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Abstract—In this paper, we model the various users in a wireless4
network (e.g., cognitive radio network) as a collection of selfish5
autonomous agents that strategically interact to acquire dynami-6
cally available spectrum opportunities. Our main focus is on devel-7
oping solutions for wireless users to successfully compete with each8
other for the limited and time-varying spectrum opportunities,9
given experienced dynamics in the wireless network. To analyze10
the interactions among users given the environment disturbance,11
we propose a stochastic game framework for modeling how the12
competition among users for spectrum opportunities evolves over13
time. At each stage of the stochastic game, a central spectrum14
moderator (CSM) auctions the available resources, and the users15
strategically bid for the required resources. The joint bid actions16
affect the resource allocation and, hence, the rewards and future17
strategies of all users. Based on the observed resource allocations18
and corresponding rewards, we propose a best-response learning19
algorithm that can be deployed by wireless users to improve their20
bidding policy at each stage. The simulation results show that21
by deploying the proposed best-response learning algorithm, the22
wireless users can significantly improve their own bidding strate-23
gies and, hence, their performance in terms of both the application24
quality and the incurred cost for the used resources.25

Index Terms—Delay-sensitive transmission, interactive learn-26
ing, multiuser resource management, reinforcement learning,27
stochastic games, wireless networks.28

I. INTRODUCTION29

DYNAMIC resource management in heterogeneous wire-30

less networks is a challenging problem [3]. The wireless31

stations and radio systems that must coexist in such a network32

differ in their individual utility functions, transmission actions,33

resource demands, and capabilities. Thus, various levels of34

strategic1 interaction and adaptation are necessary to cope35

with the widely varying dynamics. In this paper, we focus on36

synthesizing new, dynamic, and informationally decentralized37

resource-management mechanisms to achieve high utility in38

competitive and heterogeneous wireless networks (including39

cognitive radio networks [1]–[3]). Specifically, our focus is40

on designing associated communication algorithms that enable41
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1By strategic users, we mean users that are not price takers and do not have

an a priori consensus on resource allocation.

self-interested autonomous wireless stations to strategically 42

compete for the available spectrum resources in either ISM 43

bands [1] or bands shared with licensed users, according to 44

a priori mandated or negotiated rules. 45

This paper is primarily concerned with the tensions and 46

relationships among autonomous adaptation by secondary 47

(unlicensed) users (SUs), the competition among these users, 48

the interaction of these users with spectrum moderators hav- 49

ing their own goals, e.g., making money, imposing fairness 50

rules, ensuring compliance with the Federal Communications 51

Commission (FCC) [1], and local regulations with respect to 52

primary (licensed) users (PUs), etc. Unlike previous works on 53

resource management [6], [21], [26], our main focus is on 54

discussing how users can adapt, predict, learn, and determine 55

how they compete for the time-varying resources, as well as 56

how they select the associated transmission strategies, given the 57

experienced “dynamics.” 58

In wireless networks, these dynamics can be categorized into 59

two types: One is the disturbance due to the “environment,” 60

and the other is the impact caused by competing users. The 61

disturbance due to the environment results from variations 62

(uncertainties) of the wireless channels or source (e.g., mul- 63

timedia) characteristics. For example, the stochastic behavior 64

of the PUs, the time-varying channel conditions experienced 65

by the SUs, and the time-varying source traffic that needs to 66

be transmitted by the SUs can be considered as environmental 67

disturbances. These types of dynamics are generally modeled 68

as stationary processes. For instance, the use of each channel 69

by the PUs can be modeled as a two-state Markov chain 70

with ON-state (the channel is used by PUs) and OFF-state (the 71

channel is available for the SUs) [7]. The channel conditions 72

can be modeled using a finite-state Markov model [24]. The 73

packet arrival of the source traffic can be modeled as a Poisson 74

process2 [11]. 75

Conventionally, wireless stations have only considered these 76

environment disturbances when adapting their cross-layer 77

strategies [12] for delay-sensitive transmission. The other type 78

of dynamics—the impact from competing users, which is due to 79

the noncollaborative, autonomous, and strategic SUs in the net- 80

work transmitting their traffic—is less well studied to wireless 81

communication networks. 82

The goal of this paper is to provide solutions and associ- 83

ated metrics that can be used by an autonomous SU to ana- 84

lyze and predict the outcome of various dynamic interactions 85

among competing SUs in dynamic multiuser communication 86

2Other packet arrival models can also been used in our proposed framework.
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systems and, based on this forecast, adapt and optimize its87

transmission strategy. In our considered wireless networks,88

the SUs are modeled as rational and strategic. We model the89

spectrum management as a stochastic game [22] in which the90

SUs simultaneously and repeatedly make their own resource91

bids. The competition for dynamic resources is assisted by a92

central coordinator (similar to that in existing wireless LAN93

(WLAN) standards such as 802.11e HCF [13]). We refer to thisAQ1 94

coordinator as the central spectrum moderator (CSM). The role95

of the CSM is to allocate resources to the SUs based on the96

predetermined utility maximization rule.397

In this paper, to explicitly consider the strategic behavior of98

autonomous SUs and the informationally decentralized nature99

of the competition for wireless resources, we assume that the100

CSM deploys an auction mechanism for dynamically allocat-101

ing resources. Auction theory has extensively been studied102

in economics [19], and it has also been recently applied to103

network resource allocation [4]–[6]. Note that the role of the104

CSM4 in our resource management game for our considered105

wireless networks will be kept to a minimum. Unlike alternative106

existing solutions [21], the CSM will not require knowledge107

of the private information of the users and will not perform108

complex computations for deciding the resource allocation. Its109

only role will be the implementation of the spectrum etiquette110

rules as in [8] and ensuring that the available spectrum holes111

are auctioned among users. To capture the network dynamics,112

we allow the CSM to repeatedly auction the available spectrum113

opportunities based on the PUs’ behaviors. Meanwhile, each114

SU is allowed to strategically adapt its bidding strategy based115

on information about the available spectrum opportunities, its116

source and channel characteristics, and the impact of the other117

SU bidding actions.118

Using this stochastic wireless allocation framework, we de-119

velop a learning methodology for SUs to improve their policies120

for playing the auction game, i.e., the policies for generating121

the bids to compete for available resources. Specifically, during122

repeated multiuser interaction, the SUs can observe partial his-123

toric information of the outcome of the auction game, through124

which the SUs can estimate the impact on their future rewards125

and then adopt their best response to effectively compete for126

channel opportunities. The estimation of the impact on the127

expected future reward can be performed using different types128

of interactive learning [18]. In this paper, we focus on reinforce-129

ment learning [17], [27] because this allows the SUs to improve130

their bidding strategy based only on the knowledge of their own131

past received payoffs without knowing the bids or payoffs of132

the other SUs. Our proposed best-response learning algorithm133

is inspired from the Q-learning for the single agent interact-134

ing with the environment. Unlike Q-learning, the proposed135

best-response learning explicitly considers the interactions and136

coupling among SUs in the wireless network. By deploying137

the best-response learning algorithm, the SUs can strategically138

3Other fairness rules can also be deployed in the CSM such as air-time
fairness, utility-based fairness, etc. [12].

4It should be noted that this approach can also allow for multiple CSMs to
manage the spectrum by fairly dividing their responsibilities, e.g., based on their
geolocation or frequency band in which they are operating, or by competing
against each other for the number of SUs that will associate with them.

