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Abstract— Load management based on dynamic pricing has 
been advocated as a key approach for demand-side management 
in smart grids. By appropriately pricing energy, economic 
incentives are given to consumers to shift their usage away from 
peak hours, thereby limiting the amount of energy that needs to 
be produced. However, traditional pricing-based load 
management methods usually rely on the assumption that the 
statistics of the system dynamics (e.g. the time-varying electricity 
price, the arrival distribution of consumers’ load demands) are 
known a priori, which is not true in practice. In this paper, we 
propose a novel price-dependent load scheduling algorithm 
which, unlike previous works, can operate optimally in systems 
where such statistical knowledge is unknown. We consider a 
power grid system where each consumer is equipped with an 
energy storage device that has the capability of storing electrical 
energy during peak hours. Specifically, we allow each consumer 
to proactively determine the amount of energy to purchase from 
the utility companies (or energy producers) while taking into 
consideration that its load demand and the electricity price 
dynamically vary over time in an a priori unknown manner. We 
first assume that all the dynamics are known and formulate the 
real-time load scheduling as a Markov decision process and 
systematically unravel the structural properties exhibited by the 
resulting optimal load scheduling policy. By utilizing these 
structural properties, we then prove that our proposed load 
scheduling algorithm can learn the system dynamics in an online 
manner and converge to the optimal solution. A distinctive 
feature of our algorithm is that it actively exploits partial 
information about the system dynamics so that less information 
needs to be learned than when using conventional reinforcement 
learning methods, which significantly improves the adaptation 
speed and the runtime performance. Our simulation results 
demonstrate that the proposed load scheduling algorithm 
achieves efficiency by more than 30% compared to existing state-
of-the-art online learning algorithms. 

I. INTRODUCTION  

With the rapid progress of information and communication 
technologies, such as advanced metering, bi-directional 
communication, distributed power generation and storage, etc., 
demand-side management (DSM) is prevailing in the smart 
power grid, which provides effective balancing over the 
dynamic power supply and load demand in order to ensure 
efficient use of electric energy [1]. By controlling the 
consumers’ appliances and move some of the non-urgent loads 
from peak hours to off-peak hours, DSM can effectively 
alleviate high demand loads of electric energy at peak hours, 
thereby improving the stability of the power system and 
lowering production costs in the long run [2].  

There exists a large body of literature on DSM, see e.g. 
[1]-[12]. Depending on who performs the management, 
existing DSM methods can be generally classified into two 
categories. The first category of DSM largely relies on the 
direct load control (DLC) [3][4]. In this case, the utility 

companies install switches or thermostats on top of the 
existing metering infrastructure, which allow them to (directly) 
modify the operations of appliances during peak hours. For 
instance, [3] studies optimal centralized energy reallocation in 
smart grids; [4] investigates the coordination of charging plug-
in hybrid electric vehicles with other electric appliances. 
Although utility-based DLC have been effective in smoothing 
peak demands, they incur frequent interruptions to the normal 
use of the household appliances, because the control of DLC is 
based on the observation of the real-time load without 
considering the actual demand from the consumers. For 
instance, when warranted by capacity shortage during the 
summer, a consumer’s central air conditioning system will be 
turned down or cycled by the utility company, while the exact 
days and the length of the cycling period will not be known by 
the consumer in advance [8]. More importantly, by providing 
centralized control over the electricity load, DLC methods 
usually neglect the heterogeneity embedded in the consumers’ 
demands and shield individual consumers from making price-
aware decisions in order to effectively (and more flexibly) 
perform individual load scheduling based on their personal 
demands. This further reduces the efficiency of the smart grid.  

Due to the abovementioned problems of DLC, the second 
category of DSM, which is based on dynamic pricing, has 
become more prominent in recent years [1][2][5]-[12]. The 
basic principle of dynamic pricing is to adaptively adjust the 
retail price of electric energy according to the real-time 
variation of the production capacity of energy producers and 
the load demands from the consumers. Although the dynamic 
pricing does not directly control the load scheduling on 
individual consumers, appropriate pricing can provide 
effective economic incentives to consumers and thus shift 
electricity usage away from peak hours, which in turn helps 
the utility companies to procure electric energy more 
efficiently [2].  

The dynamic pricing literature can be sub-divided into two 
categories. The first category takes the utility companies 
perspective and designs effective pricing strategy in order to 
maximize the social welfare, i.e. the sum benefit of all 
consumers, in the smart grid, or the revenue of the utility 
company from electric energy sale [6]-[8]. The second 
category focuses on individual or groups of consumers, and 
mainly aims to design effective price-based load/demand 
scheduling which maximizes the benefit of the individual (or 
group of) consumers, given the exogenously determined 
pricing strategy from the utility company, e.g. [9][10].  

In this paper, we specifically focus on the design of price-
based load scheduling algorithms from the consumer’s 
perspective, while keeping the design of pricing strategies 
fixed.  Most existing price-based load scheduling algorithms 
have focused on myopically maximizing the immediate benefit 



of consumers, based on the current electricity price and load 
demand, e.g. [9][10]. However, in the smart grid, the load 
scheduling decisions are strongly correlated across time. That 
is, the current load scheduling decision will not only affect a 
consumer’s immediate benefit, but also its load demand and 
benefit in the future [2]. Hence, the myopic optimization of the 
consumer’s benefit cannot perform well in the long run.  

