σt Experience tuple at time-slot t

θ Set of virtual experience tuples

σ̃t Virtual experience tuple at time-slot t

at Retail price function at time-slot t

ct System cost function at time-slot t

Dt
i New load demand of customer i at time-slot t

dti Accumulated load demand of customer i at time-slot

t

dtapp Approximate demand at time-slot t

eti Customer i’s energy consumption decision at time-slot

t

ht Period at time-slot t

rt System cost at time-slot t

st System state of microgrid at time-slot t

sti State of customer i at time-slot t

t Index of time-slot

ui Disutility function of customer i

xt EAS at time-slot t
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I. INTRODUCTION

In the smart grid system, thanks to the real-time information

exchange through communication networks, customers can

schedule the operation of their appliances according to the

change of electricity price via the automated energy manage-

ment system equipped in households, which we refer to as

demand response [2].

A natural realization of demand response is the energy

consumption scheduling of residential appliances which is one

of the most actively studied research topics in smart grid.

From the customers’ perspective, the majority of the previ-

ous works on the energy consumption scheduling focus on

directly controlling the energy consumption of the residential

appliances to maximize the social welfare of the smart grid

system under a given pricing policy. For example, in [3][4], the

energy consumption scheduling of various types of appliances

was studied considering Time Of Use (TOU) pricing. In [5],

reinforcement learning algorithm was adoped to cope with the

randomness of temperature under the fixed TOU pricing. In

[6] and [7], utility maximization problems were studied by

using auction and non-cooperative game approaches where the

price is determined by the interactions among the customers.

Many recent works [8][9][10][11][12][13][14] considered Real

Time Pricing (RTP) and introduced various types of price

prediction schemes such as filtering-based price prediction

[8], opportunistic energy scheduling [9], robust optimization

[10][11], and reinforcement learning [12][13][14]. However,

the common assumption in these works is that pricing policies

deployed by the service providers are predetermined. For ex-

ample, in [3][4][5][6][7], it is assumed that the price functions

are fixed during a certain period. In [8], although real-time

pricing was considered, the authors only added the restriction

that the upcoming prices are not announced to the customer

in advance under the assumption that the pricing functions

are predetermined and fixed. In [9][10][11][12][13][14], the

pricing functions are assumed to follow a certain random

process.

On the contrary, in this paper, we consider that the service

provider decides what dynamic pricing policies to adopt to

enable more efficient energy consumption. We first consider a

scenario where the service provider can adaptively decide the

retail electricity price based on the customers’ load demand

level and the cost of electricity from the utility company to

minimize either the customers’ disutility (in the case of a

benevolent service provider) or its own cost (in the case of

a profit-making service provider).

Recently, there have been several works on dynamic pricing

for smart grid [15][16][17][18][19][20][21][22][23]. In [15]

and [16], dynamic pricing problems were studied aiming at

maximizing the social welfare considering a smart grid system

with multiple residences and a single service provider. In [17],

the authors developed an incentive-based dynamic pricing

scheme which allows the service provider to decide the incen-

tive for the customers who shift their appliances’ usage from

peak hours to off-peak hours. The authors in [18] focused on

the smart grid system with non-cooperative customers where

the conventional optimization approach cannot be applied

and developed a simulated annealing-based dynamic pricing

algorithm. In a similar context, in [19] the dynamic pricing

problem was modeled as a Stackelberg game where the service

provider decides the retail price and each selfish customer

decides the schedule for its appliances according to the price.

Recently, the game theoretic approach to the dynamic pricing

was extended to a variety of types such as the multi-stage game

for the time-slotted system in [20], the auction game between

the service provider and customers in [21], and the two-level

game with multiple utility companies in [22]. In [23], the

authors took into account the uncertainties of energy supply

and demand while formulating an Markov decision process

(MDP) problem and developed an online algorithm.

Despite those previous efforts, there still exist several crit-

ical challenges in implementing dynamic pricing for demand

response. First, in the practical smart grid system, it is

not easy for the service provider to obtain the customer-

side information such as their current load demand levels

and the transition probability of the demand levels, and the

customer-specific utility models including the willingness to

purchase electric energy given their load demand level and

retail price. Second, even if the service provider can obtain

those information, the service provider which lies between

the utility company and the customers may not obtain the

perfect information about the amount of actual energy that

the customers will consume. Finally, it is challenging for the

service provider to have the ability to estimate the impact of

its current pricing decision on the customers’ future behavior.

Consequently, most of existing works on dynamic pricing for

smart grid have been studied in myopic approaches where

the algorithms for dynamic pricing and demand side energy

consumption scheduling are conducted within a given time

period without considering the long-term performance of the

smart grid system.

In order to overcome the aforementioned challenges of

dynamic pricing, in this paper, we use reinforcement learning

to allow the service provider to learn the behaviors of cus-

tomers and the change of electricity cost to make an optimal

pricing decision 1. We consider various stochastic dynamics

of the smart grid system including the customers’ dynamic

demand generation and energy consumptions, and changes of

electricity cost from the utility company. Considering system

model for microgrid, we formulate an MDP problem where

the service provider observes the system state transition and

decides the retail electricity price to minimize its expected total

cost or the customers’ disutility. To solve the MDP problem,

we adopt the Q-learning algorithm with proposing two im-

provements: alternative state definition and virtual experience.

