
TREE CONFIGURATION GAMES FOR DISTRIBUTED STREAM MINING SYSTEMS

Hyunggon Park∗, Deepak S. Turaga+, Olivier Verscheure+ and Mihaela van der Schaar∗

+IBM T. J. Watson Research Center, Hawthorne, NY, USA
∗UCLA Electrical Engineering Department, Los Angeles, CA, USA

ABSTRACT

We consider the problem of configuring classifier trees in dis-
tributed stream mining system. The configuration involves
selecting appropriate false-alarm detection tradeoffs for each
classifier to minimize end-to-end penalty in terms of misclas-
sification cost. We model this as a tree configuration game
and design solutions, where individual classifiers select their
operating points to maximize a local utility. We derive ap-
propriate misclassification cost coefficients for intermediate
classifiers, and determine the information that needs to be ex-
changed across classifiers, in order to successfully design the
game. We analytically show that there is a unique pure strat-
egy Nash equilibrium in operating points, which guarantees a
convergence of the proposed approach. We evaluate the per-
formance of our algorithm on an application for sports scene
classification, and compare against centralized solutions. We
show that our algorithm results in better performance than the
centralized solution on average. Moreover, the algorithm ap-
proaches the optimal solution asymptotically with increasing
number of actions per classifier.

Index Terms— Resource constrained stream mining, tree
configuration games, binary classifier tree.

1. INTRODUCTION

There are an increasing number of applications that require
processing and classification of continuous, high volume data
streams. These include online photo and video streaming
services, financial analysis, real-time manufacturing process
control, search engines, spam filters, security, and medical
services [1–3], etc. These applications are often composed
as processing topologies of distributed operators [4–6] de-
ployed on large-scale stream mining systems [6, 7]. Specif-
ically, many stream mining applications implement topolo-
gies (ensembles such as trees or cascades) of low-complexity
binary classifiers to hierarchically filter the data streams and
jointly accomplish the task of complex classification [2, 8].

Stream mining applications pose several interesting re-
search challenges. These include the optimal construction
and training of such topologies, as well as configuration and
management of individual classifiers to maximize end-to-end
performance – especially under dynamically varying and dis-
tributed resource constraints and data characteristics. In this
paper, we focus on the classifier configuration problem for

binary tree topologies, i.e., determining the optimal operating
point (detection - false alarm tradeoff) for each classifier in the
tree, in order to maximize the end-to-end classification per-
formance. Previous approaches model classifier tree config-
uration as an optimization problem and use centralized tech-
niques such as Sequential Quadratic Programming (SQP) [9]
to solve it. Such approaches require centralized control of
all the classifiers, information and data. Hence, the designed
solutions suffer disadvantages in terms of having a single cen-
tral point of control and associated failure, issues with scaling
and adaptation as the topology grows, and not allowing large
scale applications with capabilities distributed across multiple
proprietary entities.

In this paper, we model the problem as a distributed tree
configuration game, where each classifier decides its opti-
mal action in order to maximize its local utility, based on
the available information. We investigate several issues: 1)
the information that needs to be exchanged across classifiers
to successfully design the game, 2) the design of appropriate
schemes for determining cost coefficients for classification er-
rors and local utility functions, 3) the existence of a unique
Nash equilibrium for the game, and 4) the performance quan-
tification of the Nash equilibrium. We present results on an
application for hierarchical semantic concept detection ap-
plication in sports images and evaluate performance against
prior centralized approaches. We examine the impact of vary-
ing costs of misclassification as well as granularity of the de-
cision space - in terms of the available quantized Detection
Error Tradeoff (DET) curve1 per classifier.

This paper is organized as follows. In Section 2, we intro-
duce the model for individual classifiers and classifier trees.
In Section 3, we introduce the tree configuration game, in-
cluding the utility function definition, available actions etc.
We present the application of interest and simulation results
in Section 4, and conclude in Section 5 with directions for
future research.