There are only a few works which design the load 
scheduling algorithms by considering the foresighted 
maximization of the consumer’s long-run benefit 
[1][2][11][12]. Most of them use electric price predictions and 
assume that the statistical knowledge of the underlying system 
dynamics (e.g. the temporal variation of the electricity prices, 
the arrival distribution of the consumer’s load demand) is 
known. However, practical smart grid systems face many 
unknowns, such as the weather, the heterogeneous consumer 
reactions to real-time prices, the intermittency of renewable 
energy sources (e.g. small wind farms, household with solar 
panels, etc.), whose statistical knowledge cannot be reliably 
obtained a priori. Therefore, the efficacy of the methods 
proposed in these works, which rely on specific models of the 
system dynamics, result in poor performance in practice.  

In this paper, we propose a price-based load scheduling 
algorithm which can operate optimally in time-varying 
unknown environment. In particular, we consider a power grid 
where each consumer is equipped with an energy storage 
device that has the capability of storing electrical energy. The 
consumers purchase electric energy from an electricity market 
where the electricity price varies over time in an unknown 
manner. Hence, each individual consumer performs load 
scheduling by proactively determining how much electric 
energy to purchase at each moment of time, given its real-time 
load demand and the electricity price. By rigorously 
formulating the consumer’s decision problem as a Markov 
Decision Process (MDP), we then propose an efficient online 
learning algorithm that enables each consumer to learn the 
optimal scheduling strategy that maximizes its personal benefit 
in the long run.  

The differences between our work and the existing 
literature on DSM are exhibited in Table 1. The main 
contributions of our work are summarized in the following 
aspects: 

(1) Low-complexity online learning. We assume that both 
the electricity price and the arrival of consumers’ demands 
vary dynamically over time. Meanwhile, the statistical 
knowledge of these dynamics is not known a priori. In order to 
cope with such unknown time-varying system dynamics, we 
propose, in our load scheduling algorithm, a decomposition of 
the (offline) value iteration and (online) reinforcement learning 
based on factoring the system dynamics into a priori known 
and a priori unknown components. This is achieved by 

generalizing the concept of a post-decision state [19][20], 
which is an intermediate state that occurs after the known 
dynamics take place but before the unknown dynamics take 
place. A key advantage of the proposed PDS learning method 
is that it exploits partial information about the smart grid 
system and the structure of the load scheduling problem and 
thus, less information needs to be learned than when using 
conventional reinforcement learning algorithms such as Q-
learning, actor-critic etc. [18]. Importantly, under certain 
conditions, it obviates the need for action exploration, which 
significantly improves the adaptation speed and the runtime 
performance as compared to conventional reinforcement 
learning algorithms which loose significant performance 
during the (very long) exploration state.  

(2) Batch update. We also take advantage of the fact that 
the unknown environment dynamics are independent of certain 
components of the system’s state. We exploit this property to 
perform a batch update on multiple PDSs in each time slot. 
Importantly, our numerical results illustrate that incorporating 
batch update into the PDS learning can significantly reduce the 
convergence time to the optimal policy compared to the 
traditional “one state at a time” update adopted in 
reinforcement learning.  

(3) Load scheduling with electric energy storage. Most 
existing load scheduling methods mainly rely on prioritizing 
the consumer’s task and postponing non-urgent or deferrable 
tasks, in order to achieve the balance between supply and 
demand [1]. Different from this, the load scheduling algorithm 
proposed in this paper makes use of electric energy storage 
devices, such as uninterrupted power supply (UPS), 
rechargeable batteries, and plug-in hybrid electric vehicles, 
which become prevalent in the current smart grids [13]. 
Following our algorithm these devices are charged at off-peak 
hours and the stored energy can be used to satisfy increased 
demand at peak hours. By optimally designing the energy 
storage policy, our load scheduling algorithm does not need to 
defer any load demand, which often causes dissatisfaction 
from individual consumers.  

The remainder of this paper is organized as follows. In 
Section II, a rigorous MDP framework is proposed to 
formulate the load scheduling problem in the smart grid. In 
Section III, we describe a novel PDS online learning algorithm 
that optimally solves the load scheduling problem and study 
the structure of the optimal load scheduling policy. After 
presenting the simulation results in Section IV, we conclude in 
Section V. 

II. SYSTEM MODEL 

A. System Setting 

This section describes the smart grid system assumed in 
this paper. We consider an infinite-horizon discrete time model, 

 [3][4]  [6]-[8] [9][10] [1][2][11][12]  Our work 

DSM approach DLC Dynamic pricing Dynamic pricing Dynamic pricing Dynamic pricing 

Optimizing entity Utility company Utility company Individual consumer Individual consumer Individual consumer 

Load scheduling approach Centralized control N/A 
Deferring non-urgent 

load 

Deferring non-urgent 

load 

Electric energy 

storage 

Optimization criterion Myopic/Foresighted Myopic/Foresighted Myopic Foresighted Foresighted 

System dynamics Known Known Known Known Unknown 

Online learning No No No No Yes 
 

Table 1   Comparison of the existing literature and our work 



where time slots are indexed by 0,1,...t = . Here each slot 

represents the time interval in which the entities in the system 
make one operation. For instance in [1], the length of each 
time slot is assumed to be one hour, in which the sale price of 
electricity changes once. Similar to [10][12], we consider an 
electricity market where distributed power grids purchase 
electric energy from distributed energy producers. A market 
consists of three different types of agents: market operator, 
producer, and consumer: 

(1) The producers represent the distributed entities who 
generate and sell energy in this wholesale market to the power 
grids [10][14]. Examples of such producers include small wind 
farms, households with solar panels, etc.  

(2) The consumers are the end users residing in the power 
grids. Each consumer owns a number of residential appliances, 
e.g. electrical vehicles, air conditions, dishwashers, etc. Each 
consumer purchases electric energy from the market for its 
own consumption. 

