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Abstract

Smarter Planet applications for transportation, healthcare, energy and utilities have been en-

abled by the confluence of technological advancements in sensing, communication, and compute

systems, and analysis algorithms. These applications have have several novel characteristics in

terms of their distributed nature, their analysis, security and privacy needs, their performance

scaling needs, and their dynamics – that have not been sufficiently addressed by prior centrally-

store-process-and-analyze systems and algorithms.

In this chapter we describe the emerging field of Stream Processing systems and its impact

on the realization of these applications – and discuss how this is enabling fog computing in

real-world implementations. We introduce the paradigm, its core constructs and capabilities, and

examples of academic, commercial and open-source systems available for use. We also highlight

examples of large-scale distributed applications built on these systems, and in use in current

Smarter Planet applications. We then discuss how these systems enable several new directions

of research, at the intersection of online learning, application-system design and optimization.

We illustrate one such research direction by describing several novel online distributed

learning algorithms that can be implemented on a stream processing system to provide solutions

to real-time prediction problems in the presence of diverse data sources as well as missing

and/or delayed data or feedback. We show how such distributed algorithms can then be used

for real-world prediction problems in social networks, transportation networks and healthcare

informatics. We also include pointers to other interesting research in this space. We conclude

with our thoughts on the open challenges in this space, and the likely evolution of such systems

and algorithms.

I. INTRODUCTION: SMARTER PLANET

With the world becoming ever more instrumented and connected, we are at the cusp of realizing

a Smarter Planet [1], where insights drawn from data sources are used to adapt our environment

and how we interact with it and with each other. This will enable a range of new services that
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make it easier for us to work, travel, consume, collaborate, communicate, play, entertain, and

even be provided care.

Consider the pervasiveness of the mobile phone. It is rapidly emerging as the primary digital

device of our times - with over 6 (out of the 7) billion people in the world having access to

a mobile phone [2]. We are witnessing the rapid emergence of services that use these phones

(especially smart phones) as sensors of the environment and interfaces to people. For instance,

it is now common with several map services (e.g., Google Maps) to be provided a live view of

the traffic across a road network. This aggregate view is computed by processing and analyzing

in real-time the spatio-temporal properties of data collected from several millions of mobile

phones. Applications such as Waze include adding crowd-sourced information to such data, where

individual people use mobile phones to report traffic congestion, accidents, etc., and these are

then transmitted to other users to inform and potentially alter their travel. While several of these

applications are focused on aggregate information processing and dissemination, it is natural to

expect more personalized applications, including personal trip advisors, that can provide dynamic

routing, as well as potentially combine multi-modal transport options (e.g., car-train-walk-bus).

Cities, that are responsible for providing several transportation related services, can use in-

formation from mobile phones, augmented with their own road sensors (loop sensors, cameras,

etc.) and transport sensors (GPS on buses and trains, etc.), to optimize their transport grid in

real-time, provide emergency services (e.g., evacuations and dynamic closures), real-time toll,

modify public transport (e.g., allow for dynamic connections between bus/train routes based on

current demand), and even control their traffic light systems. This ecosystem, including individual

consumers and city infrastructure, is shown in Fig. 1.

These types of applications have several unique requirements in terms of streaming data

management and communication, preprocessing and cleaning, analysis and mining, scaling, and

finally adaptation. Computing for these applications has to be distributed end-to-end, from the

user devices all the way to the cloud, requiring the Fog Computing paradigm. There need to

be several advances in sensing and communication technology coupled with development of

new analytic algorithms and platforms for these individual centric and city-wide applications to

become real, and deliver value1. In this chapter, we introduce the emerging paradigm of Stream

1While our description has been focused on transportation applications, there are several applications of these types

in different domains ranging from healthcare, financial services, physical and cyber security, telecommunications,

energy and utility, and environmental monitoring.
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Fig. 1: Smarter transportation: individuals and city.

Processing and Analysis, including novel platforms and algorithms, that support the requirements

of these kinds of applications. We introduce distributed stream processing systems, and propose

a novel distributed online learning framework that can be deployed on such systems to provide a

solution to an illustrative smarter planet problem. We believe that the recent arrival of new freely

available systems for distributed stream processing such as InfoSphere Streams [3], Storm [4]

and Spark [5], enable several new directions for advancing the state-of-the-art in large-scale, real-

time analysis applications, and provide the academic and industrial research community the tools

to devise end-to-end solutions to these types of problems, and overcome issues with proprietary

or piecemeal solutions.

This chapter is organized as follows. We start by defining a specific real-world transportation

inspired problem that requires large-scale online learning, in Section II. We then formalize

the characteristics of such problems and their associated challenges in Section III. We discuss

distributed systems in Section IV, and how the emergence of stream processing systems allows

us to build and deploy appropriate solutions to these problems. Following this, in Section V,

we propose a new framework for distributed, online, ensemble learning that can naturally be

deployed on a stream processing system to realize such applications, and we describe how to

apply such a framework to a collision detection application. We conclude with a discussion on

the several directions for future research enabled by this combination, in Section VI.
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II. ILLUSTRATIVE PROBLEM: TRANSPORTATION

In this section we define a concrete illustrative problem related to our transportation application

domain that requires a joint algorithm-system design for online learning and adaptation. Consider

a scenario where a city wants to modify its digital signage based on real-time predictions (e.g.,

10 min in advance) of congestion in a particular zone. A visual depiction of this example is

included in Fig. 2, where the white spot – at the intersection of major road links – is the point

of interest for congestion prediction.

Data for this real-time prediction can be gathered from many different types of sensors. In

this example we consider cell-phone location information from different points of interest, and

local weather information. This data is naturally distributed and may not be available at one

central location, due to either geographical diversity, or different cell phone providers owning

different subsets of the data (i.e., their customers). In this simple example we consider geographic

distribution of the data. The congestion prediction problem then requires deploying multiple

distributed predictors that collect data from local regions and generate local predictions, that are

then merged to generate a more reliable final prediction.