predict the impact of current actions on future performance and 139

then optimally make their resource bids. 140

This paper is organized as follows. In Section II, we intro- 141

duce a stochastic game formulation for multiuser interaction 142

in wireless networks. In Section III, we show how a one- 143

stage auction mechanism can be used to divide the spectrum 144

allocation among strategic SUs. In Section IV, we present 145

the state definition, state transition model, and stage reward 146

function for the SUs in the stochastic game. In Section V, 147

we discuss the bidding strategies of the SUs for playing the 148

stochastic game. In Section VI, we propose a best-response 149

learning approach for the SUs to predict their future rewards 150

based on the observed historic information. In Section VII, 151

we present the simulation results, followed by conclusions and 152

future research in Section VIII. 153

II. STOCHASTIC GAME FORMULATION FOR 154

DYNAMIC MULTIUSER INTERACTION 155

We consider a spectrum consisting of N channels, each 156

indexed by j ∈ {1, . . . , N}. The N wireless channels are orig- 157

inally licensed to a primary network (PN) whose users (i.e., 158

PUs) exclusively access the channels. In the secondary network 159

(SN), the M(M ≥ N) autonomous SUs, each indexed by 160

i ∈ {1, . . . ,M} and transmitting delay-sensitive data, compete 161

for the spectrum opportunities released by the PUs in these 162

N channels. Although the available transmission opportunities 163

(TxOps) for SUs depend on the access patterns of PUs and the 164

detection systems [2], we do not discuss the detection methods 165

in this paper but rather rely on the existing literature for this 166

purpose [3]. Instead, we assume that the available TxOps in 167

each channel change over time due to the PUs joining or leaving 168

the network and can be modeled as a two-state Markov chain, 169

as in [7] and [10]. Our goal is to develop a general framework 170

for multiuser interaction in the SN, where users can compete 171

for dynamically available TxOps. Moreover, we also aim to 172

provide solutions for SUs to improve their strategies for playing 173

the repeated resource-management game by considering their 174

past interactions with other SUs. 175

The communications of the PUs are assumed to follow a 176

synchronous slot structure. The time slot has length of ΔT 177

seconds. We assume that during each time slot, each channel 178

is either exclusively occupied by PUs or that there is no PU 179

accessing the channel [7], [10]. Hence, during each time slot, 180

the channel is in one of the following two states: ON-state 181

(this channel is currently used by the PUs) or OFF-state (this 182

channel is not used by the PUs, and hence, the SUs can use this 183

channel). Note that if this is an unlicensed band, the channel 184

will always be in the off mode and can be utilized by the 185

SUs at all times. The TxOp of channel j at time slot t ∈ N 186

is denoted by yt
j ∈ {0, 1}, where yt

j is 0 if the channel is 187

in the ON-state and 1 if it is in the OFF-state. In this paper, 188

the TxOp yt
j of channel j is modeled by a two-state Markov 189

chain with transition probability pFN
j = p(yt+1

j = 0|yt
j = 1) 190

and pNF
j = p(yt+1

j = 1|yt
j = 0). The TxOp profile of the 191

N channels is represented by yt = [yt
1, . . . , y

t
N ]. 192

As in [13], we assume that a polling-based medium-access 193

protocol is deployed in the SN, which is arbitrated by a CSM. 194
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Fig. 1. Conceptual overview of the multi-SU interaction in the SN.

The polling policy is only changed at the start of every time195

slot. For simplicity, we assume that each SU can access a196

single channel, and that each channel can be accessed by197

a single SU within the time slot. The SUs can switch the198

channels only when crossing time slots. Note that this simple199

medium-access model used for illustration in this paper can200

easily be extended to more sophisticated models [10], where201

each SU can simultaneously access multiple channels or the202

channels are being shared by multiple SUs, etc. When using203

this time-division channel access, we assume that the wireless204

users deploy constant transmission power and experience no205

interference. Furthermore, we assume that the wireless users206

move slowly, and thus, their experienced channel conditions207

slowly change.208

During each time slot, an SU needs to first determine how to209

compete with the other SUs for the time-varying TxOps. This210

represents its external actions, since they determine the inter-211

action between this SU and the other SUs, and the amount of212

resources allocated to that SU. The external actions at time slot t213

are denoted by at
i ∈ Ai, where Ai is the set of possible external214

actions available to SU i. Based on the allocated resources,215

the SU determines how to transmit its traffic (application layer216

data) by selecting the various strategies at different layers of217

the OSI stack (e.g., through cross-layer adaptation [12]). TheseAQ2 218

actions are referred to as internal actions, since they only219

determine the SU’s utility at the current time. The internal220

actions at time slot t are denoted by bt
i ∈ Bi, where Bi is the set221

of possible internal actions available to SU i. In this paper, we222

propose an auction mechanism deployed in the CSM. Hence,223

the external action at
i of SU i is the bid it submits to CSM. The224

auction mechanism will be detailed in Section III. The environ-225

ment experienced by an SU i can be characterized by its current226

“state” st
i ∈ Si, which will be discussed in Section IV. At each227

time slot t, SU i generates the external action at
i to compete228

for the TxOps yt. The competition result is ϑt
i, based on which229

SU i performs its internal action bt
i and obtains the reward rt

i at230

this time slot. After packet transmission, SU i transits to the231

next state st+1
i ∈ Si. The conceptual overview of the multi-232

SU interactions in the repeated auctions is illustrated in Fig. 1.233

The repeated competition among the SUs can be modeled as 234

a stochastic game [16], [22]. The time slot corresponds to the 235

term “stage,” which is commonly used in stochastic games. In 236

the remainder of this paper, we interchangeably use the terms 237

“time slot” and “stage.” 238

We define the stochastic game for SN resource allocation as 239

〈〈Si, Ai, Bi, Oi, qi, ri〉Mi=1,Y〉, where each SU i is associated 240

with a tuple 〈Si, Ai, Bi, Oi, qi, ri〉. Specifically, we have the 241

following. 242

1) Y is a finite set of possible TxOps available for SUs. 243

In this paper, Y = {0, 1}N , and yt ∈ Y is the avail- 244

able TxOps at stage t, which is common information 245

for SUs. 246

2) Si is a finite local state space of SU i. We let S := 247∏N
k=1 Sk be the global state space of all SUs and 248

S−i :=
∏

k �=i Sk be the global state space of SUs other 249

than i. At stage t, the global state is denoted by st = 250

(st
1, . . . , s

t
M ) = (st

i, s
t
−i), where −i represents all the 251

SUs other than i. 252

3) Ai is a finite set of external actions performed by SU i 253

to compete for the available TxOps. The external action 254

vector at stage t for all SUs will be at = (at
1, . . . , a

t
M ). 255

4) Bi is a finite set of internal actions performed by SU i to 256

determine the packet transmission. 257

5) Oi is a finite set of possible output from multi-SU com- 258

petition. In this paper, the output ϑt
i ∈ Oi is the auction 259

result computed by the CSM for SU i at stage t. We will 260

give the specific form of the output in Section III. 261

6) qi is the state transition probability for SU i. Thus, 262

qi(st+1
i , yt+1|st

i, y
t, ϑt

i, b
t
i) is the probability that the state 263

of SU i transits from st
i to st+1

i and TxOp transits from 264

yt to yt+1 if the competition output is ϑt
i and the internal 265

action is bt
i. The reason that the transition probability 266

includes the common TxOp yt is because the channel 267

condition transition of SU i depends on the available 268

TxOp. 269

7) ri is the stage reward (immediate reward) received by SU 270

i, where ri : (Si, Oi, Bi) �→ R. It should be noted that 271
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the reward function ri depends on the competition output272

and, hence, indirectly depends on the other SUs’ external273

actions.274

To design a stochastic game for the SN with strategic SUs,275

we have to consider the following: 1) What auction mech-276

anism can be deployed to resolve the competition among277

SUs; 2) how the dynamic environment experienced by each278

SU can be modeled; and 3) how the SUs can forecast the279

impact of their bids made at the current time on their future280

performance?281

III. AUCTION MECHANISM—ONE STAGE282

RESOURCE ALLOCATION283

In this paper, we assume that the CSM is aware of the284

TxOp yt and allocates (through polling the SUs) those channels285

with yt
j = 1 to the SUs. To efficiently allocate the available286

resources (opportunities), the CSM needs to collect information287

about the SUs [21]. However, as mentioned in Section I, in a288

wireless network, the information is decentralized, and thus,289

the information exchange between the SUs and the CSM needs290

to be kept limited due to the incurred communication cost.291

On the other hand, the SUs competing with each other are292

selfish and strategic, and hence, the information they hold is293

private, and they may not desire to reveal this information to294

the CSM. Therefore, one of our key interests in this paper is295

to determine what information should be exchanged between296

the SUs and the CSM and how this information should be297

exchanged. In the following, we present an auction mechanism298

for dynamically coordinating the interactions among SUs and299

discuss the computational complexity in the CSM and the300

communication cost between SUs and CSM.301

First, the CSM announces the auction by broadcasting the302

TxOp yt. The SUs receive the announcement and determine the303

external action (i.e., the bid vector) at
i = [at

i1, . . . , a
t
iN ] ∈ R

N304

based on the announced information and their own private305

information about the environment they experience, which is306

discussed in detail in Section IV. Subsequently, each SU sub-307

mits the bid vector to the CSM. After receiving the bid vectors308

from the SUs, the CSM computes the channel allocation zt
i =309

[zt
i1, . . . , z

t
iN ] ∈ {0, 1}N for each SU i based on the submitted310

bids. To compel the SUs to truthfully declare their bids [23],311

the CSM also computes the payment τ t
i ∈ R− that the SUs have312

to pay for the use of resources during the current stage of the313

game. The negative value of the payment means the absolute314

value that SU i has to pay the CSM for the used resources.315

Hence, the competition output ϑt
i in this auction mechanism316

includes the channel allocation zt
i and the payment τ t

i , i.e.,317

ϑt
i = (zt

i , τ
t
i ). The competition output is then transmitted back318

to the SUs. The computation of the channel allocation zt
i and319

payment τ t
i is described as follows.320

After each SU submits the bid vector, the CSM performs321

two computations, i.e., channel allocation and payment com-322

putation. Note that most existing multiuser wireless resource323

allocation solutions can be modeled as such repeated auctions324

for resources. If the resources are priced or the users may lie325

about their resource needs, taxes associated with the resource326

Fig. 2. Information exchange between CSM and SU i.

usage will need to be imposed [14]. Otherwise, these taxes can 327

be considered to be zero throughout the paper. 328

We denote the channel allocation matrix Zt = [zt
ij ]M×N 329

with zt
ij being 1 if channel j is assigned to SU i, and 0 330

otherwise. The feasible set of channel assignments is denoted 331

as Zt = {Zt|∑M
i=1 z

t
ij = yt

j , ∀j,∑N
j=1 z

t
ij ≤ 1, ∀i, zt

ij ∈ 332

{0, 1}}. The channel allocation matrix without the pres- 333

ence of SU i is denoted Zt
−i = [zt

kj ](M−1)×N , and the 334

corresponding feasible set is Zt
−i = {Zt

−i|
∑M

k=1,k �=i z
t
kj = 335

yt
j ∀j,∑N

j=1 z
t
kj ≤ 1 ∀k �= i, zt

kj ∈ {0, 1}}, where −i = 336

{1, . . . , i− 1, i + 1, . . . ,M}. During the first phase, the CSM 337

allocates the channels to SUs based on its adopted fairness rule, 338

e.g., maximizing the total “social welfare,”5 as 339

Zt,opt = arg max
ZtÎZt

M∑
i=1

N∑
j=1

zt
ija

t
ij . (1)

If the resources are priced, we will consider in this paper, 340

for illustration, a second-price auction mechanism [19], [23] for 341

determining the tax that needs to be paid by SU i based on the 342

above optimal channel assignment Zt,opt = [zt,opt
ij ]M×N . This 343

tax is equal to 344

τ t
i =

M∑
k=1,k �=i

N∑
j=1

zt,opt
kj at

kj − max
Zt

−i
∈Zt

−i

M∑
k=1,k �=i

N∑
j=1

zt
kja

t
kj .