(3) The market operator is a monopoly who regulates the 
market, e.g. the owner of the market. It manages the physical 
infrastructure and the electricity trading in the market and 
determines the trading price of the electricity. 

We specifically focus in this paper on designing optimal 
policies for strategic consumers, while assuming that the other 
entities in the market (i.e. the producers and the market 
operator) are obedient and follow given policies 1. Here we 
assume that the load scheduling policies of different 
consumers do not interfere with the decisions of each other and 
hence, it is sufficient to focus on the analysis of one 
representative consumer.  

                                                           
1  It should be noted that the stochastic control and online learning 

solutions proposed in this paper can be easily extended to the design and 

analysis of the strategic operations of entities other than the consumers. We 

relegate such extension as future works.  

In each time slot t , the interaction of the consumer with 
other entities in the market can be summarized as follows: 

(1) The market operator publishes the unit electricity price 

in the current time slot. The unit price is denoted as 
( )tq ∈Q , 

where Q  is a finite set of possible electricity prices. Similar to 

[9], we assume that the evolution of the electricity price 
follows a stationary finite-state Markov chain and the 

transition probability is determined by ( 1) ( )( | )t t

q
p q q+ , which 

is exogenously determined 2. 
(2) The consumer observes its load demand, which is 

denoted as 
( )td , in the current time slot. We assume that 

( ) [0, ]td D∈ , where D  is a constant. 

(3) The consumer purchases an amount ( )ta ∈ A  of 

electric energy from the electricity producers to fulfill its 

demand, where A  represents the finite set of possible 

purchasing amounts. 
A significant problem embedded in the electricity market is 

that the production capacity of the distributed electricity 
producers varies drastically over time and is often highly 
unpredictable compared to the large power plants because they 
rely on intermittent resources like wind and sunshine [9], 
which in turn introduce significant fluctuations on the unit 

electricity price 
( )tq . Therefore, the stability of the power grids 

is critically dependent on having balanced electricity supply 
and demand at any given time. In order to achieve such 
balance between the supply and demand, the consumer 
schedules its load demand through the help of electricity 
storage devices (e.g. batteries, plug-in hybrid electric vehicle, 
etc.). With the help of electricity storage devices, the basic 
principle of the consumer’s load scheduling can be described 
as follows: 

• In a time slot t  when the production capacity of producers 

is high and thus the unit electricity price 
( )tq  is low, the 

consumer purchases more electricity than what is 

demanded by its appliances, i.e. ( ) ( )t ta d> , and stores the 

surplus 
( ) ( )t ta d−  in the storage device. 

• In a time slot t  when the production capacity is low and 

thus the unit electricity price 
( )tq  is high, the consumer 

purchases less electricity than what is demanded by its 

appliances, i.e. ( ) ( )t ta d< , and covers the deficit 
( ) ( )t td a−  using the stored electricity, which is denoted as 
( )tb ∈ B , where B  is a countable set. 

A schematic representation of the considered electricity 
market is illustrated in Figure 1(a). By strategically 

determining its purchased amount 
( )ta  in each time slot, the 

consumer can flexibly utilize its stored electricity to effectively 
balance the electricity supply and demand across time slots 
while minimizing the negative effect introduced by the 

                                                           
2 It should be noted that the Markovian price model we assumed here is 

only for analytical tractability. As what is shown in Section IV, our proposed 

load scheduling algorithm also performs well when the price variation is not 

Markovian. 

( )ta

)( ()t t
a d−

)( () ttq a

 
(a) 

( )ta

( )ta

)( ()t ta d−

)( () ttq a

 
(b) 

Figure 1   Electricity wholesale market (a) without aggregators; (b) with 

aggregators 



production capacity fluctuation. In this way, its benefit from 
electricity consumption can be maximized. 

B. An Alternative Setting – Load Scheduling by Aggregators 

We would like to note that our proposed load scheduling 
with energy storage devices does not necessarily need to be 
performed by individual consumers. In certain scenarios, 
consumers can be grouped together and perform collaborative 
load scheduling with the help of some aggregators and 
centralized energy storage devices [13]. For instance, the load 
scheduling of the centralized air-conditioning in a building is 
usually not performed individually by users in their separate 
apartments or rooms but controlled by some centralized 
building facility manager.  

A schematic representation of the electricity market with 
aggregators is illustrated in Figure 1(b). The job of the 
aggregator in each time slot is to aggregate the load demands 
from individual consumers, purchase the electric energy from 
the market, distribute the demanded energy and store the 
surplus into the associated centralized energy storage devices. 

Therefore, 
( )td  and 

( )ta  in this figure represent the sum 
demand and purchased electricity of all consumers in a group, 
instead of the individual demand and purchased electricity. 

It is important to note that our analysis throughout the rest 
of this paper, though being conducted from an individual 
consumer’s perspective, can be applied, without any change, 
into the design of the optimal load scheduling policy for the 
aggregator. With aggregators, individual consumers can share 
the energy storage device and thus reduce the associated cost 
for energy storage. However, such collaborative load 
scheduling also introduces negative effects, since the benefit 
received by each individual consumer will be influenced by 
the dynamics (e.g. the load demands) at other consumers. In 
Section IV, we will demonstrate this negative effect using 
numerical examples.  

C. Stochastic Control Formulation 

In this section, we formulate the strategic load scheduling 
of the consumer as a stochastic control problem. The action in 

each time slot t  is its purchased amount 
( )ta . The state is 

defined as a tuple ( ) ( ) (( ) )( , , )t t t ts q b e≜ . Here the variable 
( )te  

represents all environment dynamics (e.g. time, weather) that 
the consumer experiences in time slot t , other than the 

electricity price 
( )tq , its own demand 

( )td , and its current 

stored amount of electricity 
( )tb . Valuable information is 

embedded in the environment dynamics, which can enable the 
consumer to make more effective purchasing decisions. For 
instance, it is frequently the case in an energy market that the 
sale price may be high during the peak hours (e.g. 6pm-12pm) 
and low during off-peak hours (e.g. 12pm-6pm) [10][15]. 