2. SYSTEM MODEL - BINARY CLASSIFIER TREES

We consider a stream mining system, which consists of sev-
eral binary classifiers in a tree topology. An illustrative stream
mining application [9] is depicted in Fig. 1. The topology of
classifiers in this example is used to identify semantic con-

1It can be referred to as Receiver Operating Characteristic (ROC) curve.

Key frame and feature extraction Team Sport?yesno yesno yesnoyesno yesno
Baseball?Winter Sport?

Little League?Basket Ball?
Racquet Sport?
Ice Sport?

Tennis?
Skiing?Skating?Cricket?1

2

3

4

5

6

7

8

9

10

11

yesno yesnoyesno
yesnoyesnoyesno

Binary Classifier { , }i i iC c c=
,,i i it g φ

ic
icInput stream (),F Di i ia p p=

FpDp (),F Di i ia p p= Outputstream'' ii it tg g = T
ii itg tg′ = ′ T“no” CU

“yes” CUFpDp

Fig. 1. An illustrative classifier topology.

cepts from sports image data using hierarchical filtering. Leaf
classifiers (e.g. classifier 4, 8 etc.) represent the actual class
of interest, while intermediate classifiers assist in hierarchical
filtering of data based on a semantic hierarchy of concepts.

· Configuration of Binary Classifier: A binary classifier
filters input data into the “yes” class and the “no” class. We
model each classifier Ci with two classification units (CUs),
i.e., Ci = {ci, c̄i}, corresponding to the “yes” and “no” out-
puts respectively (Fig. 1). We use notation i Ã k to denote
that ci (or c̄i) is a preceding CU for ck (or c̄k). The topology
allows disambiguation between the two CUs per classifier.

· Stream Characteristics: The input stream for classifier
Ci is characterized by throughput ti and goodput gi, which
represent total data rate and correctly labeled data rate, re-
spectively. The average fraction of the input stream data that
represents true positive for CU ci is denoted by φi. φi is pre-
determined based on the classifier topology and data charac-
teristics. For c̄i, φ̄i = 1− φi.

· Performance of CU: As in [9], performance of ci (c̄i) is
controlled by its tradeoff between probability of false alarm
pF

i (p̄F
i) and probability of detection pD

i (p̄D
i). The two CUs

may have decoupled operating points, e.g., through the use of
independent thresholds (one for “yes” and one for “no”) for
score based classifiers. The set of operating points (pF

i , pD
i)

represent the DET curve – a non-decreasing concave function.
· Misclassification Cost: Cost coefficients λF

i (λ̄F
i) and

λM
i (λ̄M

i) represent the cost/penalty per unit data rate of false
alarm and miss for CU ci (c̄i). These coefficients are specified
by the application for leaf classifiers – and may be derived for
other classifiers based on the topology.

· Input and Output Rates: For ci and c̄i, the output stream
rates (t′i, g′i) and (t̄′i, ḡ′i) may be derived as [9]

[
t′i
g′i

]
= Ti

[
ti
gi

]
, and

[
t̄′i
ḡ′i

]
= T̄i

[
ti
gi

]
, (1)

where Ti and T̄i are given by

Ti =
[

pF
i φi(pD

i − pF
i)

0 φip
D
i

]
, and T̄i =

[
p̄D

i φi(p̄F
i − p̄D

i)
0 φ̄ip̄

D
i ,

]
.

· End-to-End System Utility: Let CL be a set of leaf CUs
and denote the outgoing throughput and goodput from a leaf
CU cl ∈ CL by t′l and g′l, respectively. Then, the incurred
end-to-end cost of misclassification can be expressed as

(t′l − g′l)λ
F
l + (Λl − g′l)λM

l ,

where Λl = trφ̂l ·
∏
∀k∈{j|jÃl} φ̂k, with φ̂k = φk for ck and

φ̂k = φ̄k for c̄k. Λl represents a true fraction of stream data
that belong to cl for input stream rate tr to the tree. We define
the utility achieved by cl as the negative cost, or

Ul = − [
(t′l − g′l)λ

F
l + (Λl − g′l)λM

l

]
. (2)