We then extend our system model to a more intelligent

microgrid system by adopting multi-agent learning structure

where each customer can decide its energy consumption

scheduling based on the observed retail price aiming at min-

1Reinforcement learning in smart grid was studied in [12], but it is very
different from this paper as the study in [12] is focused on the demand-side
storage management in a single household while this paper addresses the
dynamic pricing of the service provider as well as the energy consumption
scheduling of a number of customers which are associated with both electricity
cost from various energy sources and retail electricity markets.
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TABLE I
COMPARISON WITH RELATED WORKS ON DYNAMIC PRICING.(

√
: CONSIDERED, -:NOT CONSIDERED)

Demand uncertainty
Uncertainty of electricity

cost
Dynamic pricing without explicit

customer-side information
Learning capability on energy

consumption scheduling

[20] - - - -

[15],[19],[21],[22] - -
√

-

[16]
√

- - -

[17],[18],[23]
√

-
√

-

Our work
√ √ √ √

imizing its expected cost. To the best of our knowledge, this

is the first paper that investigates the multi-agent learning in

the smart grid system including both the service provider’s dy-

namic pricing and the customers energy consumption schedul-

ing. While some previous works [24][25][26] have considered

a smart grid system with multiple customers trying to predict

the retail price, they assumed that the probability distribution

of the retail price is known to the customers. Moreover, they

considered only a fixed pricing rule and did not considered

the learning problem of the service provider. In contrast, in

this paper, we consider the learning problem of both the

service provider and the customers: the service provider aims

to learn to minimize the system cost while the customers

aim to individually minimize their own costs. We develop a

reinforcement learning-based energy consumption scheduling

algorithm which can be conducted in a fully distributed

manner at each customer along with the proposed dynamic

pricing algorithm for the service provider. In order to enhance

each customer’s learning speed, we adopt a post decision state

(PDS) learning algorithm.

We summarize the comparison of our work with the existing

works focusing on dynamic pricing for the smart grid system

in Table I.

The rest of this paper is organized as follows. In Section II,

the system model is presented. In Section III, we define a dy-

namic pricing problem and develop a reinforcement learning-

based dynamic pricing algorithm. In Section IV, we develop a

reinforcement learning-based energy consumption scheduling

algorithm by modeling the learning capability of customers.

We provide numerical results in Section V and finally conclude

in Section VI.

II. SYSTEM MODEL

We consider a microgrid system which consists of one

service provider, a set of customers I as in Fig. 1. The

microgrid operates in a time-slotted fashion, where each time-

slot has an equal duration. At each time-slot t, the service

provider buys electric energy from the utility company and

provides it to the customers through a retail electricity market.

In the retail electricity market, at each time-slot t, the service

provider determines the retail pricing function at : R+ → R+

and charges each customer i an electricity bill at(eti), where eti
denotes customer i’s energy consumption at time-slot t. We de-

fine the set of retail pricing functions as A = {a1, a2, · · · , aA}
and assume that the number of retail pricing functions, A, is

finite.
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Fig. 1. Microgrid system.

We assume that the customers’ average demand generation

rate and the cost function of the service provider at a time-

slot can vary depending on its actual time in a day. To

model this time-dependency, we introduce a set of periods

H = {0, 1, · · · , H − 1} each of which represents an actual

time in a day. We map each time-slot t to one period h ∈ H
denoting the period at time-slot t by ht. We assume that the

sequence of periods ht, t = 0, 1, 2, · · · is predetermined in a

deterministic manner and repeated every day, i.e.,

ht = mod (t,H), ∀t ≥ 0. (1)

A. Model of Customer’s Response

In each time-slot, each customer has an accumulated load

demand 2, which is defined as the total amount of energy

that it wants to consume for its appliances in that time-

slot. We denote the amount of accumulated load demand of

customer i at time-slot t by dti ∈ Di, where Di is the set of

customer i’s accumulated load demand levels. Once customer i
consumes energy eti at time-slot t, the corresponding amount

of customer i’s load demand is satisfied and the rest of the

accumulated load demand dti − e
t
i is not satisfied which we

call remaining load demand. The remaining load demand

causes dissatisfaction to the customer at that time-slot, which

is denoted by a disutility function for ui : R+ → R+. We

assume that ui(·) is an increasing convex function of the

remaining load demand dti − e
t
i. For the purpose of service

management, each customer’s disutility can be reported to the

service provider at each time-slot.

2For the convenience, ‘accumulated load demand’ and ‘load demand’ are
used interchangeably in the rest of this paper.
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Based on the disutility ui(d
t
i − e

t
i) and the electricity bill

at(eti), we define customer i’s cost at each time-slot t as

φti(d
t
i, e

t
i) = ui(d

t
i − e

t
i) + at(eti). (2)

We assume that a portion of each customer’s remaining load

demand at a time-slot is carried forward to the next time-slot.