Hence, this information is helpful to consumers aiming to 
predict how their own demand and the electricity price will 
change in the near future and, based on this, determine how 
much energy they should purchase at this time.  

To make the stochastic control problem tractable, we 

assume that 
( )te  also takes values from a finite set as in [1][14], 

which is denoted by E  and evolves as a finite-state Markov 

chain with transition probability ( 1) ( ){ ( | )}t t
e
p e e+ . It has been 

widely measured in electricity markets that the consumers’ 
demand is significantly influenced by the environment 
dynamics [17]. To capture this influence, we model the sum 

demand 
( )td  as an i.i.d. random variable given the current 

environment dynamic 
( )te , with the probability distribution 

being ( ) ( ){ ( | )}t t
d
p d e . 

Given the Markovian evolution of 
( )tq , 

( )td  and 
( )te , the 

stochastic control problem can be casted as a Markov Decision 
Process (MDP). At the beginning of each time slot t , the 

consumer observes 
( )ts . After this, it purchases an amount 

( )ta  
from the electricity producers and uses the purchased (and 
stored) electricity to operate its appliances. The storage 
dynamic across time slots is illustrated in Figure 2 and 
captured by the following expression: 

 ( )( )1) ( ( 1)t tt tb b a d ++ = + − . (1) 

The system then evolves into the next time slot 1t +  with the 

state 
( 1)ts + , with the transition probability expressed as 

follows:  

 

( 1) ( )

( 1) ( ) (

( )

( ) (

1) ( )

( ) ( )1)

( | , )

( | ) ( | )

   ( | )

t t

t t t t

q e

t t

t

t

d

t

p s s a

p q q p e e

p b a b e

+ +

+

+

=

+ −

. (2) 

  
The benefit received by the consumer in each time slot t  is 

determined by the amount of its consumed electricity in this 

time slot, which equals ( ) ( )( )min{ , }tt tb a d+ , i.e. the 

maximum amount of electricity consumption cannot exceed 
the total amount of stored and purchased electricity. Given this, 

the one-slot utility 
( )tu  received by the consumer in time slot 

t  is expressed as follows: 

 
( ) ( ) ( )

( ) ( ) ( ) ( ) (

( ) ( )

)

( , ) (min{ , })

               (max{ , 0})

t t t

t t t t

t

t

tu s a f b a d

c b a d q a

= +

− + − −
. (3) 

Here 
( ) ( )t tq a  represents the total price the consumer pays for 

the purchased electricity and ( ) ( ) ( )(max{ ,0})t t tc b a d+ −  is 

the cost incurred for storing the electricity left at the end of 
time slot t  with c  being the unit storage cost. 

( ) (( ))(min{ , })tt tf b a d+  represents the benefit from the 

electricity consumption and we assume that the form of ()f ⋅  is 

known a priori and satisfies the following conditions: 

Assumption 1: ( )f x  is non-decreasing and concave on x , 

with lim ( ) 0
x

f x
→∞

′ = ; 

Assumption 2: (0) 0f = . 

 

( )t
d

( )tb

( )ta

( )tb

( 1)td +

( 1)tb +

t 1t +  
Figure 2   Temporal evolution of the electricity storage 



Assumption 1 states the fact that a higher consumption 
leads to a higher benefit for the consumer, whereas the 
increase on the benefit monotonically decreases against the 
total consumption. Assumption 2 states the fact that the 
received benefit is always non-negative. These assumptions 
are widely adopted in previous works, e.g. [16]. 

The load scheduling policy of the consumer is a mapping 

:π × × →Q B E A . That is, a policy instructs the action 

that the consumer takes in each time slot as ( ) ( )( )t ta sπ= . The 

consumer is foresighted and interested in optimizing its policy 
to maximize its expected long-term utility, which is referred to 
as the value function and defined as follows: 

 
(0) ( ) (( ) 0)

0

( ) ( , ) |tt t

t

U s u s a sπ
δ

∞

=

 
 =  
  
∑E . (4) 

Here [0,1)δ ∈  is a constant discount factor, which represents 

the fact that the consumer puts higher weight on its current 
utility than its future utility. 

Each consumer needs to maximize its long-term utility by 
solving the following stochastic control problem: 

 
(0)max ( )U sπ

π

. (5) 

Let 
*
π  the optimal solution of the unconstrained MDP (5) 

and the corresponding optimal long-term utility to be * (0)( )U s . 

It is well-known that 
*
π  and )* (0( )U s  can be obtained by 

recursively solving the following Bellman equation set [18]: 

 

*

*

( )

(min{ , }) (max{ ,0})

max ( | ) ( | )

( | ) ( )   

q e

b a

b a

q e

d
b D

U s

f b a d c b a d qa

p q q p e e

p b a b eU s

π

δ

′

∈ ∈

+

= + −

=

 
 
 
 + − + − − 
 ′ ′+ 
 
 
 

′ ′ + −
 
 

∑ ∑

∑

Q E

. (6) 

We end this section by summarizing what is known by the 
consumer at each time slot in order to solve this stochastic 
control problem. Among all the above variables discussed in 
this section, the consumer can observe all the state variables, 

i.e. 
( )tq , 

( )tb , 
( )td , 

( )te  as well as its action 
( )ta . However, the 

consumer cannot observe the state transition probabilities, i.e. 
( 1) ( )( | )t t

e
p e e+

, ( 1) ( )( | )t t

q
p q q+ , 

( ) ( )( | )t t

d
p d e . Meanwhile, 

the electricity prices and the environment dynamics are also 
unknown by the consumer. All these unknown variables need 
to be learn by the consumer during the run time. 