(2)

Note that when N = 1, the generalized auction mechanism 345

presented above becomes the well-known second-price auction 346

[19]. Although the optimization problems in (1) and (2) are 347

discrete optimizations, they can efficiently be solved using 348

linear programming. As argued in [20], the linear optimization 349

problem can be solved in polynomial time, and hence, the CSM 350

only requires limited computational complexity. 351

The information exchange between the CSM and the SUs 352

is illustrated in Fig. 2. From Fig. 2, we note that, at each 353

stage, the CSM first broadcasts the available TxOps to all the 354

SUs for the auction, and then each SU submits its own bid 355

vector over all the available TxOps. After receiving the bids, the 356

CSM computes the auction results and sends back to the users 357

the channel allocations and the corresponding payments. The 358

signaling required for the auction is most often implemented 359

at the application layer. In the worst case, the amount of 360

5Note that other fairness solutions than maximizing the social welfare could
be adopted, and this will not influence our proposed solution.
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data communicated between the CSM to the SUs is equal to361

(M + 1)N + nN bits, where n is the amount of bits repre-362

senting the payment for each SU. The amount of data commu-363

nicated by each SU to the CSM is n′N bits, where n′ is the364

amount of bits representing the bid submitted to the CSM on365

each channel.366

Compared with traditional one-stage resource allocation367

methods, our proposed auction mechanism has the following368

advantages.369

1) Unlike traditional centralized resource allocation meth-370

ods [30], our proposed auction mechanism is not required371

to know the SUs’ utility functions or preferences, which372

is often the private information of the users and is not373

common knowledge. In fact, our auction mechanism only374

requires the SUs to submit their bid vectors for the avail-375

able TxOps. The bid vector computation is performed376

by the SUs, but not the CSM, based on their utili-377

ties, preferences, action sets, experienced environment378

characteristics, etc.379

2) Unlike traditional decentralized resource allocation meth-380

ods [28] where multiple iterations are required before381

convergence, our proposed auction mechanism only re-382

quires the SUs to submit the bid vectors once. Hence,383

our proposed auction mechanism is suitable for online384

resource management. Moreover, we do not assume as in385

[29] that users are price takers and that there is consensus386

about what is a fair distribution of the resources. Instead,387

in the proposed framework, users are strategic and are388

able to determine their own bid vectors for resources389

based on their knowledge, utilities, preferences, etc.390

IV. USER MODELING IN THE STOCHASTIC391

GAME FRAMEWORK392

A. Definition of SU States393

As discussed in Section I, each SU needs to cope with two394

types of “uncertainties,” i.e., disturbances from the environment395

and interactions with other SUs. The environment is charac-396

terized by packet arrivals from the source (i.e., source/traffic397

characterization) connected with the transmitter and the chan-398

nel conditions. In this section, we will illustrate how these399

disturbances can be modeled. However, note that other models400

of the environment existing in the literature can be adopted. The401

use of a specific model will only affect the performance of the402

proposed solution and not the general framework for multiuser403

interaction proposed in this paper.404

For illustration, we assume that each SU i maintains a buffer405

with limited size Xi, which can be interpreted as a time window406

that specifies which packets are considered for transmission at407

each time based on their delay deadlines. Expired packets are 408

dropped from the buffer. This model has extensively been used 409

for delay-sensitive data transmission, e.g., leaky bucket model 410

for video transmission [25]. The number of packets in the buffer 411

at time slot t is denoted as xt
i(0 ≤ xt

i ≤ Xi). We assume that 412

the packets arrive from the source at the beginning of each time 413

slot, i.e., xt
i is only updated at the beginning of a time slot. The 414

number of packets arriving into the buffer during one time slot 415

is a random variable independent of the time t and denoted as 416

χi. χi follows the Poisson distribution with the average arrival 417

rate χi packets per second [11]. However, note that the Poisson 418

process is simply used for illustration purposes, and other traffic 419

models (e.g., renewal process, etc.) can also be used in our 420

framework. The average number of packets arriving during one 421

time slot is equal to χiΔT [11]. 422

The condition of channel j experienced by SU i is rep- 423

resented by the signal-to-noise ratio (SNR) and denoted as 424

ρt
ij (in decibels). When yt

j = 1, we assume that the channel 425

condition of each channel can be represented by a set of discrete 426

SNR values, i.e., ρt
ij ∈ {σ1

ij , . . . , σ
K
ij }. Note that the number of 427

discrete SNR values K can be determined by SU i by trading 428

off the complexity (a larger K leads to a larger state space) and 429

the resulting impact on performance. When yt
j = 0, we set ρt

ij 430

equal to −∞, which means that the channel is unavailable to 431

SUs at that time. As shown in [24], when yt
j = 1, the channel 432

condition (in terms of SNR) can also be modeled as a finite-state 433

Markov chain, where the transition from channel condition σl
ij 434

at time t to channel condition σk
ij at time t + 1 takes place with 435

probability pl→k
ij . These transition probabilities can easily be 436

estimated by SU i by repeatedly interacting with the channel. 437

We denote by p−∞→k
ij the probability that the channel condi- 438

tion is σk
ij at time t + 1, knowing that yt

j = 0 and yt+1
j = 1. 439

The probability that the channel condition transition to −∞, 440

knowing that yt+1
j = 0, is 1 no matter in what condition the 441

channel j is at time t. Then, the combination (yt
j , ρ

t
ij) is still a 442

Markov chain with state transition probability as in (3), shown 443

at the bottom of the page. 444

To model the dynamics experienced by SU i at time t in 445

the SN, we define a “state” st
i = (vt

i ,ρ
t
i) ∈ Si, where ρt

i = 446

(ρt
i1, . . . , ρ

t
iN ). The state encapsulates the current buffer state 447

as well as the state of each channel. Si is the set of possible 448

states.6 The total number of possible states for SU i is equal to 449

|Si| = (Xi + 1) × (K + 1)N . We will show later in this paper 450

that the state information is sufficient for SU i to compete for 451

resources (make bid vector) at the current time. 452

6We assume that the channel state and the transmission buffer independently
evolve as time goes by.

p
(
yt+1

j , ρt+1
ij |yt

j , ρ
t
ij

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 − pFN

j

)
pl→k

ij , if yt
j = 1, ρt

ij = σl
ij , yt+1

j = 1, ρt+1
ij = σk

ij

pNF
j p−∞→k

ij , if yt
j = 0, yt+1

j = 1, ρt+1
ij = σk

ij

pFN
j , if yt

j = 1, ρt
ij = σl

ij , yt
j = 0

1 − pNF
j o. w.

(3)
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B. State Transition and Stage Reward453

We will now discuss the state transition process. Remember454

that the state of SU i includes the buffer state vt
i and the455

channel state ρt
i. In this paper, we assume that the channel456

state transition is independent of the buffer state transition.457

In the above, we describe the transition of the channel state458

ρt
i and the TxOp yt. The buffer state transition is determined459

by the number of packets arriving and the channel allocation460

zt
i as well as the internal action bt

i during that time slot.461

The number of packets transmitted at stage t is denoted by462

Ni(st
i, z

t
i , b

t
i). Given the channel allocation, SU i can adapt463

its own internal action to maximize the number of transmitted464

packets, i.e.,465

ni

(
st

i, z
t
i

)
= max

bt
i
∈Bi

Ni

(
st

i, z
t
i , b

t
i

)
. (4)

The optimization can be performed by a cross-layer adaptation466

algorithm as in [5], [12], and [21]. Since our focus is on the467

multi-SU interaction, we assume that the internal action will468

always be performed to maximize the number of transmitted469

packets. We simply use ni(st
i, z

t
i) to represent the number470

of transmitted packets and omit the internal actions in the471

following notations.472

The evolution of the buffer state is captured by473

vt+1
i =min{(vt

i−n(st
i, z

t
i))

++χt
i,Xi}. We define h=vt+1

i −474

(vt
i − n(st

i, z
t
i))