An example with two distributed predictor applications – each depicted as a flowgraph – is

shown in Fig. 2. The two different flowgraphs in this example look at different subsets of the data,

and implement appropriate operations for preprocessing (cleaning, denoising, merging, alignment,

spatio-temporal processing, etc.), followed by operations for learning and adaptation to compute

the local prediction. These are shown as the subgraphs labeled Pre-proc and Learner, respectively.

In the most general case, a collection of different models (e.g., neural networks, decision trees,

etc.), trained on appropriate training data, can be used by each predictor application.

The learners receive delayed feedback about their prediction correctness after a certain amount

of time (e.g., if the prediction is for 10 minutes in advance, the label is available after 10 minutes)

and can use it to modify their individual models and the local aggregation. Additionally, these

learners also need to exchange information about their predictions across distributed locations, so

that they can get a more global view of the state of the network and can improve their predictions.

Prediction exchange between the learners is shown on the figure using dashed lines. Finally, the

predictions from the learners can be used to update digital signage in real-time and potentially

alert or divert traffic as necessary.

We formalize the characteristics of this online data stream processing application in the next

section, and discuss how developing it requires the design of online, distributed ensemble learning
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Fig. 2: Distributed learning needed for real-time signage update.

frameworks, while deploying it requires being able to instantiate these frameworks on a distributed

system. In the following two sections, we show how we can leverage characteristics of modern

stream processing systems in order to build and deploy general learning frameworks that solve

distributed learning problems of this type. Our intent is to showcase how this enables a whole

new way of thinking about such problems and opens up several avenues for future research.

III. STREAM PROCESSING CHARACTERISTICS

There is a unique combination of multiple features that distinguishes Stream Processing Ap-

plications (SPAs) from traditional data analysis paradigms, which are often batch and offline.

These features can be summarized as follows:

Streaming and In-Motion Analysis (SIMA): SPAs need to process streaming data on-the-fly,

as it continues to flow, in order to support real-time, low-latency analysis, and to match the

computation to the naturally streaming properties of the data. This limits the amount of prior

data that can be accessed, and necessitates one-pass, online algorithms [6]–[8]. Several streaming

algorithms are described in [9], [10].

Distributed Data and Analysis (DDA): SPAs analyze data streams that are often distributed,

and their large rates make it impossible to adopt centralized solutions. Hence, the applications

themselves need to be distributed.

High Performance and Scalable Analysis (HPSA): SPAs require high throughput, low latency,

and dynamic scalability. This means that SPAs should be structured to exploit distributed com-

putation infrastructures and different forms of parallelism (e.g., pipelined data and tasks). This
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also means that they often require joint application and system optimization [11], [12].

Multi-Modal Analysis (MMA): SPAs need to process streaming information across heteroge-

neous data sources, including structured (e.g., transactions), unstructured (e.g., audio, video, text,

image), and semi-structured data. In our transportation example this includes sensor readings, user

contributed text and images, traffic cameras, etc.

Loss-Tolerant Analysis (LTA): SPAs need to analyze lossy data with different noise levels,

statistical and temporal properties, mismatched sampling rates, etc., and hence they often need

appropriate processing to transform, clean, filter and convert data and results. This also implies the

need to match data rates, handle lossy data, synchronize across different data streams, and handle

various protocols [7]. SPAs need to account for these issues and provide graceful degradation of

results to loss in the data.

Adaptive and Time-varying Analysis (ATA): SPAs are often long-running and need to adapt

over time to changes in the data and problem characteristics. Hence, SPAs need to support

dynamic reconfiguration based on feedback, current context, and results of the analysis [6]–[8].

Systems and algorithms for SPAs need to provide capabilities that address these features and

their combinations effectively.

IV. DISTRIBUTED STREAM PROCESSING SYSTEMS

The signal processing and research community has so far focused on the theoretical and

algorithmic issues for the design of SPAs, but has had limited success in taking such applications

into real world deployments. This is primarily due to the multiple practical considerations involved

in building an end-to-end deployment, and the lack of a comprehensive system and tools that

provide them the requisite support. In this section, we summarize efforts at building systems to

support SPAs and their shortcomings, and then describe how current stream processing systems

can help realize such deployments.

A. State of the art

Several systems, combining principles from data management and distributed processing, have

been developed over time to support different subsets of requirements that are now central to SPAs.

These systems include traditional databases and data warehouses, parallel processing frameworks,

active databases, continuous query systems, publish-subscribe (pub-sub) systems, Complex Event

Processing (CEP) systems, and more recently the Map-Reduce frameworks. A quick summary of



7

System SIMA DDA HPSA MMA LTA ATA

Databases (DB2, Oracle, MySQL) No Yes Partly No Yes No

Parallel Processing (PVM, MPI, OpenMP) No Yes Yes Yes Yes No

Active Databases (Ode, HiPac, Samos) Partly Partly No No Yes Yes

Continuous Query Systems (NiagaraCQ, OpenCQ) Partly Partly No No Yes Yes

Pub-Sub Systems (Gryphon, Siena, Padres) Yes Yes No No Yes Partly

CEP Systems (Esper, SASE, WBE, Tibco BE, Oracle CEP) Yes Partly Partly No Yes Partly

Map-Reduce (Hadoop) No Yes Yes Yes Yes No

TABLE I: Data management systems and their support for SPA requirements: Streaming and In-

Motion Analysis (SIMA), Distributed Data and Analysis (DDA), High-Performance and Scalable

Analysis (HPSA), Multi-Modal Analysis (MMA), Loss Tolerant Analysis (LTA) and Adaptive

and Time-varying Analysis (ATA).

the capabilities of these systems with respect to the streaming application characteristics defined

in Section III is included in Table I.

More details on the individual systems and their examples can be obtained from [9]. However,

as is clear, none of these systems were truly designed to handle all requirements of SPAs. As a

consequence, this is an urgent need to develop more sophisticated stream processing systems.