III. POST-DECISION STATE BASED DYNAMIC 

PROGRAMMING 

In this section, we analyze and solve the Bellman equation 
(6) and explore the structural properties of the optimal solution. 
The traditional algorithms for solving the Bellman equation, 
e.g. the value iteration and the policy iteration [18], rely on the 

knowledge of the state transition probabilities, i.e. ( | )
q
p q q′ , 

( | )
e
p e e′ , and ( | )

d
p b a b e′+ − , as well as the state space, i.e. 

Q , D  and B . Since these values are not known (or only 

partially known) a priori, the expectation embedded in (6) 
cannot be computed using well-known stochastic control 
techniques. Hence, we propose an online reinforcement 

learning algorithm to dynamically learn 
*
π  and 

*U  on-the-fly, 
without requiring any a priori knowledge of the transition 
probabilities and the state space. 

In the rest of this section, we first introduce the concept of 
the post-decision state in Section III.A, which is an 
intermediate state of the system in order to capture the known 
part of the system dynamics. Section III.B then develops a 
general post-decision state based online learning algorithm that 
allows the consumer to integrate known information about the 
system dynamics into its learning process. Exploiting this 
partially known information dynamically could significantly 
improve the run-time performance compared to the 
conventional online learning algorithms, e.g. Q-learning [18]. 
Finally in Section III.C, we prove the convergence of the 
proposed algorithm and discuss the structural properties of the 

optimal policy 
*
π . 

A. Post-Decision State  

The key idea behind our proposed learning algorithm is to 
introduce an intermediate state, which captures the known part 
of the system dynamics. We call this intermediate state the 

post-decision state ( , , )bs q eɶ≜ ɶɶ ɶ . The relationship between a 

state 
( )ts  and its post-decision state 

( )tsɶ  in time slot t  is 
illustrated in Figure 3. From this figure, it can be noticed that 

given ( ) ( ) (( ) )( , , )t t tt q b es = , the corresponding post-decision 

state in the time slot t  is computed as follows:  

 
( ) ( )t tq q=ɶ , ( ) ( ) ( )t t tb b a= +ɶ , 

( ) ( )t te e=ɶ . (7) 

The post-decision state represents the state of the system in 

each time slot after the consumer performs its action 
( )ta  but 

before the new demand 
( 1)td +  arrives and the new unit 

electricity price 
( 1)tq +  is set. 

Accordingly, we define the post-decision value function 
*( )V sɶ  for a post-decision state sɶ  as follows: 

 

*

*

( )

( | ) ( | )

( | ) ( )

q e
q e

b a

b a D
d

b

V s

p q q p e e

p b a b eU s

∈ ∈

+

= + −′

=

′ ′

′ ′+ −

∑ ∑

∑

ɶ

Q E

. (8) 

 
For the better illustration, we refer to s  as the “normal” state 

and *( )U s  as the “normal” value function, in order to 

differentiate with their post-decision counter parts. 
By comparing (6) and (8), it can be noticed that the post-

decision value function represents the expectation of the 
consumer’s future utilities over the unknown system 
dynamics. Hence, there is a deterministic mapping from the 
normal value function to the post-state value function. By 
substituting (8) into (6), the relationship between the normal 



value function and the post-state value function can be 
expressed as follows: 

 

0

*

*

( , , )

(min{ , }) (max{ ,0})
max

( , , )a

U q b e

f b a d c b a d

qa V q b a eδ≥

=

 + − + −
 
 
− + +  

. (9) 

The above equation shows that the normal value function 
*( , , )U q b e  at each time slot is obtained from the 

corresponding post-decision value function *( , , )V q b a e+  at 

the same time slot by performing the maximization over the 
action a . Therefore, introducing the post-decision state and 
the corresponding value functions allows us to factor the state 
transition probability into known and unknown components 
and thus optimize the load scheduling policy of the consumer 
without computing the expected future utility over the 
unknown system dynamics. In the next section, we discuss 
propose an online learning algorithm that utilizes adaptive 
approximation to effectively learn the post-state value 
functions. 

B. Post-Decision State Based Online Learning 

We update the post-decision value function using 
conventional reinforcement learning approaches [18]. In each 

time slot t , where the post-decision state is 
( ) ( ) ( ), ,t t tq b eɶɶ ɶ , we 

update its post-decision value function as follows: 

 

( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ( 1) () ) ( ) ( )

( , , ) (1 ) ( , , )

                        ( , , )

tt t t t t t t

t

t

t t t t

V q b e V q b e

U q b e

α

α

+

+

= −

+

ɶ ɶɶ ɶ ɶ ɶ

ɶ ɶ
. (10) 

Here 
( )t
α  is the learning rate factor that satisfies 

( )

0

t

t

α

∞

=

= ∞∑  and ( ) 2

0

( )t

t

α

∞

=

<∞∑ , e.g. ( ) 1 /t tα = . 

( 1) ( ) ( ) ( )( , , )t t t tU q b e+ ɶ ɶ  is the updated normal value function, 

which is computed as follows:  

( 1)
( )

0

(min{ , }) (max{ , 0})
( , , ) max

( , , )
t

t
a

f b a d c b a d
U q b e

qa V q b a eδ

+

≥

 + − + −
 =  
− + +  

.