+. Based on the packet arrival model, the buffer475

state transition probability is computed as in (5), shown at the476

bottom of the page. The state transition combined with TxOps,477

given the current resource allocation zt
i, can be computed as478

qi

(
st+1

i ,yt+1|st
i,y

t,zt
i

)
= pbuf

i

(
vt+1

i |vt
i ,z

t
i

)︸ ︷︷ ︸
buffer state transition

N∏
j=1

p
(
yt+1

j , ρt+1
ij |yt

j , ρ
t
ij

)
︸ ︷︷ ︸

channel state transition

(6)

where the first term represents the buffer state transition, which479

is independent of the second term of the channel state transition.480

Based on the channel allocation zt
i , the SU transmits481

the available packets in the buffer. In the next time slot,482

new packets arrive into the buffer. Newly incoming packets483

may lead to packets already existing in the buffer being484

dropped whenever the buffer is full or their delay dead-485

line has passed. Clearly, the performance of the application486

(e.g., video quality) improves when fewer packets are lost.487

Hence, we can interpret a negative value of the number of488

lost packets as the stage gain, which is denoted by gt
i , i.e.,489

gt
i(s

t
i, z

t
i) = −((vt

i − ni(st
i, z

t
i))

+ + χt
i −Xi)+. The reward at490

time t for SU i is expressed using the quasi-linear form491

ri(st
i, ϑ

t
i) = gt

i + τ t
i . Note that the gain gt

i and payment τ t
i492

depend on the states and bids of all the competing SUs in the 493

SN. Hence, the reward is also rewritten as ri(st,yt,at). 494

V. BIDDING STRATEGY FOR PLAYING 495

THE STOCHASTIC GAME 496

A. Best-Response Bidding Policy 497

In the SN, we assume that the stochastic game is played 498

by all the SUs for an infinite number of stages. This 499

assumption is reasonable for applications having a long 500

duration, such as video streaming. In our network setting, we 501

define a history of the stochastic game up to time t as ht = 502

{s0,y0,a0,z0, τ 0, . . . , st−1,yt−1,at−1,zt−1, τ t−1, st,yt} ∈ 503

Ht, which summarizes all previous states, available TxOps, 504

and the actions taken by the SUs as well as the outcomes at 505

each stage of the auction game, and Ht is the set of all possible 506

histories up to time t. However, during the stochastic game, 507

each SU i cannot observe the entire history but rather part of 508

the history ht. The observation of SU i is denoted as ot
i ∈ Ot

i 509

and ot
i ⊂ ht. Note that the current state st

i can always be 510

observed, i.e., st
i ∈ ot

i. In this paper, we focus on the external 511

action selection for the SUs. The external action selection 512

for SU i to play the stochastic game is also referred to as a 513

bidding policy πt
i : Ot

i �→ Ai for SU i at time t and defined 514

as a mapping from the observations up to the time t into the 515

specific action, i.e., at
i = πt

i(o
t
i). Furthermore, a policy profile 516

πi for SU i aggregates the bidding policies about how to play 517

the game over the entire course of the stochastic game, i.e., 518

πi = (π0
i , . . . , π

t
i , . . .). The policy profile for all the SUs at 519

time slot t is denoted as πt = (πt
1, . . . , π

t
M ) = (πt

i ,π
t
−i). 520

The policy πi is said to be Markov if the bidding policy 521

πt
i for ∀t is, given the current state st

i and current avail- 522

able TxOp yt, independent of the states, TxOps, and actions 523

prior to the time t, i.e., πt
i(o

t
i) = πt

i(s
t
i,y

t). The policy πi 524

is said to be stationary if the bidding policy πt
i = πi for 525

∀t. The reward ri(sk,yk,ak) of the stage k is discounted 526

by the factor (αi)k−t at time t. The factor αi(0 ≤ αi < 1) 527

is the discounted factor determined by a specific application 528

(for instance, for video streaming applications, this factor can 529

be set based on the tolerable delay). The total discounted sum 530

of rewards Qt
i(s

t,yt,π) for SU i can be calculated at time 531

t starting from the state profile st, assuming that all SUs 532

deploy stationary and Markov policies π = (πi,π−i), as in (7), 533

shown at the bottom of the next page. The total discounted 534

sum of rewards in (7) consists of two parts: 1) the current 535

stage reward and 2) the expected future reward discounted by 536

αi. Note that SU i cannot independently determine the above 537

value without explicitly knowing the policies and states of other 538

SUs. The SU maximizes the total discounted sum of future 539

rewards to select the bidding policy, which explicitly considers 540

pbuf
i

(
vt+1

i |vt
i ,z

t
i

)
=

⎧⎨
⎩

(μiΔT )he−μiΔT

h! , if 0 ≤ h < Xi − (vt
i − n (st

i,z
t
i))

+

∞∑
k=h

(μiΔT )ke−μiΔT

k! , if h = Xi − (vt
i − n (st

i,z
t
i))

+ (5)
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the impact of the current bid vector on the expected future541

rewards. We define the best response βi for SU i to other SUs’542

policies π−i as543

βi(π−i) = arg max
πi

Qt
i

(
st,yt, (πi,π−i)

)
. (8)

The central issue in our stochastic game is how the best-544

response policies can be determined by the SUs. In the repeated545

auction mechanism discussed in Section III, the procedure that546

each SU i follows to compete for the channel opportunities is547

illustrated in Fig. 3. In this procedure, the bidding strategy πt
i is548

continuously improved by the “bidding strategy improvement”549

module. In Section V-B, we discuss the challenges involved in550

building such a module, and in Section VI, we develop a best-551

response learning algorithm that can be used to improve the552

bidding strategy.553

B. Challenges for Selecting the Best-Response554

Bidding Policy555

Recall that during each time slot, the CSM announces an556

auction based on the available TxOps, and then SUs bid for557

the resources. To enable the successful deployment of this558

resource auction mechanism, we can prove (similar to our559

prior work in [21]) that SUs have no incentive to misrepresent560

their information, i.e., they adhere to the “truth telling” policy.561

We assume that at each time slot t, SU i has preference ut
ij562

over the channel j, which captures the benefit derived when563

using that channel. The preference ut
ij is interpreted as the564

benefit obtained by SU i when using channel j compared to the565

benefit when this channel is not used. Note that this benefit also566

includes the expected future rewards. The optimal bid at,opt
ij567

that SU i can take on channel j at time t is the bid maximizing568

the net benefit ut
ij + τ t

i . In the auction discussed in Section III,569

the optimal bid that SU i can make is at,opt
ij = ut

ij , i.e., the570

optimal bid for SU i is to announce its true preference to the571

CSM [21]. The proof is omitted here due to space limitations,572

since it is similar to that in [21]. The payment made by SU i is573

computed by the CSM based on the inconvenience incurred by 574

other SUs due to SU i during that time slot [23]. 575

Next, we define the preference ut
ij in the context of the 576

stochastic game model. Using the channel j, SU i obtains 577

the immediate gain gt
i(s

t
i,y

t,ej) by transmitting the pack- 578

ets in its buffer, where ej indicates that channel j is al- 579

located to SU i during the current time slot. SU i then 580

moves into the next state st+1
i from which it may ob- 581

tain the future reward Qt+1
i (st+1,yt+1,π). On the other 582

hand, if no channel is assigned to SU i, it receives the 583

immediate gain gt
i(s

t
i,y

t,0) and then moves into the next 584

state st+1
i , from which it may obtain the future reward 585

Qt+1
i (st+1,yt+1,π). We define a feasible set of channel as- 586

signments to SU i’s opponents (given SU i’s channel allocation 587

zt
i) as Zt

−i(z
t
i), with Zt

−i(z
t
i) = {Zt

−i|
∑M

k=1,k �=i z
t
kj = yt

j − 588

zt
i ∀j,

∑N
j=1 z

t
kj ≤ 1 ∀k �= i, zt

kj ∈ {0, 1}}. 589

The preference over the current state can then be computed as 590

ut
ij(s

t,yt)

=

[
gt

i

(
st

i,y
t,ej

)
+ αi

∑
st+1∈S

yt+1∈{0,1}N

×
[
qi

(
st+1

i ,yt+1|st
i,y

t,ej

) ∑
Zt

−i
∈Zt

−i
(ej)

×
[

M∏
k=1

qk

(
st+1

k ,yt+1|st
k,y

t,zt
k

)
Qt+1

i (st+1,yt+1,π)

]]]

−
[
gt

i

(
st

i,y
t,0

)
+ αi

∑
st+1∈S

yt+1∈{0,1}N

×
[
qi

(
st+1

i ,yt+1|st
i,y

t,0
) ∑

Zt
−i

∈Zt
−i

(0)

×
[

M∏
k=1

qk

(
st+1

k ,yt+1|st
k,y

t, zt
k

)
Qt+1

i (st+1,yt+1,π)

]]]
.