B. Stream Processing Systems

While Stream Processing Systems (SPS) were developed by incorporating ideas from these

preceding technologies, they required several advancements to the state-of-the-art in algorithmic,

analytic, and systems concepts. These advances include sophisticated and extensible program-

ming models, allowing continuous, incremental, and adaptive algorithms, and distributed, fault-

tolerant, and enterprise-ready infrastructures or runtimes. These systems are designed to allow

end-to-end distribution of real-time analysis, as needed in a fog computing world. Examples

of early SPSs include TelegraphCQ, STREAM, Aurora, Borealis, Gigascope, Streambase [9].

Currently available and widely used SPSs include IBM InfoSphere Streams [3] (Streams), and

the open-source Storm [4] and Spark [5] platforms. These platforms are freely available for

experimentation and usage in commercial, academic, and research settings. These systems have

been extensively deployed in multiple domains for telecommunication call detail record analysis,

patient monitoring in ICUs, social media monitoring for real-time sentiment extraction, monitoring

of large manufacturing systems (e.g. semiconductor, oil and gas) for process control, financial
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services for online trading and fraud detection, environmental and natural systems monitoring

etc. Descriptions of some of these real-world applications can be found in [9]. These systems

have also been shown to scale to rates of millions of data items per second, deployed across 10s

of thousands of processors in a distributed cluster, provide latencies of microseconds or lower,

and connect with millions of distributed sensors.

While we omit a detailed description of stream processing platforms, we illustrate some of

their core capabilities and constructs to support the needs of SPAs by outlining an implementation

of the transportation application described in Section II) in a Stream Programming Language

(SPL). In Fig. 2, the application is shown as a flowgraph which captures logical flow of data

from one processing stage to another. Representing an application as a flowgraph allows for

modular design and construction of the implementation, and as we discuss later, it allows stream

processing systems to optimize the deployment of the application onto distributed computational

infrastructures.

Each node on the processing flowgraphs in Fig. 2 that consumes and/or produces a stream

of data is labeled an operator. Individual streams carry data items or tuples that can contain

structured numeric values, unstructured text, semi-structured content such as XML, as well as

binary blobs. In Table II we present an outline implementation in SPL [3]. Note that this

flowgraph actually implements the distributed learning framework that will be discussed in more

detail in Section V.

In this code, logical composition is indicated by an operator instance stream <type> S3

= MyOp(S1;S2), where operator MyOp consumes streams S1 and S2 to produce stream S3,

where type represents the type of tuples on the stream. Note that these streams may be produced

and consumed on different computational resources – but that is transparent to the application

developer. Systems like Streams also include multiple operators/tools that are required to build

such an application. Examples include operators for:

• Data Sources and Connectors, e.g., FileSource, TCPSource, ODBCSource

• Relational Processing, e.g., Join, Aggregate, Functor, Sort

• Time Series Analysis, e.g., Resample, Normalize, FFT, ARIMA, GMM

• Custom Extensions, e.g., user created operators in C++/Java, or wrapping for Matlab, Python

and R code.

These constructs allow for the implementation of distributed and ensemble learning techniques,

such as those introduced in the learning framework, within specialized operators. We discuss this
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composite Learner1 {

graph

stream <TPhone> PhoneStream = TCPSource() {param role: server; port: 12345u;}

stream <TWeather> WeatherStream = InetSource() {param URIList: ["http://noaa.org/xx"];}

stream <TPhone> CleanPhoneStream = Custom(PhoneStream){...}

stream <TWeather> CleanWeatherStream = Custom(WeatherStream){...}

stream <TFeature> FeatureStream = Join(CleanWeatherStream; CleanPhoneStream){...}

stream <TPrediction> P1 = MySVM(FeatureStream){...}

stream <TPrediction> P2 = MyNN(FeatureStream){...}

stream <TPrediction> Learner1Pred = MyAggregation(P1;P2;Feedback;Learner2Pred){...}

() as Sink2 = Export(Learner1Pred){param properties: {name = "Learner1"}}

stream <TPrediction> Learner2Pred = Import(){param properties: {name = "Learner2"}}

stream <TFeedback> Feedback = Import(){param properties: {name = "Feedback"}}

}

TABLE II: Example of Streams programming to realize congestion prediction application

flowgraph.

more in Section V. Stream processing platforms also include special tools for geo-spatial process-

ing (e.g., for distance computation, map-matching, speed and direction estimation, bounding-box

calculations) and standard mathematical processing. A more exhaustive list is available from [3].

Finally, programming constructs like the Export operator allows applications (in our case

the congestion prediction application) to publish their output stream such that other applications,

e.g., other learners, can dynamically connect to receive these results. This construct allows for

dynamic connections to be established and torn down as other learners are instantiated, or choose

to communicate. This is an important requirement for the learning framework in Section V.

These constructs allow application developers to focus on the core algorithm design and logical

flowgraph construction, while the system provides support for communication of tuples across

operators, conversion of the flowgraph into a set of processes or Processing Elements (PEs),

distribution and placement of these PEs across a distributed computation infrastructure, and

finally necessary optimizations for scaling and adapting the deployed applications. We present

an illustration of the process used by such systems to convert a logical flowgraph to a physical

deployment in Fig. 3.

Among the biggest strengths of using a stream processing platform is the natural scalability and

efficiency provided by these systems, and their support for extensibility in terms of optimization

techniques for topology construction, operator fusion, operator placement, and adaptation [9].

These systems allow users to formulate and provide additional algorithms to optimize their

applications based on the application, data and resource specific requirements. This opens up

several new research problems related to the joint optimization of algorithms and systems.



10

Computational
Node 1

Computational
Node 2

Application
PE1

PE2 PE3

PE4

PE5
PE6

Deployment of the job on the
infrastructure managed by the
stream processing platform

Compile

D
eplo

y

Logical layout

Physical layout

Stream Processing Middleware

Fig. 3: From logical operator flowgraphs to deployment.

Fig. 4: Possible tradeoffs with parallelism and placement.