 (11) 
Remark: With (10) and (11), the normal value function 

and the post-decision value function are updated iteratively in 
each time slot. In the first step, the normal value function of 

the current state ( ) ( ) ( ) ( )( , , )t t t ts q b e=  is updated to 

( 1) ( ) ( ) ( )( , , )t t t tU q b e+  using the post-decision value function 

( ) ( ) ( ) ( )( , , )t t t tV q b a e+ . In the second step, the post-decision 

value function of the current post-decision state 
( ) ( ) ( ) ( )( , , )t t t ts q b a e= +ɶ  is updated to 

( 1) ( ) ( ) ( ) ( )( , , )t t t t tV q b a e+
+  using the updated normal value 

function ( 1) ( ) ( ) ( )( , , )t t t tU q b e+ . In the next section, we prove 

that such iterative update process introduced by (10) and (11) 
ensures both the normal value function and the post-decision 
value function converge to their optimal values, i.e. the 
solution of (6). 

The above iterative update process introduced by (10) and 
(11), though ensures the convergence to the optimal value, 
only updates the post-state value function of the currently 
visited post-decision state. Nevertheless, it should be noted 

that the temporal transition of the unit electricity price q , the 

environment dynamics e  and the consumer demand d  are all 
independent to the consumer’s action a . Therefore, instead of 
updating the post-decision value function only for the state 

( ) ( ) ( ) ( ) ( )( , , )t t t t ts q b a e= +ɶ , we can perform a batch update in 

time slot t  for the post-decision value function at any state 

( , , )s q b e= ɶɶ ɶ ɶ  such that 
( )tq q=ɶ  and 

( )te e=ɶ , which is shown 

as follows: 

 

( 1) ( ) ( ) ( ) ( ) ( )

( 1) ( ) ( )

( )

( ) ( )

( , , ) (1 ) ( , , )

                     ( , , ),  

t

t

t t t t t t

t t tt

V q b e V q b e

U q b a e b

α

α

+

+

= −

+ − ∀

ɶ ɶɶ ɶ ɶ ɶ

ɶ ɶɶ ɶ
. (12) 

With the batch update (12), we are able to update all the 

post-decision states ( ) ( ){( , , ), }t tq b e b∀ɶ ɶ  and hence, the 

convergence speed of our proposed learning algorithm is 
significantly improved, which will be shown in Section IV. 

In summary, our proposed online learning algorithm based 
on post-decision state is illustrated in Table 2.  

C. Structure of the Optimal Policy 

In this section, we analyze the structure of the optimal 
policy as well as the associated optimal normal and post-
decision value functions, which are computed by Algorithm 1. 

First we analyze the convergence property of the optimal 
policy, which is proven in the following theorem. 

Theorem 1. The post-decision state based online learning 
algorithm converges to the optimal post-decision value 

function *{ ( )}V sɶ  when the sequence of learning rates 
( )n
α  

 
t 1t +

( ) ( ) ( ) ( )( , , )t t t ts q b e=
( ) ( ) ( ) ( ) ( )( , , )t t t t ts q b a e= +ɶ ( 1) ( 1) ( 1) ( 1)( , , )t t t ts q b e+ + + +

=

The consumer makes its electricity purchase

The new demand arrives

The new unit electricity price is set

 
Figure 3   Illustration of post-decision state 

  

Initialize: 
(0)( ) 0V s =ɶ  for all sɶ ; 

(0) () 0 (0(0 ) )( , , )s q b e=ɶ ; 
(0) () 0 (0(0 ) )( , , )s q b e=ɶ ; 

1t =  

Repeat 

(1) Observe the customer demand ( )td  and the unit electricity price 
( )tq ; 

(2) Update the normal state 
(( )) ( ) ( )( , , )t t t ts q b e=  with ( ) ( ) ( )t t tb b d= −ɶ ; 

(3) Batch update the post-decision value functions as in (12); 

        (4) Compute the optimal action ( )ta  for the current normal state ( )ts  as in (11); 

        (5) Update the post-decision state 
( ) ( )( ) ( )( , , )t t t ts q b e= ɶɶ  with ( ) ( ) ( )t t tb b a= +ɶ ; 

(6) : 1t t= +  

End 
 

Table 2   PDS-based load scheduling algorithm: 



satisfies ( )

0

t

t

α

∞

=

= ∞∑  and ( ) 2

0

( )t

t

α

∞

=

<∞∑ . 

Proof: From (10) and (11), it is known that the PDS-based 
load scheduling algorithm defined in Table 2 can be written 
using the following recursion: 
 

( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

(
)0

)
(

( , , ) (1 ) ( , , )

(min{ , }) (max{ , 0})
        max

( , , )

t t t t t t t t

t t t t

t t t t ta

t

t

V q b e V q b e

f b d c b d

q a V q b e

α

α
δ

+

≥

= −

 − − 
+  

− + 
 

ɶ ɶɶ ɶ ɶ ɶ

ɶ ɶ

ɶ ɶ ɶ

. (13) 

Let 
| | | |:h →
S S
R R  be a map such that ( ) ( )

s s
h V h V =   ɶ ɶ

 

with  

 0

(min{ , }) (max{ , 0})
max

( , , )

       

( )

   ( , , )

s
a

f b d c b d

qa V q b e

V

V

b

h

q e

δ≥

 − −
 
 − +

=
  

−

ɶ

ɶ ɶ

ɶ ɶ ɶ

ɶɶ ɶ

, (14) 

and let 
| | | |:F →
S S
R R  be a map such that ( ) ( )

s s
F V F V =   ɶ ɶ

 

with  

 
0

(min{ , }) ( , ,
(

)
max

(max{ ,
)