This process is modeled by adopting the concept of demand

backlog which is represented as λi(d
t
i−e

t
i), where 0 ≤ λi ≤ 1

is the backlog rate of load demand. Similarly, in order to

consider other situations such as some appliances that operated

in the previous time slot still want to operate in the current

time slot, we adopt the concept of demand extension which is

represented as µie
t
i, where 0 ≤ µi ≤ 1 is the extension rate of

load demand. At each time-slot t, each customer i randomly

generates its new load demand, Dt
i , and its distribution is

assumed to be dependent on the current period ht. Note that

our reinforcement learning algorithms which will be developed

in Sections III and IV are able to operate efficiently regardless

of the types of the demand arrival model. At the beginning of

each time-slot t + 1, customer i’s accumulated load demand

dt+1
i is updated as

dt+1
i = λi(d

t
i − e

t
i) + µie

t
i +Dt+1

i . (3)

We denote the transition probability of load demand by

pdi
(dt+1

i |dti, h
t, at)

B. Electricity Cost of Service Provider

At each time-slot t, the service provider buys electric

energy, which corresponds to the total amount of energy

consumption of customers,
∑

i∈I e
t
i, from the utility company

as illustrated in Fig. 1. The cost charged to the service provider

is determined based on a cost function ct : R+ → R+, where

ct is a function of the total amount of energy consumption
∑

i∈I e
t
i. We assume that ct is selected among a finite number

of cost functions in set C and its transition probability from ct

to ct+1 depends on the current cost function, ct, and the current

period, ht, and thus it can be represented as pc(c
t+1|ct, ht).

In this paper, we adopt a simplified cost model of the service

provider by choosing a single and random cost function rather

than fully modeling the cost model for electricity from the

utility company. However, we do not impose any assumption

on the shape of the cost function, ct.
We define the service provider’s cost at each time-slot t as

a function of the customers’ load demand vector d̄t = [dti]i∈I ,

the electricity cost function ct, and the retail pricing function

at, i.e.,

ψt(d̄t, ct, at) = ct
(

∑

i∈I

eti

)

−
∑

i∈I

at(eti), (4)

where the first term denotes the total electricity cost of the

service provider and the second term denotes the service

provider’s revenue from selling energy to the customers.

In Fig. 2, we illustrate the timeline of the interaction among

the microgrid components including the service provider’s de-

cision on the retail pricing function, the customers’ response,

and the change of the cost function of the microgrid.
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Fig. 2. Timeline of interaction among the microgrid components.

III. REINFORCEMENT LEARNING AT SERVICE PROVIDER:

DYNAMIC PRICING ALGORITHM

In this section, based on the microgrid system introduced

in the previous section, we first formulate a dynamic pricing

problem in the framework of MDP. Then, by using rein-

forcement learning, we develop an efficient and fast dynamic

pricing algorithm which does not require the information about

the system dynamics and uncertainties.

A. Problem Formulation

We formulate the dynamic pricing problem in the microgrid

system as an MDP problem, which is defined by a set of

decision maker’s actions, a set of system states and their

transition probabilities, and a system cost function for the

decision maker. In our MDP problem, the decision maker is

the service provider whose action is choosing a retail pricing

function at ∈ A at each time-slot t. In this section, we focus

on the decision making of the service provider and assume

that the customers are myopic and deterministic, i.e., each

customer tries to minimize its cost at each time-slot. Then,

we represent customer i’s energy consumption decision that

minimizes its cost 3 as

eti = argmin
0≤e≤min(emax

i
,dt

i
)

φti(d
t
i, e), (5)

where emax
i is the maximum amount of energy that can be

consumed at each time-slot which is determined by physical

limitations of the microgrid. Note that we will extend this

model to consider the case in which each customer is able to

learn to minimize its expected long-term cost in Section IV.

We define the system state of the microgrid at time-slot t
as a combination of the accumulated load demands vector, d̄t,
the current period ht, and the cost function, ct, i.e.,

st = (d̄t, ht, ct) ∈ S, (6)

3Customer i’s energy consumption decision is a function of its current
load demand dt

i
and the retail pricing function at. However, for the simple

expression, we represent it as et
i

without indicating dt
i

and at .
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where S =
∏

i∈I Di × H × C. Since the transition of each

customer’s load demand, that of the period, and that of the cost

function depend only on the state st and action at at time-slot

t, the sequence of states {st, t = 0, 1, 2, · · · } follows a Markov

decision process with action at. The transition probability from

state st = (d̄t, ht, ct) to state st+1 = (d̄t+1, ht+1, ct+1) with

given action at can be represented as

ps(s
t+1|st, at) = pc(c

t+1|ct, ht)×
∏

i∈I

pdi
(dt+1

i |dti, h
t, at).

We define the system cost for the service provider at each

time-slot t as the weighted sum of the service provider’s cost

and the customers’ cost at the time-slot:

rt(st, at) = (1− ρ)ψt(d̄t, ct, at) + ρ
∑

i∈I

φti(d
t
i, e

t
i), (7)

where ρ ∈ [0, 1] denotes the weighting factor that determines

the relative importance between the service provider’s cost

and the customers’ cost. That is, with a larger ρ, the service

provider puts more importance on minimizing the customers’

cost whereas, with a smaller ρ, the service provider puts more

importance on minimizing the its own cost.

We denote the stationary policy that maps states to actions

(retail pricing functions) by π : S → A, i.e, at = π(st).
The objective of our dynamic pricing problem is to find an

optimal policy π∗ for each state s ∈ S that minimizes the

expected discounted system cost of the service provider as in

the following MDP problem P:

P : min
π:S→A

E

[

∞
∑

t=0

(γ)trt(st, π(st))

]

, (8)

where 0 ≤ γ < 1 is the discount factor which represents the

relative importance of the future system cost compared with

the present system cost.