For instance, consider a simple example application with two operators. Using the Streams

composition language, these operators – shown as black and white boxes in Fig. 4 – can be

arranged into a parallel (task parallel) or a serial (pipelined parallel) topology to perform the same

task2, as shown in Fig. 4. This topology can also be distributed across computational resources

(shown as different sized CPUs in Fig. 4). The right choice of topology and placement depends

on the resource constraints and data characteristics, and needs to be dynamically adapted over

time. This requires solving a joint resource optimization problem whose solution can be realized

using the controls provided by stream processing systems. In practice, there are several such

novel optimization problems that can be formulated and solved – in this joint application-system

2Note that with a stream processing platform other forms of parallelism such as data parallel processing and hybrid

forms of parallelism with arbitrary combinations of data-, task-, and pipelined-parallel processing are possible.
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research space. For instance, [13] and [11] discuss topology construction and optimization for

non-trivial compositions of operators for multi-class classification. Additionally, these systems

provide support for design of novel meta-learning and planning based approaches to dynamically

construct, optimize and compose topologies of operators on these systems [14].

This combination of systems and algorithms enables several other open research problems in

this space of joint application-system research, especially in an online, distributed, large-scale

setting. In the next section we propose a solution to build a large-scale online distributed ensemble

learning framework that leverages the capabilities provided by stream processing systems (and

is implemented by the code in Table II) to provide solutions to the illustrative problem defined

in Section II.

V. DISTRIBUTED ONLINE LEARNING FRAMEWORKS

We now formalize the problem described in Section II and propose a novel distributed learning

framework to solve it. We first review the state of the art in such research and illustrate its

shortcomings. Then we describe a systematic framework for online, distributed, ensemble learning

well suited for SPAs. Finally, as an illustrative example, we describe how such framework can

be applied to a collision detection application.

A. State of the art

As mentioned in Section III, it is important for stream processing algorithms to be online,

one-pass, adaptive, distributed, to operate effectively under budget constraints, and to support

combinations (or ensembles) of multiple techniques. Recently, there has been research that uses

the above-mentioned techniques for analysis, and we include a summary of some of these

approaches next.

Ensemble techniques [15] build and combine a collection of base algorithms (e.g., classifiers)

into a joint unique algorithm (classifier). Traditional ensemble schemes for data analysis are

focused on analyzing stored or completely available datasets; examples of these techniques

include bagging [16] and boosting [17]. In the past decade much work has been done to develop

online versions of such ensemble techniques. An online version of Adaboost is described in [18],

and similar proposals are made in [19] and [20]. [21] proposes a scheme based on two online

ensembles, one used for system predictions, the other one used to learn the new concept after a

drift is detected. Weighted majority [22] is an ensemble techniques that maintain a collection of

given learners, predict using a weighted majority rule, and decreases in a multiplicative manner
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the weights of the learners in the pool that disagree with the label whenever the ensemble makes

a mistakes. In [23] the weights of the learners that agree with the label when the ensemble

makes a mistakes are increased, and the weights of the learners that disagree with the label are

decreased also when the ensemble predicts correctly. To prevent the weights of the learners which

performed poorly in the past from becoming too small with respect to the other learners, [24]

proposes a modified version of weighted majority adding a phase, after the multiplicative weight

update, in which each learner shares a portion of its weight with the other learners.

While many of the ensemble learning techniques have been developed assuming no a priori

knowledge about the statistical properties of the data – as is required in most of the SPAs – these

techniques are often designed for a centralized scenario. In fact, the base classifiers in these

approaches are not distributed entities, they all observe the same data streams, and the focus of

ensemble construction is on the statistical advantages of learning with an ensemble, with little

study of learning under communication constraints. It is possible to cast these techniques within

the framework of distributed learning, but as is they would suffer from many drawbacks. For

example, [18]–[21] would require an entity that collects and stores all the data recently observed

by the learners and that tells the learners how to adapt their local classifiers, which is clearly

impractical in SPAs that need to process real-time streams characterized by high data rates.

Diffusion adaptation literature [25]–[32] consists of learning agents that are linked together

through a network topology in a distributed setting. The agents must estimate some parameters

based on their local observations and on the continuous sharing and diffusion of information across

the network, and there is a focus on learning in distributed environments under communication

constraints. In fact, [32] shows that a classification problem can be cast within the diffusion

adaptation framework. However, there are some major constraints that are posed on the learners.

First, in [25]–[32] all the learners are required to estimate the same set of parameters (i.e., they

pursue a common goal) and combine their local estimates to converge toward a unique and optimal

solution. This is a strong assumption for SPAs, as the learners might have different objectives

and may use different information depending on what they observe and on their spatio-temporal

position in the network. Hence, the optimal aggregation function may need to be specific to each

learner.

There has been a large amount of recent work on building frameworks for distributed online

learning with dynamic data streams, limited communication, delayed labels and feedback and

self-interested and cooperative learners [33]–[36]. We discuss this briefly next.
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To mine the correlated, high-dimensional and dynamic data instances captured by one or

multiple heterogeneous data sources, extract actionable intelligence from these instances and

make decisions in real-time as discussed previously, a few important questions need to be

answered: Which processing/prediction/decision rule should a local learner (LL) select? How

should the LLs adapt and learn their rules to maximize their performance? How should the

processing/predictions/decisions of the LLs be combined/fused by a meta-learner to maximize

the overall performance? Most literature treats the LLs as black box algorithms, and proposes

various fusion algorithms for the ensemble learner with the goal of issuing predictions that are at

least as good as the best LL in terms of prediction accuracy and the performance bounds proved

for the ensemble in these works depend on the performance of the LLs. In [35] a the authors

go one step further and study the joint design of learning algorithms for both the LLs and the

ensemble. They present a novel systematic learning method (Hedge Bandits) which continuously

learns and adapts the parameters of both the LLs and the ensemble, after each data instance,

and provide both long run (asymptotic) and short run (rate of learning) performance guarantees.

Hedge Bandits consists of a novel contextual bandit algorithm for the LLs and Hedge algorithm

for the ensemble, and is able to exploit the adversarial regret guarantees of Hedge and the data-

dependent regret guarantees of the contextual bandit algorithm to derive a data-dependent regret

bound for the ensemble.