0})s
a

f b d V q b e

qa c b d
h V

δ

≥

 +
 
 − − −  

=
ɶ

ɶ ɶ ɶ

ɶɶ
. (15) 

Then ( ) ( )hV F V V= − . As in [19], it can be shown that the 

convergence of our proposed algorithm is equivalent to the 
convergence of the associated O.D.E.: 

 ( ) : ( )V F V V h V= − =ɺ . (16) 

Since the map 
| | | |:F →
S S
R R  is a maximum norm δ -

contraction [22], the asymptotic stability of the unique 
equilibrium point of the above O.D.E. is guaranteed in [19]. 
This unique equilibrium point corresponds to the optimal 

post-decision state value function *{ ( )}V sɶ . � 

Theorem 1 shows that the online learning algorithm is 
able to learn the optimal post-decision value function 

*{ ( )}V sɶ  in the long run. Since the optimal normal value 

function *{ ( )}U s  is a deterministic function of *{ ( )}V sɶ , it 

can be concluded that our proposed online learning algorithm 

also converges to *{ ( )}U s  and thus the optimal policy 
*
π . 

Therefore, we prove that the consumer is able to learn the 
optimal load scheduling policy through the load scheduling 
algorithm proposed in Table 2. 

In the rest of this section, we characterize the structural 

properties of the optimal policy 
*
π . Understanding these 

properties can significantly reduce the size of the space over 
which π  is optimized and thus greatly simplify the 
complexity of solving the equation (11) (i.e. Step (4) in Table 
2). 

First, we show in the following proposition that in the 

optimal policy 
*
π , the amount of purchased electricity in 

each time slot is always upper-bounded. 

Proposition 1. There is a constant A  such that 
*( ) ,As sπ ≤ ∀ ∈ S . 

Proof: This can be straightforwardly obtained by taking 
the first order derivative over the one-slot utility function (3) 
over a . It can be observed at each state s , there is a threshold 

value 
s
A  such that 

( )
0

u s

a

∂
<

∂
 when 

s
a A> . Since the long-

term utility (4) is a linear combination of the one-slot utilities. 

We have max{ }
s

s
A A

∈
=

S
. � 

Proposition 1 proves that the consumer’s purchased 
amount of electricity in one time slot will not be arbitrarily 

large but is always upper-bounded by a constant value A . 

This is due to the fact that the benefit function ()f ⋅  is concave 

while the storage cost linearly increases against the purchased 
amount a . Therefore, when a  is too large, the one-slot utility 

) ( )(( , )ttu s a  and thus the long-term utility ( )U s  start to 

decrease. With Proposition 1, it can be determined that the 
consumer always chooses its action from a finite action space, 

i.e. [0, ]a A∈ . This result guarantees that the MDP proposed 

in this paper can be solved within a finite state space and a 
finite action space, which ensures the proposed online 
learning algorithm to be feasible in practical systems. 

The next proposition reveals the monotonicity properties 

embedded in 
*
π . By exploiting such monotonicity properties, 

the optimization in (11) can be further simplified. 
Proposition 2. (i) Given two unit electricity prices 

21
q q< , * *

1 2
( , , ) ( , , ) ,,q b e q b e b eπ π≥ ∀  always holds; 

(ii) Given 
21

b b< , * *
1 2

( , , ) ( , ,, ),q b qe eq b eπ π≥ ∀ . 

Proof: Suppose that * *
1 2

( , , ) ( , , )q b e q b eπ π<  for some ,b e  

and some 
1 2
q q< . Then according to the recursive equation 

(6), it is obvious that we can always find an action 
*

1
( , , )a q b eπ≠  at the state 

1
( , , )s q b e= , such that   

1

1

*

*

( ) (min{ , }) (max{ ,0})

( | ) ( | ) ( | ) ( )
b a

q e
q e d

Db b a

U s f b a d c b a d q a

p q q p e e p b a b eU sδ

+

∈ ∈ = +′ −

< + − + − −

′ ′ ′ ′+ + −∑ ∑ ∑
Q E

.

 (17) 

This contradicts the fact that 
*

1
( , , )q b eπ  is the optimal 

action at the state 
1

( , , )s q b e= . Hence, Statement (i) is proven. 

Statement (ii) can be proven in a similar manner.� 

Statement (i) in Proposition 2 proves that given ,b e , the 

purchased amount in each time slot monotonically decreases 
with the unit electricity price q . This is straightforward since 

a lower price gives the consumer a higher incentive to 
purchase and store more electricity in the current time slot in 
order to reduce its future cost on electricity purchase. 
Similarly, statement (ii) proves that for a given electricity 
price q , the consumer has less incentive to purchase 

electricity when it has a larger storage. Proposition 2 provides 
further refinement on the (feasible) action space of the load 
scheduling.  



IV. ILLUSTRATIVE RESULTS 

In this section, we provide numerical results to illustrate 
the performance of our proposed load scheduling algorithm. 
We consider a power grid with 100 consumers, where the 
length of each time slot is 1 hour. The environment dynamics 
e  represents the hour that each time slot is located in a day 

and hence, we have {0,1,...,23}=E  and  

 ( ) mod( ,24)te t= . (18) 

In one day, we divide the time slots into peak and non-peak 
hours. Specifically, the peak hours are 6pm to 12am and the 
rest hours are non-peak hours. The demand of each consumer 
in each time slot t  follows a truncated Gaussian distribution 

in the region [0,2.5 ]kWh , given 
( )te . Specifically, we assume 

that  

 

2 ( )
( ) ( )

2 ( )

[0,1(0.5, 0.2 ),   
( | )

(1, 0.1 ),   

7]

[18,23]

t
t t

d t

if e
p d e

if e

= 


∈

∈


N

N
. (19) 

The unit electricity price is taken from a finite set 

{0.1, 0.2,..., 0.5}=Q . We also set 0.1c =  and the benefit 

function to be a logarithmic function as in [14]: 

 ( ) log(1 )f x x= + . (20) 

We first evaluate the performance of our proposed PDS-
based load scheduling algorithm and compare it with three 
benchmark algorithms:  

(1) Value iteration [18] is an off-line algorithm. It requires 
the full knowledge of the underlying MDP, including the state 
space, the action space, and the state transition probability. 
Also, the computation complexity of value iteration is usually 
significantly higher than online reinforcement learning 
methods. However, this algorithm is ensured to converge to 
the optimal solution and hence, we use it as the optimal 
benchmark. 