Similarly, Ūl achieved by c̄l can be expressed in terms of coef-
ficients λ̄F

l and λ̄M
l . The system utility US may be expressed

as
US =

∑
cl∈CL

Ul +
∑

c̄l∈CL

Ūl. (3)

3. TREE CONFIGURATION GAMES

For a stream mining system with N classifiers, a tree con-
figuration game consists of a finite set of CUs {(ci, c̄i)|1 ≤
i ≤ N} (i.e., players), a nonempty set of actions Ai, a utility
function Ui(·), and a strategy πi(·) for each CU ci.

3.1. Action Set Ai

An action aik ∈ Ai (1 ≤ k ≤ |Ai|) for CU ci represents
the selection of operating point

(
pF

ik, pD
ik

)
, i.e. the kth op-

erating point among Ai , |Ai| available operating points.
Note that Ai is determined based on a quantization of the
DET curve – represented by a differentiable concave function
fi : [0, 1] → [0, 1], defined as pD

i = fi(pF
i), for 0 ≤ pF

i ≤ 1.
Hence, action aik, for uniform quantization, corresponds to
selecting operating point

(
k−1

Ai−1 , fi

(
k−1

Ai−1

))
(see Fig. 1).

We can similarly define the action set Āi for CU c̄i.

3.2. Local Utility Function
As in (2), the utility function for an intermediate CU ci (ci /∈
CL) can be expressed as

Ui(ai) = − [
(t′i − g′i)λ

F
i + (Λi − g′i)λM

i

]
, (4)

where λF
i and λM

i denote intermediate cost coefficients, that
are not explicitly defined by the application. We need to de-
rive them by back-propagating from leaf classifiers, account-
ing for the topology. λF

i and λM
i for intermediate CU ci may

be derived from its immediately successive classifier Ck as:

λF
i = φkλF

k + φ̄kλ̄F
k = φkλF

k + (1− φk)λ̄F
k ,

λM
i = φkλM

k + φ̄kλ̄M
k = φkλM

k + (1− φk)λ̄M
k ,

(5)

We assume that this back-propagation is performed before the
tree configuration game.

3.3. Strategy πi for CU ci

The strategy for CU ci is to select the action that maximizes
its local utility, i.e.,

a∗i = πi(Ii) = arg max
ai∈Ai

Ui(ai), (6)

where Ii = {ti, gi, φi, λ
F
i , λM

i ,Ai, Λi} denotes the avail-
able information. Since a function fi(·) that characterizes the
DET curve of ci is non-decreasing and concave, the utility
function is also a concave function. Hence, an optimal ac-
tion a∗i can be uniquely determined. Moreover, determining
the optimal action requires a constant computational com-
plexity even for different sizes of action sets. The informa-
tion Ii consists of a set of information {ti, φi, λ

F
i , λM

i ,Ai}
that is always available, as well as {gi, Λi} that is not di-
rectly available. We show that a set of actions a−i, defined
as a−i = {âk|k Ã i,∀k}, (âk = ak for ck and âk = āk for
c̄k), taken by preceding CUs of ci and Φi =

{
φ̂k|k Ã i, ∀k

}

need to be exchanged across classifiers to correctly determine
the optimal action at ci.

Proposition 1. For a CU ci, a−i and Φi are the minimum
information that needs to be exchanged to correctly determine
an optimal action.

Proof. Without loss of generality, we consider a “yes” CU
ci. To correctly specify the utility function given in (4), ci

requires information {gi, Λi} in addition to available infor-
mation {ti, φi, λ

F
i , λM

i ,Ai}.
Since Λi is defined as Λi = trφi ·

∏
∀k∈{j|jÃi} φ̂k, Φi is

sufficient to specify Λi.
Based on the input-output relationship of ci as in (1), ti

and gi can be expressed as

[ti gi]T =
∏

k∈{j|jÃi}
T̂k · [tr tr]T , (7)

where T̂k = Tk for ck and T̂k = T̄k for c̄k. Since T̂k

can be explicitly specified based the information a−i and Φi,∏
k∈{j|jÃi} T̂k becomes a 2×2 matrix T with its determin-

istic constant elements Tmn, 1 ≤ m,n ≤ 2. Hence, ci can
compute gi, since ti and gi are expressed as ti = (T11+T12)tr
and gi = (T21 + T22)tr, respectively.