(9)

Qt
i(s

t,yt,π) =
∞∑

k=t

(αi)k−tri

(
sk,yk,π(sk,yk)

)
= ri

(
st,yt,π(st,yt)

)︸ ︷︷ ︸
stage reward at time t

+ αi

∑
st+1∈S

yt+1∈{0,1}N

{
M∏

k=1

qk

(
st+1

k ,yt+1|st
k,y

t,zt
k

(
π(st,yt

)) ×Qt+1
i (st+1,yt+1,π)

}

︸ ︷︷ ︸
expected future reward

=
{
gt

i

(
st

i,y
t,zt

i

(
π(st,yt)

))
+ τ t

i

(
π(st,yt)

)︸ ︷︷ ︸
stage reward at time t

+ αi

∑
st+1∈S

yt+1∈{0,1}N

{
M∏

k=1

qk

(
st+1

k ,yt+1|st
k,y

t,zt
k

(
π(st,yt

)) ×Qt+1
i (st+1,yt+1,π)

}

︸ ︷︷ ︸
expected future reward

(7)
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Fig. 3. Procedure for SU i to play the auction game at time slot t.

From this equation, it is clear that the true value ut
ij depends591

not only on its own current state st
i but also on the other SUs’592

states st
−i, the channel allocations Zt

−i(ej) to the other users593

when channel j is assigned to SU i, Zt
−i(0) when SU i is594

not assigned to any channel, and the state transition models595

qk(st+1
k ,yt+1|st

k,y
t,zt

k) ∀k. However, the other SUs’ states,596

the channel allocations, and the state transition models of other597

SUs are not known to SU i, and it is, thus, impossible for each598

SU to determine its preference ut
ij(s

t,yt).599

Without knowing the other SUs’ states and state transition600

models, SU i cannot derive its optimal bidding strategy601

at,opt
ij = ut

ij(s
t,yt). However, if SU i chooses the bid602

vector by only maximizing the immediate reward gt
i + τ t

i ,603

i.e., the total discounted sum of reward degenerates in604

Qt
i(s

t,yt,π) = gt
i(s

t
i,y

t,zt
i(π(st,yt))) + τ t

i (π(st,yt) by605

setting αi = 0. Then, the preference over channel j becomes606

ut
ij(s

t,yt) = gt
i(s

t
i,y

t,ej) − gt
i(s

t
i,y

t,0). Now, since ut
ij607

only depends on the state st
i, SU i can compute both the608

optimal bid vector and the optimal bidding policy. We refer to609

this optimal bidding policy as the “myopic” policy since it only610

takes the immediate reward into consideration and ignores the611

future impact. The myopic policy is referred to as πmyopic
i . To612

solve the difficult problem of optimal bidding policy selection 613

when αi �= 0, an SU needs to forecast the impact of its current 614

bidding actions on the expected future rewards discounted by 615

αi. The forecast can be performed using learning from its past 616

experiences. 617

VI. INTERACTIVE LEARNING FOR PLAYING 618

THE RESOURCE MANAGEMENT GAME 619

A. How to Evaluate Learning Algorithms? 620

Section V-B shows that an SU needs to know the other SUs’ 621

states and state transition models to derive its own optimal 622

bidding policy. This coupling among SUs is due to the shared 623

nature of wireless resources. However, an SU cannot exactly 624

know the other SUs’ models and private information in wireless 625

networks. Thus, to improve the bidding policy, an SU can only 626

predict the impacts of dynamics (uncertainties) caused by the 627

competing SUs based on its observations from past auctions. 628

In this paper, we propose a learning algorithm for predicting 629

these impacts. We define a learning algorithm Li for SU i as 630

a function taking the observation ot
i as input and having the 631

bidding policy πt
i as output. 632
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Before developing a learning algorithm, we first discuss how633

to evaluate the performance of a learning algorithm in terms634

of its impact on the SU’s reward. Unlike existing multiagent635

learning research, which is aimed at achieving converge to an636

equilibrium point for the interacting agents, we develop learn-637

ing algorithms based on the performance of the bidding strategy638

on the SU’s reward. We denote a bidding policy generated by639

the learning algorithm Li as πLi
i . An SU will learn to improve640

its bidding policy and its rewards from participating in the641

auction game. The performance of the bidding strategy πi is642

defined as the time average reward that SU i obtains in a time643

window with length T when it adopts πi, i.e.,644

Vπi(T ) =
1
T

T∑
k=1

rk
i . (10)

Using this definition, the performance of two learning al-645

gorithms can easily be compared. For instance, given two646

algorithms L′
i and L′′

i , if Vπ
L′

i
i > Vπ

L′′
i

i , then we say that the647

learning algorithm L′
i is better than L′′

i .648

B. What Information to Learn From?649

First, let us consider what information the SU can650

observe while playing the stochastic game in our SN. As651

shown in Fig. 1, at the beginning of time slot t, the SUs652

submit the bids at
i ∀i. Then, the CSM returns the channel653

allocations zt
i ∀i and τ t

i ∀i. If SU i is not allowed to654

observe the bids, the channel allocations, and payments655

for other SUs, then the observation of SU i becomes ot
i =656

{s0
i ,y

0, a0
i ,z

0
i , τ

0
i , . . . , s

t−1
i ,yt−1, at−1

i , zt−1
i , τ t−1

i , st
i,y

t}. If657

the information is exchanged among SUs or broad-658

casted and overheard by all SUs, the observed infor-659

mation by SU i becomes ot
i = {s0

i ,y
0, a0,z0, τ 0, . . . ,660

st−1
i ,yt−1,at−1,zt−1, τ t−1, st

i,y
t}. Now, the problem that661

needs to be solved by SU i is how it can improve its own policy662

for playing the game by learning from the observation ot
i. In663

this paper, we assume that SU i observes the information ot
i =664

{s0
i ,y

0, a0
i ,z

0
i , τ

0
i , . . . , s

t−1
i ,yt−1, at−1

i ,zt−1
i , τ t−1

i , st
i,y

t}.665

C. What to Learn?666

In Section VI-A, we introduce learning as a tool to predict the667

impacts of dynamics and, hence, improve the bidding policy.668

However, a key question is what needs to be learned. Recall that669

the optimal bidding policy for SU i is to generate a bid vector670

that represents its preferences for using different channels.671

From (9), we can see that SU i needs to learn the following:672

1) the state space of other SUs, i.e., S−i; 2) the current state of673

other SUs, i.e., st
−i; 3) the transition probability of other SUs,674

i.e.,
∏

k �=i qk(st+1
k ,yt+1|st

k,y
t,zt

k); 4) the resource allocations675

Zt
−i(ej) ∀j and Zt

−i(0); and 5) the discounted sum of rewards676

Qt+1
i (st+1,yt+1,π).677

However, SU i can only observe the information ot
i = {s0

i ,678

y0, a0
i ,z

0
i , τ

0
i , . . . , s

t−1
i ,yt−1, at−1

i ,zt−1
i , τ t−1

i , st
i,y

t} from679

which SU i cannot accurately infer the other SUs’ state space680

and transition probability. Moreover, capturing the exact in-681

formation about other SUs requires heavy computational and 682

storage complexity. Instead, we allow SU i to classify the space 683

S−i into Hi classes, each of which is represented by a represen- 684

tative state s̃−i,h, h ∈ {1, . . . , Hi}. We discuss how the space 685

S−i is decomposed in Section VI-D. By dividing the state space 686

S−i, the transition probability
∏

k �=i qk(st+1
k ,yt+1|st

k,y
t,zt

k) 687

is approximated by q−i(s̃t+1
−i , yt+1|s̃t

−i,y
t,zt

i), where s̃t
−i and 688

s̃t+1
−i are the representative states of the classes to which st

−i and 689

st+1
−i belong. This approximation is performed by aggregating 690

all the other SUs’ states into one representative state and assum- 691

ing that the transition depends on the resource allocation zt
i . 692

The transition probability approximation is also discussed in 693

Section VI-D. The discounted sum of rewards Qt+1
i (st+1, 694

yt+1,π) is approximated by V t+1
i ((st+1

i , s̃t+1
−i ),yt+1). 695

Note that the classification on the state space S−i and the 696

approximation of the transition probability and discounted sum 697

of rewards affect the learning performance. Hence, a user can 698

tradeoff an increased complexity for an increased performance. 699

After the classification, the preference computation can be 700

approximated as 701

ut
ij

((
st

i, s̃
t
−i

)
,yt

)
=

[
gt

iq
(
st

i,y
t,ej

)
+αi

∑
(s

t+1
i

,s̃
t+1
−i )∈(Si,S̃−i)

yt+1∈{0,1}N

×
[
qi

(
st+1

i ,yt+1|st
i,y

t,ej

) ×q−i

(̃
st+1
−i ,yt+1|s̃t

−i,y
t,ej

)

×V t+1
i

((
st+1

i , s̃t+1
−i

)
,yt+1

)]]

−
[
gt

i

(
st

i,y
t,0

)
+αi

∑
(s

t+1
i

,s̃
t+1
−i )∈(Si,S̃−i)

yt+1∈{0,1}N

×
[
qi

(̃
st+1

i ,yt+1|st
i,y

t,0
) ×q−i

(̃
st+1
−i ,yt+1|s̃t

−i,y
t,0

)

×V t+1
i

((
st+1

i , s̃t+1
−i

)
,yt+1

)]]
. (11)