In [34], the ensemble learning consists of multiple distributed local learners, which analyze

different streams of data correlated to a common classification event, and local predictions

are collected and combined using a weighted majority rule. A novel online ensemble learning

algorithm is then proposed to update the aggregation rule in order to adapt to the underlying data

dynamics. This overcomes several limitations of prior work by allowing for a) different correlated

data streams with statistical dependency among the label and the observation being different across

learners, b) data being processed incrementally, once on arrival leading to improved scalability,

c) support for different types of local classifiers including support vector machine, decision tree,

neural networks, offline/online classifiers, etc., and d) allowing for asynchronous delays between

the label arrival across the different learners. A modified version of this framework was applied to

the problem of collision detection by networked sensors similarly to the one which we discussed

on Section II of this chapter. For details, please refer to [37].

A more general framework, where the rule for making decisions and predictions is general, and

depends on the costs and accuracy (specialization) of the autonomous learners was proposed in
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[33]. This cooperative online learning scheme considers a) whether the learners can improve their

detection accuracy by exchanging and aggregating information, b) whether the learners improve

the timeliness of their detections by forming clusters, i.e., by collecting information only from

surrounding learners, and c) whether, given a specific tradeoff between detection accuracy and

detection delay, if it is desirable to aggregate a large amount of information, or is it better to

focus on the most recent and relevant information.

In [38], these techniques are considered in a setting with a number of speed sensors, that are

spatially distributed along a street and can communicate via an exogenously-determined network,

and the problem of detecting in real-time collisions that occur within a certain distance from each

sensor is studied.

In [36], a novel framework for decentralized, online learning by many self-interested learners is

considered. In this framework, learners are modeled as cooperative contextual bandits, and each

learner seeks to maximize the expected reward from its arrivals, which involves trading off the

reward received from its own actions, the information learned from its own actions, the reward

received from the actions requested of others and the cost paid for these actions - taking into

account what it has learned about the value of assistance from each other learner. A distributed

online learning algorithm is provided and analytic bounds to compare the efficiency of these with

algorithms with the complete knowledge (oracle) benchmark (in which the expected reward of

every action in every context is known by every learner) are established: regret - the loss incurred

by the algorithm - is sublinear in time. These methods have been adapted in [39] to provide

expertise discovery in medical environments. Here, an expert selection system is developed that

learns online who is the best expert to treat a patient having a specific condition or characteristic.

In Subsection V-B we describe one such framework for online, distributed, ensemble learn-

ing that addresses some of the challenges discussed in Section III and is well suited for the

transportation problem described in Section II. The presented methodology does not require a

priori knowledge of the statistical properties of the data. This means that it can be applied both

when a priori information is available and when a priori information is not available. However,

if the statistical properties of the data are available beforehand, it may be convenient to apply

schemes that are specifically designed to take into account the known statistical properties of

the data. Moreover, the presented methodology does not require any specific assumption on the

form of the loss or objective function. This means that any loss or objective function can be

adopted. However, notice that the final performance of scheme depend on the selected function.
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For illustrative purposes, in Subsection V-C we consider a specific loss function and we derive

an adaptive algorithm based on this loss function, and in Subsection V-D we describe how the

proposed framework can be adopted for a collision detection application.

B. Systematic Framework for Online Distributed Ensemble Learning

We now proceed to formalize the problem of large scale distributed learning from heterogeneous

and dynamic data streams using the problem defined in Section II. Formally, we consider a set

K = {1, . . . ,K} of learners that are geographically distributed and connected via links among

pairs of learners. We say that there is a link (i, j) between learners i and j if they can communicate

directly with each other. In the case of our congestion application, each learner observes part of

the transportation network by consuming geographically local readings from sensors and phones

within a region, and is linked to other learner streams via interfaces like the Export/Import

interface described in Section IV.

Each learner is an ensemble of local classifiers that observes a specific set of data sources

and relies on them to make local classifications, i.e., partition data items into multiple classes of

interest3. In our application scenario, this maps to a binary classification task - predicting presence

of congestion at a certain location within a certain time window. Each local classifier may be

an arbitrary function (e.g., implemented using well known techniques such as neural networks,

decision trees, etc.) that performs classification for the classes of interest. In Table reftbl:spl we

show an implementation of this in a stream programming language with two local classifiers,

MySVM and MyNN operators, and an aggregate MyAggregation operator. In order to simplify

the discussion, we assume that each learner exploits a single local classifier and we focus on

binary classification problems, but it is possible to generalize the approach to the multi-classifier

and multi-class cases. Each learner is also characterized by a local aggregation rule, which is

adaptive.

Raw data items in our application can include sensor readings from the transportation network

and user phones, as well as information about the weather. These data items are cleaned, pre-

processed, merged, and features are extracted from them (e.g., see Table II), which are then sent

to the geographically appropriate learner. When a learner observes a feature vector, it first exploits

the local classifier to make a local prediction, then it sends its local prediction to other learners in

3We present the ensemble learning in a classification setting, but the discussion is also applicable in a regression

setting.



16

its neighborhood and receives local predictions from the other learners, before it finally exploits

the aggregation rule to combine its local predictions and the predictions from its neighbors into

a final classification.

For simplicity of exposition, we consider a discrete time model in which time is divided into

slots, but an extension to a continuous time model is possible. At the beginning of the n-th

time slot, K multi-dimensional instances xni ∈ Xi, i = 1 . . .K, and K labels yni ∈ {−1,+1},
i = 1 . . .K, are drawn from an underlying and unknown joint probability distribution.. Each

learner i observes the instance xni and its task is to predict the label yni – see Fig. 6. We shall

assume that a label ynj is correlated with all the instances xni , i = 1 . . .K. In this way, learner

i’s observation can contain information about the label that learner j has to predict. We remark

that this correlation is not known beforehand.

Each learner i is equipped with a local classifier fni : Xi → {−1,+1} that generates the

local prediction sni , fni (xni ) based on the observed instance xni at time slot n. Our framework

can accommodate both static pre-trained classifiers, and adaptive classifiers that learn online the

parameters and configurations to adopt [40]. However, the focus of this section will not be on

classifier design, for which many solutions already exist (e.g., support vector machines, decision

trees, neural networks, etc.); instead, we will focus on how the learners exchange and learn how

to aggregate the local predictions generated by the classifiers.