The optimal stationary policy π∗ can be well defined by

using the optimal action-value function Q∗ : S × A → R

which satisfies the following Bellman optimality equation:

Q∗(s, a) = r(s, a) + γ
∑

s′∈S

p(s′|s, a)V ∗(s′), (9)

where V ∗(s′) is the optimal state-value function [27], which

is defined as

V ∗(s′) = min
a∈A

Q∗(s′, a), ∀s ∈ S. (10)

Since Q∗(s, a) is the expected discounted system cost with

action a in state s, we can obtain the optimal stationary policy

as

π∗(s) = argmin
a∈A

Q∗(s, a). (11)

In solving our MDP problem P, we use the well-known

Q-learning algorithm as a baseline, by which we can solve

P without acquisition of the state transition probabilities

ps(s
t+1|st, at), ∀s ∈ S a priori. We refer the readers to

[28] for more detail on the Q-learning algorithm. In the

subsequent subsections, we introduce the existing drawbacks

of the conventional Q-learning algorithm in practical microgrid

system and propose two improvements that resolve them.

B. Energy Consumption-Based Approximate State (EAS)

There are two obstacles in implementing the Q-learning

algorithm in the microgrid system. First, the number of system

states is very large which makes the Q-learning algorithm

require not only a large memory space to store the state-action

function Q(s, a), but also a long time for the convergence.

Second, in the practical microgrid system, it is difficult for the

service provider to acquire or use the information about the

customers’ current load demands due to the privacy issue. In

order to resolve these difficulties, in this section, we propose

an alternative definition of the system state, which is based

on the observed total energy consumption and the previously

chosen retail price. For notational convenience, we will omit

dti in eti in the rest of this subsection.

The main idea of this alternative state definition comes

from the fact that each customer i’s energy consumption at

time-slot t − 1, et−1
i , is determined by its accumulated load

demand dt−1
i and the retail pricing function at−1 as in (2)

and (5). Hence, given at−1, a different energy consumption

et−1 implies a different load demand at that time-slot. Now,

by the load demand update process in (3), if the new load

demandDt
i at the current time-slot is known, a different energy

consumption et−1 implies a different current load demand

dti. Similarly, once a tuple (
∑

i∈I e
t−1
i , at−1,

∑

i∈I D
t
i) is

observed by the service provider, it approximately reflects the

customers’ overall load demands at time-slot t. Since Dt
i is

independent random variable for each customer i, by the law

of the large number, the normalized value of sum of new

load demand,
∑

i∈I D
t
i/|I|, goes to its expected value as

the number of customers gets larger. This implies that in the

practical microgrid system with a large number of customers,

a tuple (
∑

i∈I e
t−1
i , at−1) provides enough information for the

service provider to infer the customers’ overall load demand

level at time-slot t.
To reduce the number of system states, we discretize the

observed energy consumption
∑

i∈I e
t−1
i into a finite number

of energy levels in E by using a quantization operation

qE(·). Then, we refer to tuple (qE(
∑

i∈I e
t−1
i ), at−1) as the

approximate demand at time-slot t and represent it as

dtapp =
(

qE

(

∑

i∈I

et−1
i

)

, at−1
)

. (12)

Based on the approximate demand, we now define the energy

consumption-based approximate state (EAS) of the microgrid

as

xt = (dtapp, h
t, ct) ∈ X , (13)

where X = E ×A×H×C denotes the set of the EASs. Then,

the transition probability of the EAS from xt to xt+1 can be

obtained as

px(x
t+1|xt, at) = pc(c

t+1|ct)pdapp
(dt+1

app |d
t
app, a

t), (14)

where pdapp
(dt+1

app |d
t
app, a

t) is the transition probability of the

approximate demand. Note that the EAS extremely reduces the

number of states from |S| = |
∏

i∈I Di×H×C| to |X | = |E×
A×H×C|, while allowing the service provider to easily infer

the customers’ current load demand level without using direct

signaling from the customers. Now, we can simply substitute

the original state st by EAS xt in the Q-learning algorithm.
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Algorithm 1 Q-Learning Algorithm with Virtual Experience

1: Initialize Q arbitrarily, t = 0
2: for each time-slot t
3: Choose at according to policy π(xt)
4: Take action at, observe system cost r(xt, at) and

next state xt+1

5: Obtain experience tuple σt+1 = (xt, at, rt, xt+1)
6: Generate set of virtual experience tuples θ(σt+1)
7: for each virtual experience tuple σ̃t+1 ∈ θ(σt+1)
8: v = r(xt, at) + γmaxa′∈AQ(xt+1, a′)
9: Q(xt, at)← (1− ǫ)Q(xt, at) + ǫv

10: end

11: end

C. Accelerated Learning using Virtual Experience

In order to improve the speed of the Q-learning algorithm,

we adopt virtual experience update which was introduced

in [29]. The virtual experience update enables the service

provider to update multiple state-action pairs at each time-slot

by exploiting a priori known partial information about the state

transition probability. In this subsection, we consider the case

where the service provider knows the transition probability of

the cost function pc(c
t+1|ct, ht) a priori 4.

We first define the experience tuple observed by the service

provider at time-slot t + 1 as σt+1 = (xt, at, rt, xt+1),
where rt is the observed system cost. While the observed

experience tuple σt+1 is used to update only one state-

action function Q(xt, at) in the conventional Q-learning, we

can generate multiple virtual experience tuples, which are

statistically equivalent to the actual experience tuple, to update

multiple state-action functions simultaneously. An experience

tuple σ̃t+1 = (x̃t, ãt, r̃t, x̃t+1) is said to be statistically equiv-

alent to another experience tuple σt+1 = (xt, at, rt, xt+1) if

px(x̃
t+1|x̃t, ãt) = px(x

t+1|xt, at), ãt = at, and the system

cost r̃t can be calculated by using σ̃t+1.