In this setting, to find the approximated preference and, 702

thus, the approximated optimal bidding policy, we need 703

to learn the following from past observations: 1) how 704

the space S̃−i is classified; 2) the transition probability 705

q−i(s̃t+1
−i ,yt+1|s̃t

−i,y
t,zt

i); and 3) the approximated future 706

rewards V t+1
i ((st+1

i , s̃t+1
−i ),yt+1). 707

D. How to Learn? 708

In this section, we develop a learning algorithm to estimate 709

the terms listed in Section VI-C. 710

1) Decomposition of the Space S−i: As discussed 711

in Section VI-B, only ot
i = {s0

i ,y
0, a0

i ,z
0
i , τ

0
i , . . . , s

t−1
i , 712

yt−1, at−1
i ,zt−1

i , τ t−1
i , st

i,y
t} are observed. From the auction 713

mechanism presented in Section III, we know that the value of 714
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the tax τ t
i is computed based on the inconvenience that SU i715

causes to the other SUs. In other words, a higher value of |τ t
i |716

indicates that the network is more congested.7 Based on the717

bid vector bt
i, the channel allocation zt

i, and the tax τ t
i , SU i718

can infer network congestion and thus, indirectly, the resource719

requirements of the competing SUs. Instead of knowing the720

exact state space of other SUs, SU i can classify the space S−i721

as follows.722

We assume that the maximum absolute tax is Γ. We split the723

range [0,Γ] into [Γ0,Γ1), [Γ1,Γ2), . . . , [ΓHi−1,ΓHi
] with 0 =724

Γ0 ≤ Γ1 ≤ · · · ≤ ΓHi
= Γ. Here, we assume that the values725

of {Γ1, . . . ,ΓHi−1} are equally located in the range of [0,Γ].726

(Note that more sophisticated selection for these values can be727

deployed, and this forms an interesting area of future research.)728

We need to consider three cases to determine the representa-729

tive state s̃t
−i at time t.730

1) If the resource allocation zt
i �= 0, then the representative731

state of the other SUs is chosen as732

s̃t
−i = h, if

∣∣τ t
i

∣∣ ∈ [Γh−1,Γh). (12)

2) If the resource allocation zt
i = 0 but yt �= 0, the tax is733

0. In this case, we cannot use the tax to predict network734

congestion. However, we can infer that the congestion735

is more severe than the minimum bid for those avail-736

able channels, i.e., minj∈{l:yt
l
�=0}{at

ij}. This is because,737

in this current stage of the auction game, only SU i′738

with at
i′j ≥ at

ij can obtain channel j, which indicates739

that |τ t
i | ≥ minj∈{l:yt

l
�=0}{at

ij} if SU i is allocated any740

channel. Then, the representative state of the other SUs741

is chosen as742

s̃t
−i = h, if min

j∈{l:yt
l
�=0}

{
at

ij

} ∈ [Γh−1,Γh). (13)

3) If the resource allocation zt
i = 0 and yt = 0, there is743

no interaction among the SUs in this time slot. Hence,744

s̃t
−i = s̃t−1

−i .745

7When the CSM deploys a mechanism without tax for resource management,
the space classification for other SUs can also be done based on the announced
information and corresponding resource allocation.

2) Estimating the Transition Probability: To estimate the 746

transition probability, SU i maintains a table F with size Hi × 747

Hi × (N + 1). Each entry fh′,h′′,j in the table F represents the 748

number of transitions from state s̃t
−i = h′′ to state s̃t+1

−i = h′ 749

when the resource allocation zt
i = ej (or 0 if j = 0). It is 750

clear that Hi will significantly influence the complexity and 751

memory requirements, etc., of SU i. The update of F is simply 752

based on the observation ot
i and the state classification in the 753

above section. Then, we use the frequency to approximate the 754

transition probability [15], i.e., 755

q−i

(
s̃t+1
−i = h′|s̃t

−i = h′′,ej

)
=

fh′,h′′,j∑
h′ fh′,h′′,j

. (14)

3) Learning the Future Reward: By classifying the state 756

space S−i and estimating the transition probability, SU i 757

can now forecast the value of the average future reward 758

V t+1
i ((st+1

i , s̃t+1
−i ),yt+1) using learning. Equation (7) can be 759

approximated by (15), shown at the bottom of the page. 760

Similar to the Q-learning established in [17], we also use 761

the received rewards to update the estimation of future rewards. 762

However, the main difference between our proposed algorithm 763

and Q-learning is that our solution explicitly considers the 764

impacts of other SUs’ bidding actions through the state clas- 765

sifications and transition probability approximation. 766

We use a 3-D table to store the value Vi((si, s̃−i),y) with 767

si ∈ Si, s̃−i ∈ S̃−i. The total number of entries in Vi is |Si| × 768

Hi × 2N . SU i updates the value of Vi((si, s̃−i),y) at time 769

t according to the rules in (16), shown at the bottom of the 770

page, where γt
i ∈ [0, 1) is a learning rate factor satisfying 771∑∞

t=1 γ
t
i = ∞, and

∑∞
t=1(γ

t
i )

2 < ∞ [17]. In summary, the 772

learning procedure that is developed for an SU is shown in 773

Table I. 774

E. Complexity of Learning 775

In Section III, we have discussed the computation complexity 776

incurred by the CSM and the communication cost between 777

the CSM and the SUs. In this section, we further quantify 778

the complexity of learning in terms of the computational and 779

storage burden. We use a floating-point operation (“flop”) as a 780

measure of complexity, which will provide us an estimation of 781

Qt
i

((
st

i, s̃
t
−i

)
,yt,π

) .=

{
gt

i

(
st

i,y
t,zt

i

(
π(st,yt)

))
+ τ t

i

(
π(st,yt)

)
+ αi

∑
(s

t+1
i

,s̃
t+1
−i )∈(Si,S̃−i)

yt+1∈{0,1}N

×
{
qi

(
st+1

i ,yt+1|st
i,y

t,zt
i

(
π(st,yt)

))
q−i

(
s̃t+1
−i ,yt+1|s̃t

−i,y
t,zt

i

(
π(st,yt)

))
V t+1

i

((
st+1

i , s̃t+1
−i

)
,yt+1

) }}
(15)

V t
i ((si, s̃−i),y) =

{
(1 − γt

i )V
t−1
i ((si, s̃−i),y) + γt

iQ
t
i ((si, s̃−i) ,y,π) , if

(
st

i, s̃
t
−i

)
= (si, s̃−i), yt = y

V t−1
i ((si, s̃−i) ,y) , otherwise

(16)
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TABLE I
LEARNING PROCEDURE

Fig. 4. Bidding strategies based on the required information.

the computational complexity required to perform the learning782

algorithm. In addition, based on this, we can determine how783

complexity grows with the increasing number of SUs [20]. At784

each stage, SU performs the classification of other the SUs’785

states, which, in the worst case, requires a number of “flops” of786

approximately N . The number of “flops” to estimate the transi-787

tion probability of other SUs’ states as in (14) is approximately788

(Hi + 1). The number of “flops” to learn the future reward789

is approximately (2|Si|Hi + 6). Therefore, the total number790

of “flops” incurred by the SU is N + Hi + 2|Si|Hi + 7, from791

which we can note that the complexity of learning for each SU792

is proportional to the number of possible states of that SU and793

the number of classes in which the other SUs’ state space is794

decomposed.795

To perform the learning algorithm, the SU needs to store two796

tables (i.e., transition probability table and state value table),797

which, in total, have (H2
i (N + 1) + 2N |Si|Hi) entries. We798

also note that the storage complexity is also proportional to the799

number of possible states of that SU and the number of classes800

in which the other SUs’ state space is decomposed.801

VII. SIMULATION RESULTS802

In this section, we aim at quantifying the performance of803

our proposed stochastic interaction and learning framework. We804

assume that the SUs compete for available spectrum opportuni-805

ties to transmit delay-sensitive multimedia data. First, we com-806

pare the performance of various bidding strategies. Next, we807

quantify the performance of our proposed learning algorithm808

in various network environments. We will only present here809

several illustrative examples. However, the same observations810

can be obtained using a larger number of SUs or channels.811

A. Various Bidding Strategies for Dynamic 812

Multiuser Interaction 813

In this section, we highlight the merits of the stochastic 814

game framework proposed in Section II by comparing the 815

performance of different SUs, which deploy different bidding 816

strategies. The SUs are required to submit the bid vector on 817

the available channels. The SUs can deploy different bidding 818

strategies to generate their bid vector. 819

1) Fixed bidding strategy πfixed
i : This strategy generates a 820

constant bid vector during each stage of the auction game, 821

irrespective of the state that SU i is currently in and of the 822

states other SUs are in. In other words, πfixed
i does not 823

consider any of the dynamics defined in Section IV. 824

2) Source-aware bidding strategy πsource
i : This strategy gen- 825

erates various bid vectors by considering the dynamics in 826

source characteristics (based on the current buffer state) 827

but not the channel dynamics. 828

3) Myopic bidding strategy πmyopic
i : This strategy takes 829

into account the disturbance due to the environment as 830

well as the impact caused by other SUs, as discussed in 831

Section V-B. However, it does not consider the impact on 832

future rewards. 833

4) Bidding strategy based on best-response learning πLi
i : 834

This strategy is produced using the learning algorithm 835

proposed in Section VI. πLi
i considers the two types of 836

dynamics defined in Section IV and the interaction impact 837

on future reward. 838

In terms of required information, the above bidding strategies 839

are illustrated in Fig. 4. For instance, the fixed bidding strategy 840

πfixed
i does not require information about SU i’s state or other 841

SUs’ states. The source-aware bidding strategy πbuff
i considers 842
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TABLE II
PERFORMANCE OF SU 1 AND 2 WITH VARIOUS BIDDING STRATEGIES IN THE TWO SU NETWORKS