(2) Q-learning [18] is a model-free reinforcement learning 
algorithm. It does not require a priori knowledge of the 

underlying MDP, but usually suffers from slow convergence 
speed. 

(3) Real-time dynamic programming (RTDP) [21] is a 
model-based online learning algorithm. When implementing 
RTDP, the learning agent first constructs a statistic model of 
the underlying MDP and then updates the state transition 
probabilities in this statistic model using its past experiences. 
Therefore, the state space of the MDP needs to be known a 
priori. 

Table 3 shows the average performance received by an 
individual consumer when running the four algorithms 
separately in the considered power grid 3 . Here the “PDS 
learning” refers to our proposed PDS-based load scheduling 
algorithm. It can be noticed that our algorithm significantly 
outperforms the other two online learning algorithms, with on 
average a higher consumed electricity per slot and a lower 
price for the electricity purchase. Consequently, the average 
one-slot utility achieved by our algorithm is close to the 
optimal value obtained with the off-line value iteration 
algorithm.  

Figure 4 further illustrates the run-time performances of 
the online learning algorithms across 10000 time slots. It can 
be observed that PDS learning converges after 1122  time 
slots (with the run-time average utility achieving 90% of the 
highest value), while RTDP converging after 2983  time slots 
and Q-learning converging after 3132  time slots. Also, the 
average one-slot utilities achieved by RTDP and Q-learning 
upon convergence are significantly worse than that achieved 
by PDS, which indicates that both RTDP and Q-learning are 
not able to learn the optimal load scheduling policy.  

So far, the experiments are all conducted under the 
assumption that the system dynamics evolve following an 
MDP model. In the next experiment, we evaluate how our 
proposed algorithm performs when the system dynamics 

                                                           
3 For the online algorithms (PDS learning, Q-learning, RTDP), we run 

each of them for 10000 time slots. For the off-line value iteration, we run the 

algorithm until it converges (because there is no intermediate output for the 

value iteration before its convergence). 

 
Value 

iteration 
RTDP Q-learning 

PDS 

learning 

Average 

utility 
1.4054 0.9047 0.8167 1.3394 

Average 

consumed 

energy 

0.7948 kWh 0.4537 kWh 0.4272 kWh 0.5847 kWh 

Average 

purchased 

price  

0.2018/kWh 0.2930/kWh 0.2928/kWh 0.2514/kWh 

  
Table 3   Performences achieved by different algorithms per slot 

 
Figure 4   Run-time performances of different learning algorithms 
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Figure 5   Run-time performances of different learning algorithms when 

the price evolution is non-Markovian 

 
Figure 6   Impact of group size under PDS learning 
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evolve in a non-Markovian way. Specifically, we assume that 
the unit electricity price in each time slot is determined by the 
following dynamics: 

 

( ) ( 1)

( ) ( 1) ( 2) ( ) ( 2)

0.5,    

( | , ) 0.3,    

0.2,   

t t

t t t t t

q

if q q

p q q q if q q

otherwise

−

− − −

 == =


. (21) 

Figure 5 plots the performances of different online 
learning algorithms under such non-Markovian pricing, while 
the other settings remain unchanged. It can be observed that 
due to its fast learning speed, the PDS learning can still 
quickly catch up with the non-Markovian dynamics on 
electricity prices with its run-time performance remaining 
unaffected. Nevertheless, the RTDP and the Q-learning 
converge significantly slower. Therefore, this experiment 
shows that our proposed PDS learning algorithm, though 
proposed based on a Markovian model, is still able to perform 
well in non-Markovian settings. 

In the final experiment, we examine how the PDS learning 
performs in the scenario where the load scheduling is 
performed collaboratively by a group of consumers with the 
help of an aggregator. Figure 6 shows how the average one-
slot utility received by one consumer changes against the 
group size (i.e. the number of consumers in the group). It is 
interesting to observe that the average one-slot utility always 
monotonically decreases against the group size n . To explain 
this phenomenon, we first define the sum load demand of the 

group in each time slot n  as 
( ) ( )

1

n
t t

sum i
i

d d
=

=∑ . According to 

(19), it is easy to know that the variance of ( )t
sum
d  

monotonically increases against n . Therefore as n  
increases, the sum load demand in each time slot becomes 
more difficult to predict due to its larger variance, which in 
turn slows down the convergence speed of the PDS learning 
and thus reduces its performance. Hence, it is not always 
beneficial to perform such collaborative load scheduling 
compared to the individual load scheduling.  

V. CONCLUSION 

In this paper, we propose a novel price-based load 
scheduling algorithm using electric storage devices. Our 
algorithm is able to learn the optimal load scheduling policy 
without requiring any a priori knowledge of the system 
dynamics. By introducing the post-decision state and batch 
update, we prove that our proposed algorithm provides 
significantly faster convergence speed and thus the run-time 
performance is at least 30% better compared to the state-of-
the-art foresighted scheduling algorithms.   
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