We denote a virtual experience tuple by σ̃t+1 =
(x̃t, ãt, r̃t, x̃t+1) ∈ θ(σt+1), where θ(σt+1) represents the set

of virtual experience tuples which are statistically equivalent to

the actual experience tuple σt+1. Note that, given approximate

demand dtapp, period ht, and retail electricity pricing function

at, the customers’ total energy consumption
∑

i∈I e
t
i is the

same regardless of the cost function ct. Hence, if dtapp and

ht are fixed, the system cost rt can be easily calculated

for an arbitrary cost functions c′t ∈ C by applying the

same energy consumption
∑

i∈I e
t
i to (7). We represent the

virtually calculated system cost as r(c′t) where c′t is an

arbitrary cost function. Then, given the actual experience

tuple σt+1 = (xt, at, rt, xt+1), we can obtain the set of the

4Note that this is a reasonable assumption because the service provider can
gather sufficient data to estimate the transition probability of the cost function
since it participates in the market for a long time. We leave the discussion
on the errors on estimate of the cost function and its impact on the system
performance for future work.

TABLE II
COMPLEXITY COMPARISON OF THREE DIFFERENT DYNAMIC PRICING

ALGORITHMS.

Computational
complexity

Memory complexity

Q-learning with
original state

O(|A|) O(
∏

i∈I
|Di||H||C||A|)

Q-learning with EAS O(|A|) O(|E||H||C||A|2)
Q-learning with EAS
and virtual experience

O(|θ(σ̂)||A|) O(|E||H||C||A|2)

corresponding virtual experience tuples 5 as

θ(σt+1) =







σ̃t+1
d̃tapp = dtapp, h̃

t = ht,
ãt = at, r̃t = r(c̃t),

pc(c̃
t+1|c̃t, h̃t) = pc(c

t+1|ct, ht)







. (15)

For example, the coarser the discrete price set is, the more

likely there are a large number of virtual experience tuples

in θ(σt+1). Moreover, if the price variation across time-slots

is small, the number of virtual experience tuples will become

even larger. Hence, as long as the number of discrete prices

and the price variation is limited, θ(σt+1) will have sufficient

tuples to take advantage of the virtual experience update.

By using the virtual experience tuples, the Q-learning algo-

rithm can update multiple state-action pairs at each time-slot

as outlined in Algorithm 1. Lines 3-5 describe the operation of

the conventional Q-learning where the service provider takes

an action and evaluates the corresponding system cost and

state transition, i.e., obtain the experience tuple σt+1. Then,

in line 6, based on σt+1, a set of its virtual experiences is

generated. In lines 7-10, the action-value function Q(xt, at)
is updated for all virtual experience tuples in θ(σt+1).

The computational complexity and the memory complexity

of the proposed reinforcement learning algorithms are sum-

marized in Table II. The computational complexity of the

Q-learning algorithm with virtual experience at each time-

slot is O(|θ(σt+1)||A|), where |θ(σt+1)| is determined by

the transition probability of the cost function of the service

provider and the current actual experience tuple σt+1. Al-

though the Q-learning algorithm with virtual experience has

a higher update complexity than the conventional Q-learning

algorithm, it significantly reduces the number of time-slots

needed to converge, which is, in general, regarded as a more

important aspect than the computational complexity at each

time-slot in reinforcement learning algorithms.

IV. REINFORCEMENT LEARNING AT CUSTOMERS:

ENERGY CONSUMPTION SCHEDULING ALGORITHM

In the previous sections, we assumed that each customer’s

energy consumption at each time-slot is determined in a

myopic way by which the customer minimizes its cost at

the current time-slot without considering its influence on its

expected cost. However, with an appropriate learning algo-

rithm in each household, each customer also can foresee

5It is worth noting that the number of virtual experience tuples strongly
depends on the model of electricity cost, i.e., the number of cost functions
and its state transition probability pc(ct+1|ct). However, we do not focus on
how specific types of cost dynamic model influence the system performance.
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the change of the retail price and take this into account in

its decision making based on the observation of the service

provider’s decision on the retail price. This learning capability

of the customers will help themselves to further minimize

their expected costs as well as the system cost for the service

provider.

In this section, we extend our system model to the multi-

agent microgrid system where not only the service provider

but also each customer can exploit the learning capability in

its decision making. Each customer aims at minimizing its

expected cost and decides its energy consumption based on

the observed retail price. We then propose a reinforcement

learning algorithm by which each customer can determine

its energy consumption in a distributed manner without a

priori information exchange with the service provider or other

customers.

A. System Model and Problem Formulation

In the multi-agent microgrid system, similarly to the service

provider, each customer i can conduct learning on its energy

consumption strategies. As a decision maker, each customer

chooses an energy consumption function ati at each time-

slot t among the set of energy consumption functions Ai =
{ai,1, ai,2, · · · , ai,Ai

}. Then, the actual energy consumption of

customer i, eti, is calculated based on the energy consumption

function ati and the current accumulated load demand dti , i.e,

eti = ati(d
t
i). (16)

Each customer i decides its energy consumption function ati
based on the observation of its state sti which is defined as a

combination of its current accumulated load demand dti , the

current period ht, and the current retail price at, i.e.,

sti = (dti, h
t, at) ∈ Si, (17)

where Si = Di ×H×A is the set of customer i’s states. We

denote customer i’s stationary policy that maps its states Si
to the actions Ai by πi : Si → Ai, i.e., ati = πi(s

t
i). In the

multi-agent microgrid system, we assume that each customer

can learn to minimize its expected long-term (discounted) cost

by solving the following problem:

Pi : min
πi:Si→Ai

E

[

∞
∑

t=0

(γ)tφti(d
t
i, e

t
i)

]

, ∀i ∈ I. (18)

For the service provider, we let it solve the same MDP

problem P by using the reinforcement learning-based dynamic

pricing algorithm proposed in Section III, except that the

customers’ energy consumption eti, ∀i ∈ I described in (12) is

replaced by the output of the energy consumption scheduling

algorithm which will be developed through this section.