We allow the distributed learners to exchange and aggregate their local predictions through

multi-hop communications; however, within one time slot a learner can send only a single

transmission to each of its neighbors. We denote by snij learner j’s local prediction possessed by

learner i before the aggregation at time instant n. The information is disseminated in the network

as follows. First, each learner i observes xni and updates snii = sni = fni (xni ). Next, learner i

transmits to each neighbor j the local prediction sni and the local predictions sn−1
ik , for each

learner k 6= i such that the link (i, j) belongs to the shortest path between k and j. Hence, if

transmissions are always correctly received we have snii = sni and snij = s
n−dij+1
j , i 6= j, where

dij is the distance in number of hops between i and j. For instance, Fig. 5 represents the flow of

information toward learner 1 for a binary tree network assuming that transmissions are always

correctly received. More generally, if transmissions can be affected by communication errors we

have snij = smj , for some m ≤ n− dij + 1.

Each learner i employs a weighted majority aggregation rule to fuse the data it possesses, and
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Fig. 5: Flow of information toward learner 1 at time slot n for a binary tree network.

generates a final prediction ŷni as follows:

ŷni , sgn

∑
j∈K

wnijs
n
ij

 ,

 +1, if argument of sgn is ≥ 0

−1, otherwise
(1)

where sgn(·) is the sign function.

In the above construction, learner i first aggregates all possessed predictions {snij} using the

weights {wnij}, and then uses the sign of the fused information to output its final classification, ŷni .

While weighted majority aggregation rules has been considered before in the ensemble learning

literature [17]–[20], there is an important distinction in Eq. (1) that is particularly relevant to

the online distributed stream-mining context: since we are limiting the learners to exchange

information only via links, learners receive information from other learners with delay (i.e., in

general snij 6= snj ), as a consequence different learners have different information to exploit (i.e.,

in general snij 6= snkj ).

Each learner i maintains a total of K weights and K local predictions, which we collect into

vectors:

wn
i , (wni1, . . . , w

n
iK) ; sni , (sni1 . . . , s

n
iK) (2)

Given the weight vector wn
i , the decision rule (1) allows for a geometric interpretation: the

homogeneous hyperplane in <K which is orthogonal to wn
i separates the positive prediction

(i.e., ŷni = +1) form the negative predictions (i.e., ŷni = −1).



18

Local 

Classifiers

Observation 
Information 

dissemination 
Final 

Prediction 

Feedback

Update

Aggregation

rule

Learner 1 

-

......

... ......

... ......

...
....

.....

yn
1

Local 

Classifiers

Aggregation

rule

Learner K 

-

ŷn
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Fig. 6: System model described in Subsection V-B.

We consider an online learning setting in which the true label yni is eventually observed by

learner i. Learner i can then compare both ŷni and yni and use this information to update the

weights it assigns to the other learners. Indeed, since we do not assume any a priori information

about the statistical properties of the processes that generate the data observed by the various

learners, we can only exploit the available observations, and the history of past data, to guide

the design of the adaptation process over the network.

In summary, the sequence of events that takes place in a generic time slot n, represented in

Fig. 6, involves five phases:

1) Observation: Each learner i observes an instance xni at time n.

2) Information Dissemination: Learners send the local predictions they possess to their neighbors.

3) Final Prediction: Each learner i computes and outputs its final prediction ŷni .

4) Feedback: Learners can observe the true label ymi that refers to a time slot m ≤ n.

5) Adaptation: If ymi is observed, learner i updates its aggregation vector from wn
i to wn+1

i .

In the context of the discussed framework, it is fundamental to develop strategies for adapting

the aggregation weights {wnji} over time, in response to how well the learners perform. A possible
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approach is discussed next.

C. Online Learning of the Aggregation Weights

A possible approach to update the aggregation weights is to associate with each learner i

an instantaneous loss function `ni (wi) and minimize, with respect to the weight vector wi, the

cumulative loss given all observations up to time slot n. In the following we consider this

approach, adopting an instantaneous hinge loss function [41]:

For each time instant n we consider the one-shot loss function

`ni (wi) ,


−αMDwi · sni if ŷni = 0 and yni = 1

αFAwi · sni if ŷni = 1 and yni = 0

0 if ŷni = yni

(3)

where the parameters αMD > 0 and αFA > 0 are the mis-detection and false alarm unit costs,

and wi ·sni ,
∑

j∈K wjis
n
ij denotes the scalar product between wi and sni . The hinge loss function

is equal to 0 if the weight vector wi allows to predict correctly the label yni , otherwise the value

of the loss function is proportional to the distance of sni from the separating hyperplane defined

by wi, multiplied by αMD if the prediction is 0 but the label is 1 – we refer to this type of error

as a mis-detection – or multiplied by αFA if the prediction is 1 but the label is 0 – we refer to

this type of error as a false alarm.

The hinge loss function gives higher importance to errors that are more difficult to correct

with the current weight vector. A related albeit different approach is adopted in Adaboost [17],

in which the importance of the errors increase exponentially in the distance of the local prediction

vector from the separating hyperplane. Here, however, the formulation is more general and allows

for the diffusion of information across neighborhoods simultaneously, as opposed to assuming

each learner has access to information from across the entire set of learners in the network.

We can then formulate a global objective for the distributed stream mining problem as that of

determining the optimal weights by minimizing the cumulative loss given all observations up to

time slot n: {
wn+1
i

}K
i=1

= argmin
{wi}K

i=1

K∑
i=1

n∑
m=1

`
m
i (4)

where `mi , `mi if ymi has been observed by time instant n, otherwise `mi , 0.

To solve (4) learner i must store all previous labels and all previous local predictions of all

the learners in the system, which is impractical in SPAs, where the volume of the incoming
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data is high and the number of learners is large. Hence, we adopt the stochastic gradient descent

algorithm to incrementally approach the solution of (4) using only the most recent observed label.