Fig. 5. Accumulated packet loss and cost of SU 1 in the five scenarios. (a) Accumulated packet loss over the time slot. (b) Accumulated cost over the time slot.

the source characteristics based on the current buffer state.843

However, the myopic bidding strategy πmyopic
i requires full844

information about SU i’s state. The bidding strategy based on845

best-response learning πLi
i also requires information about the846

states of other SUs.847

In this simulation, we consider the SN as an extension of848

WLANs with spectral agile capability [9]. In the following,849

we first simulate the case that two SUs compete for the chan-850

nel opportunities and then extend to the case with multiple851

(five) SUs.852

1) Competition Among Two SUs for Channel Opportunities:853

We first consider a simple illustrative network with two SUs854

competing for available TxOps. The packet arrivals of the SUs855

are modeled using a Poisson process with the same average856

arrival rate of 1 Mb/s. For simplicity of illustration, the channel857

condition of SU 1 (SU 2) on each channel only takes three val-858

ues (K = 3), which are 18, 23, and 26 dB. The transition prob-859

abilities are p0→1
ij = p0→2

ij = 0.4, p0→3
ij = 0.2, pl→1

1j = pl→2
1j =860

0.4, and pl→3
1j = 0.2 ∀i, j, l. The transition probability of the861

availability of channels to SUs is pNF
j = pFN

j = 0.5. For sim-862

plicity of illustration, the environment parameters experienced863

by the two SUs are the same. The length of the time slot ΔT864

is 10−2 s.865

In this simulation, we consider five scenarios. In scenario 1,866

both SU 1 and SU 2 deploy the fixed bidding strategy πfixed
1 .867

In scenarios 2–5, SU 1 deploys the fixed bidding strategy868

πfixed
1 , source-aware bidding strategy πsource

1 , myopic bidding869

strategy πmyopic
1 , and best-response learning-based bidding 870

strategy πL1
1 , respectively, and SU 2 always deploys the myopic 871

bidding strategy πmyopic
2 . The discounted factor for the best- 872

response learning algorithm is set to 0.8. As discussed in 873

Section IV-B, the stage reward is defined as rt
i = (gt

i + τ t
i ), 874

with (−gt
i − τ t

i ) being the number of packet lost plus the tax 875

charged by the CSM (note that τ t
i ≤ 0). This can be interpreted 876

as the cost incurred at each stage. Similar to (10), we use the 877

average cost over the time window T = 1000 to evaluate the 878

performance of the bidding strategies. Hence, the lower 879

the average cost, the better the performance of the bidding 880

strategy. The packet loss rate, average tax, and cost per time slot 881

are presented in Table II. The accumulated packet loss and cost 882

of SU 1 for the five scenarios are plotted in Fig. 5(a) and (b), 883

respectively. 884

From this simulation, comparing scenario 2 with scenario 1, 885

we observe that when SU 2 deploys the myopic strategy against 886

SU 1, which adopted the fixed bidding strategy, SU 2 reduces 887

its average cost by around 42% and the average packet loss 888

rate by around 16.6%. This significant improvement is because 889

SU 2 can more accurately value the channel opportunities by 890

modeling and considering its experienced dynamics, i.e., source 891

characteristics, channel conditions, and availability. 892

In scenario 3, SU 1 improves its bidding strategy (i.e., 893

it deploys now a source-aware bidding strategy) by partially 894

considering its experienced environment, i.e., SU 1 generates 895

its bid vector by only considering the source dynamics though 896



IE
EE

Pr
oo

f

FU AND VAN DER SCHAAR: LEARNING TO COMPETE FOR RESOURCES IN WIRELESS STOCHASTIC GAMES 13

TABLE III
PERFORMANCE OF SU 1–5 WITH VARIOUS BIDDING STRATEGIES IN THE FIVE SU NETWORKS

its current buffer state. Compared with scenario 2, if SU 1897

considers more information about its own state, it can further898

reduce its packet loss rate by an average of 4.5% and an899

average cost by around 5.4%. This observation verifies that the900

information about the SU’s state improves the bidding strategy.901

In scenario 4, SU 1 deploys a myopic bidding strategy, which902

is more advanced than the source-aware bidding strategy since903

it considers both types of dynamics defined in Section IV904

(including the dynamics regarding the source characteristics,905

channel conditions, and channel availability, and the interaction906

with other SUs in the auction mechanism). The significant907

improvement in terms of packet loss rate (13% reduced) and908

average cost (25% reduced), compared with scenario 2, indi-909

cates that the myopic bidding strategy provides the optimal bid910

vector when only current benefits are considered, as shown in911

Section V-B.912

In scenario 5, SU 1 further improves the bidding strat-913

egy using the best-response learning algorithm developed in914

Section VI. Using learning, SU 1 reduces the packet loss rate to915

15.14% and the average cost to 1.7428 (11.8% lower compared916

with scenario 4). This significant improvement is due to the917

ability of the SU to learning and forecast the future impact of918

its current actions.919

It is also worth noting that the reduction of packet loss rate920

of SU 1 in scenarios 2–5 comes from two parts: One is the921

advanced bidding strategies, which allows the SU to take into922

consideration more information about its own states and the923

other SUs’ states and, based on this better forecast, the impact924

of various actions; the other one is the increase in the amount925

of resources consumed by SU 1, which corresponds to a higher926

tax charged by the CSM, as shown in Table II.927

We further note that the bidding strategy deployed by SU 1928

will affect the performance of SU 2. For example, comparing929

scenario 2 with scenario 4, the fixed bidding strategy of SU 1930

in scenario 2 leads to a lower average cost (15% reduced) for931

SU 2. This is because SU 1 uses a fixed bidding strategy, which932

does not account for the dynamic changes in its environment,933

while SU 2 minimizes its current cost (the number of packets934

lost plus the tax) based on its current state. However, when935

comparing scenario 5 with scenario 4, SU 1 using learning936

not only improves its prediction of the current environment937

dynamics but also better predicts the impact on the future cost938

based on the observations. The improvement leads to higher939

resource allocation (hence, incurring higher tax, see in Table II)940

for SU 1, thereby resulting in worse performance for SU 2 (i.e.,941

the average cost is increased by 22.2%).942

2) Multiple SUs Competition for Channel Opportunities:943

In this simulation, we consider five SUs competing for the944

available TxOps in the WLAN-like SN. The packet arrivals of945

all the five SUs are modeled using a Poisson process with the 946

same average arrival rate of 1 Mb/s. The number of channels 947

is 3, and the channel condition of all the five SUs on each 948

channel takes only three values (K = 3), which are 18, 23, 949

and 26 dB. The transition probabilities are p0→1
ij = p0→2

ij = 0.4, 950

p0→3
ij = 0.2, pl→1

1j = pl→2
1j = 0.4, and pl→3

1j = 0.2 ∀i, j, l. The 951

parameters of the model of the availability of the channels to 952

the SUs are pNF
j = 0.7 and pFN

j = 0.3. The length of the time 953

slot ΔT is also 10−2 s. Similar parameters are used for the five 954

SUs to clearly illustrate the performance differences obtained 955

based on the different strategies. 956

In this simulation, we consider only two scenarios. In sce- 957

nario 1, all SUs deploy a myopic bidding strategy πmyopic
i , i = 958

1, 2, . . . , 5, whereas in scenario 2, SU 5 deploys the multiuser 959

learning-based bidding strategy πL5
5 with the discount factor 960

of 0.5, and the other SUs deploy the myopic bidding strategy 961

πmyopic
i , i = 1, . . . , 4. The packet loss rate and cost per time slot 962

incurred by the SUs are presented in Table III. The accumulated 963

packet loss and cost of SU 5 for the five scenarios are plotted in 964

Fig. 6(a) and (b), respectively. 965

Similar to the two-SU network, SU 5 significantly reduces 966

the packet loss rate by 14.6% and average cost by 16.1% 967

by adopting the best-response learning-based bidding strategy. 968

Fig. 6(a) and (b) further verifies the improvement of the per- 969

formance for SU 1. However, the other SUs’ performances are 970

decreased as they now need to compete against a learning SU 971

(i.e., SU 5), which is able to make better bids for the available 972

resources. 973

B. Multiuser Learning and Delay Impact in a 974

Wireless Test Bed 975

To validate the performance of multiuser learning and the 976

impact of various delays in a realistic network setting, we 977

considered two SUs competing for the available TxOps in our 978

802.11a-enabled wireless test bed [31]. The channel condition 979

experienced by the SUs varied between 10 and 30 dB, and 980

we represented this variation using ten states (K = 10). The 981

parameters of the TxOp model are pNF
j = 0.6 and pFN

j = 0.4. 982

The length of the time slot ΔT is also 10−2 s. The SUs stream 983

the delay-sensitive video traffic (e.g., the Mobile sequence en- 984

coded using an H.264 video encoder) to their own destinations 985

with an average data rate of 1.5 Mb/s. We compare three 986

scenarios. In scenario 1, both SUs deploy a myopic bidding 987

strategy πmyopic
i , i = 1, 2. In scenario 2, SU 1 deploys the 988

learning-based bidding strategy πL1
1 with a discount factor of 989

0.5, and SU 2 deploys a myopic strategy πmyopic
2 . In scenario 3, 990

both SUs deploy the learning-based bidding strategy πLi
i , i = 991

1, 2. In the mentioned three scenarios, video applications are 992
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Fig. 6. Accumulated packet loss and cost of SU 5 in the two scenarios. (a) Accumulated packet loss over the time slot. (b) Accumulated cost over the time slot.