B. Post-Decision State Learning

To solve each customers’s problem, we can use conven-

tional reinforcement learning algorithms such as Q-learning,

however, they do not exploit the known information about the

system and this may limit its learning speed. In practice, the

customers have partial knowledge about the transition of the

TABLE III
KNOWN AND UNKNOWN INFORMATION IN CUSTOMER’S PROBLEM

Known information

• Period at next time-slot, ht+1 = mod (t + 1, H)
• Backlog and extended demand, λi(dti − et

i
) + µie

t

i

• Cost for current time-slot, φt

i
(dt

i
, et

i
) = ui(d

t

i
− et

i
) + at(et

i
)

• Transition probability of load demand level at next time-slot,

pdi(d
t+1

i
|dt

i
, at

i
)

Unknown information

• Retail price at next time-slot, at+1

system states, but the retail price at+1 at the next time-slot

is unknown to the customer in advance. We can categorize

the information about the microgrid into a known part and an

unknown part according to whether each customer can obtain

it or not before its decision is made, as shown in Table III.

We assume that customer i knows the distribution of its new

load demand at the next time-slot, Dt+1
i .

In order to exploit this known information, we apply the

concept of the post-decision state (PDS) [29] and develop

the corresponding PDS learning algorithm. By exploiting

the known information about the system, the PDS learning

algorithm can remove the need for action exploration and

improve the learning speed.

We first define customer i’s PDS as the state where the

known information is reflected based on customer i’s deci-

sion on ati, but the unknown information is not reflected.

Accordingly, we denote customer i’s PDS at time-slot t by

s̄ti = (d̄ti, h̄
t, at) ∈ Si

6, where d̄ti = dt+1
i and h̄t = ht+1.

Based on the PDS, the state transition from state sti to st+1
i

can be represented as:

• State at time-slot t: sti = (dti, h
t, at)

• PDS at time-slot t: s̄ti = (dt+1
i , ht+1, at)

• State at time-slot t+ 1: st+1
i = (dt+1

i , ht+1, at+1)

Then, we can represent the state transition probability from sti
to st+1

i as

psi(s
t+1
i |sti, a

t
i) =

∑

s̄i∈Si

pk(s̄i|s
t
i, a

t
i)pu(s

t+1
i |s̄i), (19)

where pu(s
t+1
i |s̄ti) and pk(s̄

t
i|s

t
i, a

t
i) denote the unknown and

known probabilities, respectively. Since the period update pro-

cess is deterministic, the known probability can be represented

as pk(s̄
t
i|s

t
i, a

t
i) = pd(d

t+1
i |dti, a

t
i). Since each customer can

calculate its cost before it decides the energy consumption

function, customer i’s cost consists of only the known part,

i.e.,

φ(sti|a
t
i) = φti(d

t
i, e

t
i)

= ui(d
t
i − e

t
i) + at(eti). (20)

To develop the PDS learning algorithm, we define the state-

6The set of PDSs is the same as that of the customer i’s states.
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Algorithm 2 PDS Learning Algorithm

1: Initialize V̄ arbitrarily, t = 0
2: for each time-slot t
3: Choose at according to policy π̄(sti)
4: Take action at, observe cost φti(d

t
i, e

t
i), PDS s̄ti,

and next state st+1
i

5: V (st+1
i ) = min

ai∈Ai

[

φ(st+1
i , ai)+

∑

s̄i∈Si
pk(s̄i|s

t+1
i , ai)V̄ (s̄i)

]

6: V̄ (s̄ti)← (1− ǫ)V̄ (s̄ti) + ǫγV (st+1
i )

7: end

value functions of customer i’s state and PDS as

V̄ ∗(s̄i) = γ
∑

s′
i
∈Si

pu(s
′
i|s̄i, ai)V

∗(s′i) (21)

V ∗(si) = min
ai∈Ai

[

φ(si, ai) +
∑

s̄i∈Si

pk(s̄i|si, ai)V̄
∗(s̄i)

]

,

(22)

respectively. Given the optimal PDS value function, the opti-

mal stationary policy can be computed as

π̄∗
i (si) = min

ai∈Ai

[

φ(si, ai) +
∑

s̄i∈Si

pk(s̄i|si, ai)V̄
∗(s̄i)

]

.

(23)

We outline the PDS learning algorithm in Algorithm 2.

The PDS learning algorithm can improve the learning speed

compared to the conventional Q-learning algorithm by taking

advantages of the following characteristics:

• The update process of value functions V (st+1
i ) and

V̄ (sti) in lines 5-6 of Algorithm 2 provides information

about the state-value function of many states. This is

possible thanks to the exploitation of the known parts

of probability pk(s̄
t
i|s

t
i, a

t
i) and cost φ(si, ai).

• The PDS learning algorithm can choose its action in a

greedy manner at each time-slot as in line 4 of Algorithm

2 without requiring the randomized exploration in each

state.