If label ymi is observed at the end of time instant n, we obtain the following update rule for wn
i :

wn+1
i =


wn
i + αMDsni if ỹmi = 0 and ymi = 1

wn
i − αFAsni if ỹmi = 1 and ymi = 0

wn
i if ỹni = yni

(5)

where ỹmi is the prediction that learner i would have made at time instant m with the current

weight vector wn
i . This construction allows a meaningful interpretation. It shows that learner i

should maintain its level of confidence in its data when its decision agrees with the observed

label. If disagreement occurs, then learner i needs to assess which local predictions lead to the

mis-classification: the weight wnij that learner i adopts to scale the local predictions it receives

from learner j is increased (by either αMD or αFA units, depending on the type of error) if the

local prediction sent by j agreed with the label, otherwise wnij is decreased.

[7] and [8] derive worst-case upper bounds for the mis-classification probability of a learner

adopting the update rule 5. Such bounds are expressed in terms of the mis-classification proba-

bilities of two benchmarks: 1) the mis-classification probability of the best local classifiers and

2) the mis-classification probability of the best linear aggregator. We remark that the best local

classifiers and the best linear aggregator are not known and cannot be computed beforehand;

in fact, this would require to know in advance the realization of the process that generates the

instances and the labels.

The optimization problem (4) can also be solved within the diffusion adaptation framework, as

proposed by [32]. In this framework the learners combine information with their neighbors, for

example in the Combine Then Adapt (CTA) diffusion scheme they first combine their weights

and then adopt the stochastic gradient descent [32]. Fig 7 illustrates the difference between our

approach and the CTA scheme.

We remark that the framework described so far requires each learner to maintain a weight

(i.e., an integer value) and a local prediction (i.e., a Boolean value) for each other learner in

the network. This means that the memory and computational requirements scale linearly in the

number of learners K. However, notice that the aggregation rule 1 and the update rule 5 only

require basic operations such as add, multiply, and compare. Moreover, if the learners have a

common goals, i.e., they must predict a common class label yn, it is possible to develop a

scheme in which each learner keeps track only of its own local prediction and of the weight
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ŷn
1 = sgn (w1 · sn

1 )

w3 = w3 + yn
3 sn

3 w1 = w1 + yn
1 sn

1

ŷn
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3 != yn

3 then
w3 = w3 + yn

3 sn
3

Our model Diffusion

w2

w1 w3

w2

Fig. 7: A comparison between the proposed algorithm and the Combine Then Adapt (CTA)

scheme in terms of information dissemination and weight update rule.

used to scale its local prediction, and is responsible to update such a weight. In this scheme the

learners exchange the weighted local predictions instead of the local predictions and the memory

and computational requirements scale as a constant in the number of learners K. For additional

details, we refer the reviewer to [8].

The framework discussed in this subsection naturally maps onto a deployment using a stream

processing system. Each of the learners shown in Fig. 6 map onto the subgraph labeled Learner

in Fig. 2, with the local classifiers mapping onto the shown parallel topology, and the aggregation

rule mapping to the fan-in on that subgraph. As mentioned earlier, the base classifiers may be

implemented using the toolkits provided by systems like Streams that include wrappers for R and

Matlab. The feedback yni corresponds to the Delayed Feedback in Fig. 2, and the input feature

vector xni is computed by the Pre-proc part of the subgraph in Fig. 2, and can include different

types of spatio-temporal processing and feature extraction. Finally, the communication between

the learners in Fig. 6 is enabled by the Learner Information Exchange connections in Fig. 2. In

summary, this online, distributed, ensemble learning framework can naturally be implemented on

a stream processing platform. This combination is very powerful, as it now allows the design,

development, and deployment of such large-scale complex applications much more feasible, and

it also enables a range of novel signal processing, optimization, and scheduling research. We

discuss some of these open problems in Section VI.

D. Collision Detection Application

In this Subsection we apply the framework described in Subsections V-B and V-C to a collision

detection application in which a set of speed sensors – that are spatially distributed along a street
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Algorithm Aggregation and update rules described in Subsections V-B and V-C
1: Initialization: wnij = 0, ∀ i, j ∈ K
2: For each learner i and time instant n

3: Observe xni and update snii ← fni (xni )

4: Send snij to all the neighbors k such that i is in the path between j and k, ∀ j
5: Update snij ← snkj for each k and j such that snkj is correctly received

6: Predict ŷni ← sgn
(∑

j∈K w
n
ijs

n
ij

)
7: For each time instant m such that ymi is observed

8: If sgn
(∑

j∈K w
n
ijs

m
ij

)
6= ymi

9: If ymi = 1 do wn
i ← wn

i + αMDsni

10: Else do wn
i ← wn

i − αFAsni

– must detect in real-time collisions that occur within a certain distance from them.

We consider a set K = {1, . . . ,K} of K speed sensors that are distributed along both travel

directions of a street – see the left side of Fig. 8. We focus on a generic sensor i that must

detect the occurrence of collision events within z miles from its location along the corresponding

travel direction, where z is a predetermined parameter. A collision event e` is characterized by

an unknown starting time t`,start – when the collision occurs – and an unknown ending time

t`,end – when the collision is cleared. The goal of sensor i is to detect the collision e` by the time

t`,det = t`,start+Tmax, where Tmax can be interpreted as the maximum time after the occurrence

of the collision such that the information about the collision occurrence can be exploited to

take better informed actions (e.g., the average time after which a collision is reported by other

sources).

We divide the time into slots of length T . We write yni = +1 if a collision occurs at or before

time instant n and is not cleared by time instant n, whereas we write yni = −1 to represent the

absence of a collision. Fig. 9 illustrates these notations.

At the beginning of the n-th time slot each speed sensor j observes a speed value xnj ∈ <,

which represents the average speed value of the cars that have passed through sensor j from the

beginning of the (n − 1)-th time slot until the beginning of the n-th time slot. We consider a

threshold-based classifier:

snj = fnj (xnj ) ,

 −1 if xnj > βjv
n
j

+1 if xnj ≤ βjvnj
(6)
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Fig. 9: Illustration of the considered notations.

where vnj is the average speed observed by sensor j during that day of the week and time of the

day, and βj ∈ [0, 1] is a threshold parameter.