TABLE IV
PERFORMANCE OF SU 1 AND 2 WITH VARIOUS BIDDING STRATEGIES IN THE MORE REALISTIC NETWORK

considered to tolerate a delay8 of 533 ms, which is used in some993

real-time video streaming applications. In scenario 4, SU 1994

deploys the learning-based bidding strategy πL1
1 with a discount995

factor of 0.5, and SU 2 deploys a myopic strategy πmyopic
2 .996

However, in this scenario, SU 1 streams a video sequence that997

can only tolerate a delay of 266 ms, which is typical for video998

conferencing applications.999

Table IV shows the average video quality in terms of peak1000

SNR (PSNR)9 and incurred cost for both SUs under various1001

scenarios. Comparing scenario 2 with scenario 1, we observe1002

that the SU using the learning-based bidding strategy improves1003

the received video quality by 2.2 dB and reduces the incurred1004

cost by 9.3%. However, as the performance of SU 1 improves,1005

this also results in worse performance for SU 2. This observa-1006

tion is similar to the results in Section VII-A1 and has the same1007

explanation.1008

In scenario 3, both SUs deploy the learning-based bidding1009

strategies and are able to better predict the impact of their1010

current bidding actions on the future cost based on their ob-1011

servations. Thus, compared with scenario 1, the performance of1012

both SUs has improved: SU 1 (SU 2) increases by 1 dB (1.2 dB)1013

in terms of PSNR and reduces its cost by 4.3% (4.0%). Com-1014

pared to scenario 2, if SU 2 also deploys the learning-based1015

approach, then SU 2 also observes its estimated future reward1016

and will increase its bid, thereby reducing the performance1017

8During the simulations, for simplicity, we assume that the packets within
one Group of Picture (GOP) have the same delay deadline.

9PSNR is a widely adopted metric to objectively measure the video quality. A
PSNR difference of 1 dB is significant and can be seen by an untrained human
observer.

of SU 1. From Table IV, we note that the PSNR of SU 1 is 1018

decreased by 1.2 dB, whereas the PSNR of SU 2 is increased 1019

by 2 dB. We also observe that the cost of SU 1 is increased by 1020

around 5.6%, whereas the cost of SU is decreased by 9.1%. 1021

In scenario 4, since SU 1 streams a video application with a 1022

lower delay deadline, it has to bid more to ensure that packets 1023

with stringent delay deadline are transmitted to the destination, 1024

and hence, SU 1 incurs a higher transmission cost (41% 1025

increased) compared with scenario 2. Although SU 1 bids 1026

more for the limited available resources, the video quality of 1027

SU 1 is reduced by 1.8 dB due to its stringent delay deadline. 1028

Interestingly, the stringent delay deadline of the SU 1’s 1029

application also increases the transmission cost of SU 2 and also 1030

reduces its video quality. This is because the higher bid of SU 1 1031

on limited resources automatically increases the bid of SU 2. 1032

C. Learning With Imperfect Information 1033

In this section, we consider that SU 1 deploys the learning- 1034

based bidding strategy and SU 2 deploys the myopic strategy. 1035

The environment parameters are the same as in Section VII-B. 1036

To quantify the impact of imperfect information about the 1037

environment on SUs’ performance, we assume that SU 1 has the 1038

transition probability of TxOps (pNF
j = 0.55 and pFN

j = 0.45), 1039

which is slightly different from the true one (i.e., pNF
j = 0.6 1040

and pFN
j = 0.4). Table V shows the PSNRs and corresponding 1041

cost of both SUs when SU 1 has perfect or imperfect informa- 1042

tion about the TxOps. 1043

From Table V, we observe that an inaccurate model of TxOps 1044

reduces the performance of SU 1 (i.e., the PSNR decreases by 1045
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TABLE V
PERFORMANCE COMPARISON BETWEEN THE SCENARIOS WHETHER SU 1 HAS PERFECT INFORMATION OR NOT

TABLE VI
CHANNEL AVAILABILITY PROBABILITY

TABLE VII
AVERAGE PACKET LOSS RATE AND COST FOR THE SUs UNDER VARIOUS RESOURCE CONSTRAINTS

0.3 dB and increases the cost by 4.2%). We further note that this1046

will also affect the performance of SU 2. In this simulation, the1047

PSNR of SU 2 is reduced by 0.2 dB, and the cost is increased1048

by 3.5%. This performance loss can be explained as follows.1049

Since SU 1 has an inaccurate model about the available TxOps,1050

it may generate a suboptimal bid vector at each stage, which1051

will accordingly result in a suboptimal allocation (TxOps and1052

payment) among the SUs. This suboptimal allocation will also1053

lead to the performance loss of other SUs. Hence, it is essential1054

for the users to learn and accurately predict their environment.1055

D. Impact of Various Dynamics on Learning1056

In Section VII-A, we demonstrated that the best-response1057

learning algorithm improves the bidding strategy, thereby lead-1058

ing to a reduced packet loss rate and average cost. In this1059

simulation, we further investigate how various dynamics impact1060

the learning algorithm proposed in Section VI-D. Specifically,1061

we compare the learning performance under different channel1062

dynamics, i.e., various available spectrum opportunities for the1063

SUs, as discussed in Section II. The source characteristics and1064

channel conditions experienced by the SUs are kept the same as1065

in Section VII-A1. We consider three types of channel dynam-1066

ics corresponding to scenarios 1–3. The transition probabilities1067

of TxOps for all three scenarios are listed in Table VI. In each1068

scenario, we compare two cases. In the first one, both SUs1069

deploy myopic bidding strategies, and in the second one, SU1070

1 deploys the best-response learning-based bidding strategy,1071

while SU 2 still uses the myopic bidding strategy.1072

Table VII shows the average packet loss rate and cost ex-1073

perienced by the SUs under various channel dynamics. In-1074

terestingly, we observe from these results that even though 1075

the learning algorithm reduces the packet loss rate, it does 1076

not reduce the cost associated with SU 1 when the channel 1077

resources are abundant as in scenario 1. As the resources 1078

become increasingly scarce, the learning algorithm helps SU 1 1079

to simultaneously reduce the packet loss rate and cost, e.g., 1080

in scenarios 2 and 3. This observation can be explained as 1081

follows. When the resources are abundant, the cost (including 1082

the packet loss and tax) is small, i.e., the “value” of the chan- 1083

nel is limited, and hence, the learning-based bidding strategy 1084

does not significantly benefit. On the other hand, when the 1085

resources are scarce, the bid vectors of the SUs in the current 1086

time slot will significantly affect the transition of their states 1087

through the channel allocation compared with the case when 1088

the resources are abundant. For example, if an SU makes low 1089

bids as compared to other SUs, it might have no resources 1090

(channels) allocated to it when resources are scarce (i.e., the SN 1091

is congested). In this case, the learning-based bidding strategy 1092

will carefully plan the bid by considering the future impact, and 1093

thus, it is able to successfully improve the performance of SU 1 1094

in terms of reducing the average cost. 1095

VIII. CONCLUSION AND FUTURE RESEARCH 1096

In this paper, we have modeled the dynamic resource allo- 1097

cation problem as a “stochastic game” played among strategic 1098

SUs. At each stage of the game, the CSM deploys a general- 1099

ized second-price auction mechanism to allocate the available 1100

spectrum resource. The SUs are allowed to simultaneously 1101

and independently make bid decisions on that resource by 1102
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considering their current states, experienced environment, and1103

estimated future reward. To improve the bid decision at each1104

stage, we propose a best-response learning algorithm to predict1105

the possible future reward at each state. The simulation results1106

show that our proposed learning algorithm can significantly1107

improve the SUs’ performance.1108

We note that the constraint of the perfect information about1109

the available wireless resources can be relaxed for the case1110

when the CSM and wireless users do not have perfect infor-1111

mation about the available resources. In this case, the wire-1112

less users can estimate and build a belief about the available1113

resource. Hence, the stochastic game model can be extended1114

to partially observably stochastic games [32]. This is one of1115

our interesting future research topics. We also note that we1116

can allow the wireless users to adapt their transmission power,1117

which will lead to different interference levels to other users.1118

In this case, the wireless users compete with each other for1119

lower interference levels incurred by other users [6] instead1120

of competing for the transmission time. This can also be for-1121

mulated as a stochastic game, and similar learning algorithms1122

can be developed. This forms another interesting topic of our1123

future research. Our future work also includes analyzing the1124

performance of SNs, where multiple SUs are deploying various1125

learning strategies and protocols.1126
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