The computational complexity and the memory complexity

of the proposed energy consumption scheduling algorithm are

summarized in Table IV. The computational complexity of

the PDS learning algorithm at each time-slot is larger than the

conventional Q-learning algorithm since the learning update

of PDS learning algorithm spans all |Si| states for each action

ai. However, PDS learning algorithm leads to less memory

complexity than the conventional Q-learning algorithm by

storing only the state-value functions for the original states

V (si) and those of PDSs V̄ (s̄i) without requiring to store the

action-value functions Q(si, ai).

V. NUMERICAL RESULTS

In this section, we provide numerical results to evaluate

the performance of our dynamic pricing algorithm. One day

consists of 24 time-slots each of which lasts for one hour.

We consider a microgrid with 20 customers. We assume

that the newly generated load demand of customer i, Dt
i ,

TABLE IV
COMPLEXITY COMPARISON OF TWO DIFFERENT ENERGY CONSUMPTION

SCHEDULING ALGORITHMS.

Computational
complexity

Memory complexity

Q-learning O(|A|) O(|Di||H||A||Ai|)
PDS learning O(|S||A|) O(2|Di||H||A|)
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2.5

3

k
W

h

Time−slot

Fig. 3. Load demand profile.

follows a Poisson distribution 7 with expected value ωi,ht ,

which is proportional to the hourly average load shapes of

residential electricity services in California [32] as shown in

Fig. 3. We assume that all customers have the same backlog

rate, i.e., λi = λ, ∀i ∈ I, but the demand extension rate µi is

uniform randomly determined at every time-slot among values

in {0, 0.1, 0.2, 0.3, 0.4, 0.5}.
Each customer i’s disutility function ui(d

t
i− e

t
i) is given as

ui(d
t
i − e

t
i) = κi × (dti − e

t
i)

2, (24)

where κi is a constant that represents customer i’s disutility

sensitivity to its remaining demand. Here, we let κi = κ =
0.1, ∀i ∈ I. If not specified, we only consider the customers

without learning capabilities, i.e., each customer decides its

energy consumption in a myopic manner to minimize its

current cost. We consider the impact of customers’ learning

capability in Subsection V-D.

We model the cost function ct as a quadratic func-

tion 8 of the total energy consumption
∑

i∈I e
t
i as in

[6][15][16][19][33][34][35][36] :

ct
(

∑

i∈I

eti

)

= αt ×
∑

i∈I

eti + βt
ht ×

(

∑

i∈I

eti

)2

. (25)

We set αt = 0.02, ∀t and βt
ht to be a random variable whose

expected value, vht , changes according to the corresponding

period ht based on the hourly average load shape in Fig.

7The Poisson distribution of load demand has been adopted in many existing
works such as [23],[30],[31]. Note also that our reinforcement learning
algorithms are able to operate efficiently regardless of the types of the demand
arrival model.

8Note that the choice of the cost function in this section is only an
illustrative example and our reinforcement learning algorithms are able to
operate efficiently regardless of the cost function.
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Fig. 4. Performance comparison of our reinforcement learning algorithm
and the myopic optimization algorithm varying λ.

3. With a given period ht, βt
ht is uniform randomly chosen

among values in {0.25vht, 0.5vht, · · · , 1.75vht}. The discount

factor γ is fixed to 0.95 in problems P and Pi, ∀i. The

retail pricing function at is a linear function of the energy

consumption eti, i.e.,

at(eti) = χteti, (26)

where the coefficient χt can be chosen among set

{0.2, 0.4, · · · , 1.0} each element of which is directly mapped

to one retail pricing function in A.

A. Performance Comparison with Myopic Optimization

We first evaluate the performance of our pricing algorithm

by comparing it with that of myopic optimization algorithm.

In the myopic optimization algorithm, the service provider

chooses an action with the lowest expected instantaneous

system cost, which can be updated similarly to the Q-learning

update by letting the discount factor γ = 0. This implies

that the myopic optimization algorithm focuses only on the

immediate system cost without considering the impact of the

current action on the future system cost. In Fig. 4, we show

the average system costs of those two pricing algorithms by

changing the backlog rate, λ, from 0 to 1. We set ρ = 0.5.

We can observe that the average system costs increase as λ
increases in both pricing algorithms because with a higher

backlog rate, the accumulated load demand causes a higher

disutility. We also observe that the performance gap between

two algorithms increases as λ increases. For example, with a

zero backlog rate, λ = 0, the solution of our reinforcement

learning algorithm is the same as that of the myopic optimiza-

tion algorithm. On the other hand, in the case with a higher

backlog rate, the remaining backlog is carried forward to the

next time-slot. Hence, the service provider’s pricing decision

at a time-slot influences the accumulated load demand in the

future, and thus its future system cost. Due to this difference,

in dynamic pricing, the ability to forecast the future system

cost is more important especially when λ is large.
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Fig. 5. Impact of the weighting factor ρ on the performances of customers
and service provider.
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Fig. 6. Impact of virtual experience on the learning speed of the Q-learning
algorithm.

B. Impact of Weighting Factor ρ

To study the impact of the weighting factor ρ, in Fig. 5,

we show the cost of customers, that of the service provider,

and the average retail price with varying ρ from 0 to 1. We

set λ = 1. We can observe that as ρ increases, the service

provider reduces the average retail price, the cost of customers

decreases, and the cost of the service provider increases. For

example, in the case with ρ = 0, the service provider aims at

minimizing its own cost. Hence, the service provider does not

consider the customers’ disutility and chooses relatively high

prices to reduce the its own cost. On the other hand, in the

case with ρ = 1, the service provider aims at minimizing the

customers’ cost. Hence, the service provider chooses relatively

low prices to provide electric energy to the customers at a low

retail price as possible.