If sensor j is close to sensor i the speed value xnj and the local prediction snj are correlated

to the occurrence or absence of the collision events that sensor i must detect. For this reason,

to detect collisions in an accurate and timely manner, the sensors must exchange their local

predictions. Specifically, we denote the sensors such that sensor i precedes sensor i + 1 in the
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direction of travel. In order to detect whether a collision has occurred within z miles from its

location, sensor i requires the observations of the subsequent sensors in the direction of travel

(e.g., sensors i + 1, i + 2, etc.), up to the sensor that is far from sensor i more than z miles.

Hence, the information flows in the opposite direction with respect to the direction of travel.

Such a scenario is represented by the right side of Fig. 8. Notice that sensor i+ 1 is responsible

to collect the observation from sensor i+ 2 and to send to sensor i both its observation and the

observation of i+ 2.

Fig. 8 shows also the flow of information provided by one side of the street to the other side

of the street (i.e., from sensor k to sensor i). Indeed, the fact that the observations on one side of

the street are not influenced by a collision on the other side of the street can be extremely useful

to assess the traffic situation and distinguish between collisions and other types of incidents. For

example, the sudden decrease of the speed observed by some sensors in the considered travel

direction may be a collision warning sign; however, if at the same time instants the speed observed

by the sensors in the opposite travel direction decreases as well, then an incident that affect both

travel directions may have occurred (e.g., it started to rain) instead of a collision.

We can formally define the flow of information represented by the right side of Fig. 8 with

a directed graph Gi , (Ki,Li),4 where Ki ⊂ K is the subset of sensors that send their local

predictions to sensor i (included i itself), and Li ⊂ Ki × Ki is the set of links among pairs of

sensors.

Now both the local classifiers and the flow of information are defined, learner i can adopt the

framework described in Subsections V-B and V-C to detect the occurrence of collisions within

z miles from its location. Specifically, learner i maintains in memory Ki weights (Ki is the

cardinality of Ki) that are collected in the weight vector wn
i , it predicts adopting 1, and it updates

the weights adopting 5 whenever a feedback is received. The feedback about the occurrence of

the collision event e` can be provided, for example, by a driver or by a police officer, and it is

in general received with delay. In Fig. 8 such a delay is denoted by Z`.

We have evaluated the proposed framework over real word datasets. Specifically, we have

exploited a dataset containing the speed readings of the loop sensors that are distributed along

4We remark that we focus on a particular sensor i to keep the discussion and the notations simple. However, all the

sensors may be required to detect collisions that are within z miles from their location. Hence, each sensor applies the

same scheme we propose in this paper for a generic sensor i. This means that there are many directed graphs (e.g.,

G1, G2, etc.) representing how information flows among different sensors.
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a 50 mile segment of the freeway 405 that passes through Los Angeles County, and a collision

dataset containing the reported collisions that occurred along the freeway 405 during the months

of September, October, and November 2013. For a more detailed description of the datasets we

refer the reader to [42]. Our illustrative results show that the considered framework is able to

detect more than half of the collisions occurring within a distance of 4 miles from a specific

sensors, while generating false alarms in the order of 1 false alarm every 100 predictions. The

results show also that by setting the ratio αMD

αF A mis-detections and false alarms can be traded-off.

VI. WHAT LIES AHEAD

There are several open research problems at this application-algorithm-systems interface –

needed for fog computing – that are worth investigating. First, there is currently no principled

approach to decompose an online distributed large-scale learning problem into a topology/flow-

graph of streaming operators and functions. While standard engineering principles of modularity,

reuse, atomicity, etc. apply, there is no formalism that supports such a decomposition.

Second, there are several optimization problems related to mapping a given processing topology

onto physical processes that can be instantiated on a distributed computation platform. This

requires a multi-objective optimization where communication costs need to be traded off with

memory and computational costs, while ensuring efficient utilization of resources. Also, given

that resource requirements and data characteristics change over time, these optimization problems

may need to be solved incrementally or periodically. The interaction between these optimizations

and the core learning problem needs to be also formally investigated.

Third, there are several interesting topology configuration and adaptation problems that can

be considered: learners can be dynamically switched on or off to reduce system resource usage

or improve system performance, the topology through which they are connected can adapt to

increase parallelism, the selectivity / operating points of individual classifiers can be modified

to reduce workloads on downstream operators, past data and observations can be dynamically

dropped to free memory resources, etc. The impact of each individual adaptation and of the

interaction among different levels of adaptation is unclear and needs to be investigated. Some

examples of exploiting these tradeoffs have been considered in [11], but this is a fertile space

for future research.

Another important extension is the use of active learning approaches [43] to gather feedback

in cases where it is sparse, hard, or costly to acquire.
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Fourth, there is need to extend the meta-learning aggregation rule from a linear form to other

forms (e.g., decision trees) to exploit the decision space more effectively. Additionally, meta-

learners may themselves be hierarchically layered into multiple levels – with different implications

for learning, computational complexity and convergence.

Fifth, in the presence of multiple learners, potentially belonging to different entities, these

ensemble approaches need to handle non-cooperative, and in some cases even malicious entities.

In [44], a few steps have been taken in this direction. This work studies distributed online

recommender systems, in which multiple learners, that are self-interested and represent different

companies/products are competing and cooperating to jointly recommend products to users based

on their search query as well as their specific background including history of bought items,

gender and age.

Finally, while we have posed the problem of distributed learning in a supervised setting (i.e.,

the labels are eventually observed), there is also need to build large-scale online algorithms for

knowledge discovery in semi-supervised and unsupervised settings. Constructing online ensemble

methods for clustering, outlier detection, and frequent pattern mining are interesting directions. A

few steps in this directions have been taken in [45] and [46], where context-based unsupervised

ensemble learning was proposed and clustering, respectively.

More discussion of such complex applications built on a stream processing platform, open

research problems, and a more detailed literature survey may be obtained from [9]. Overall,

we believe that the space of distributed, online, large-scale, ensemble learning using stream

processing middleware is an extremely fertile space for novel research and construction of real-

world deployments that have the potential to accelerate our effective use of streaming Big Data

to realize a Smarter Planet.
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