C. Virtual Experience Update

In Fig. 6, we compare the learning speed of our virtual

experience-based reinforcement learning algorithm with that

of the conventional Q-learning algorithm without virtual ex-

perience. We set λ = 1 and ρ = 0.5. We can observe that

our algorithm with virtual experience provides a significantly

improved learning speed compared to that of the conventional
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Fig. 7. Impact of the customers’ learning capability.

Q-learning algorithm. This means that even if the stochastic

characteristic of the system dynamics vary in time, the pro-

posed reinforcement learning algorithm can quickly adapt to

the time-varying environment by exploiting virtual experience

update.

D. Customers with Learning Capability

We now study the impact of customers’ learning capability

on the performance of the microgrid. For each customer i’s
problem Pi, we use the PDS learning algorithm in Algorithm

2. The energy consumption function ati is a linear function of

customer i’s accumulated load demand dti, i.e.,

ati(d
t
i) = χt

id
t
i, (27)

where the coefficient χt
i can be chosen from set

{0, 0.2, · · · , 1.0} each element of which is directly mapped

to one energy consumption function in Ai. We use the same

simulation environment as in the previous subsections.

In Fig. 7, we compare the performances of two different

scenarios with varying ρ from 0 to 1: one has the customers

with the learning capability and the other has the myopic

customers. For both scenarios, we set λ = 1. Fig. 7 shows

that the customers with learning capability results in the lower

average system cost as well as the lower customers’ average

cost than the myopic customers in most environments. It is

worth noting that with a small ρ, the customers with the

learning capability achieves a significantly reduced cost than

the myopic customers. With a small ρ, the service provider

places more importance on its own cost rather than that of the

customers, and thus sets the retail price as high as possible to

maximize its income from the electricity bills. However, the

result on the cost of customers show that the customers with

the learning capability can cope with the service provider’s

unilateral decision on the retail price by efficiently scheduling

its energy consumption.

In Fig. 8, we evaluate the learning speed of the proposed

PDS learning algorithm. For the service provider’s dynamic

pricing, we use the proposed Q-learning algorithm with virtual

experience (Q-Learning+VE). For each customer’s energy con-

sumption scheduling, we compare the proposed PDS learning
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Fig. 8. Comparison of learning speed of the PDS learning algorithm and the
conventional Q-learning algorithm.

algorithm with the conventional Q-learning algorithm. We

set λ = 1 and ρ = 0.5. Fig. 8 shows that thanks to the

learning capability of customers, the lower average system

cost is achieved compared to the result shown in Fig. 6.

As multiple agents including the customers and the service

provider individually perform reinforcement learning algo-

rithms at the same time, the learning speed is extremely slow

when conventional Q-learning algorithm is used. However,

the proposed PDS learning algorithm provides a significantly

improved learning speed by exploiting the known information

at each customer.

VI. CONCLUSION

In this paper, we studied a dynamic pricing problem for the

microgrid system where the service provider can adaptively

decide the electricity price according to the customers’ load

demand levels and the cost. In developing the reinforce-

ment learning-based dynamic pricing algorithm, to resolve

the existing drawbacks of the conventional reinforcement

learning algorithm, we proposed two improvements: energy

consumption-based approximate state (EAS) definition and the

adoption of virtual experience update in the conventional Q-

learning algorithm. We then study a more intelligent microgrid

system where each customer to learn and foresee the change

of retail price. By adopting the multi-agent learning structure

with the PDS learning algorithm, we develop the distributed

algorithm which can operate at each of the service provider

and the customers without a priori information exchange.

Numerical results show that the reinforcement learning-based

dynamic pricing achieves a higher long-term performance

compared to the myopic optimization approach especially in

the system where the customers have a high demand backlog

rate. We also showed that by utilizing the customers’ learning

capability, we can significantly reduce the customers’ cost

as well as the system cost. Moreover, the improved learning

speed of our algorithms with the alternative state definition,

virtual experience, and PDS learning enables the proposed

reinforcement learning algorithms to be conducted online in a

fully distributed manner.
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The results in this paper can be extended in several direc-

tions. First, in Section IV, we used a straightforward approach

by which each customer or the service provider regards the

other agent’s decision as a part of the environment and

learn their behaviors. This approach is reasonable because

each of many customers in the microgrid is not necessarily

strategic; instead, it is more important to learn the dynamics

of the entire system and find its optimal energy consumption

scheduling based on the observations. Even though we showed

that our approach achieves good performances in terms of

both convergence and system cost, there exist a potential for

further improvements by studying the strategic behaviors of

the rational agents and its impact on the system performance,

which is an interesting future direction of this paper. Second,

in this paper, we assumed that the service provider knows the

transition probability of cost functions. However, in practice,

there might exist some errors on the estimates of the electricity

cost and this would affect the performance of the proposed

reinforcement learning algorithm. We are planning to discuss

and show this impact in future work. Third, in this paper, we

did not explicitly model the various types of energy sources,

e.g., solar power, and energy consumers, e.g., electric vehicles.

It will be interesting to take into account the impact of the

various types of energy sources/consumers on the dynamic

pricing policies and energy consumption scheduling as well as

the impact of the bidirectional energy delivery and different

types of pricing structures between the service provider and

the customers as introduced in [37].
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