Hence, we require that information a−i and Φi are always
forwarded with outgoing stream data. Note that Proposition 1
implies that both the size of messages and the number of mes-
sages that need to be exchanged increase linearly with the tree
depth.

3.4. Convergence Analysis

We now show that if each of the CUs determines its operating
point based on the strategy in (6), the determined operating
points are in a unique pure strategy Nash equilibrium.

Proposition 2. If each of CUs determines its action based on
the strategy in (6), then there exists a unique pure strategy
Nash equilibrium in operating points.

Proof. Let ci be a “yes” CU, which determines its optimal
action based on the strategy πi in (6). Since the utility of ci

is determined based on its own action ai ∈ Ai as well as the
set of actions a−i of its preceding CUs, the utility function
in (4) can be explicitly expressed as Ui(ai,a−i). Since a−i is
already determined and fixed, we have

Ui(a∗i ,a−i) > Ui(ai,a−i), (8)

for all actions ai(6= a∗i) ∈ Ai. Similarly, the same argument
holds for a “no” CU c̄i, i.e.,

Ūi(ā∗i , ā−i) > Ūi(āi, ā−i), (9)

for all actions āi(6= ā∗i) ∈ Āi. Since each CU can uniquely
determine its optimal action, there exists a unique pure strat-
egy Nash equilibrium in operating points of the CUs.

Proposition 2 implies that the decisions on operating
points of all the CUs always converge if their actions are
determined based on the strategy. Moreover, the convergence
time increases linearly with the tree depth.

4. SIMULATION RESULTS

4.1. Simulation Set-up
To evaluate the performance of the proposed approaches, we
consider the semantic concept detection application in Fig. 1.
Each classifier operates on low level image features such as
color histograms, color correlograms, etc. using a Support
Vector Machine, and classifiers are organized into a semantic
hierarchy of concepts [9]. We compare performance of the
proposed approach against the centralized approach of [9].

4.2. Impact of the Action Granularity and Backward
Cost Coefficient Propagation Scheme
To highlight the impact of the number of available actions
and the proposed backward cost coefficient propagation
scheme on the end-to-end system cost, we consider an el-
ementary sub-tree of our application, consisting of classi-
fiers 1, 2, and 3 in Fig. 1. We set λF

l = 4, λM
l = 1 and

λ̄F
l = 1, λ̄M

l = 4 for l = 2, 3, and consider different levels of
quantization granularity, i.e., increased number of available
actions Ai = 10, 20, 40, 80, 160, 320 for i = 1, 2, 3. We set
the input stream rate tr = 1. The resulting misclassification
cost is shown in Fig. 2.

Fig. 2 clearly shows that increasing the number of avail-
able actions leads to a lower system cost – approaching the
performance of the best result for the centralized algorithm.
There is a slight performance gap, as CUs in the distributed
approach determine their actions individually with no consid-
eration of the impact on the end-to-end system utility. More-
over, unlike in the centralized approach, only finite number

0 50 100 150 200 250 300 350
0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

Number of Available Actions

E
nd

−
to

−
en

d
S

ys
te

m
 C

os
t

Centralized (Best)
Distributed

Fig. 2. End-to-end system costs.

Table 1. Achieved End-to-End System Costs (80 actions)

Exp. Cases λF = λM λF = 4λM 4λF = λM

Cent. (avg.) 0.587 (0 %) 0.963 (0 %) 1.373 (0 %)
Distributed 0.536 (68.0 %) 0.806 (86.3 %) 1.187 (88.6 %)
Cent. (best) 0.512 (100 %) 0.781 (100 %) 1.163 (100 %)

of (quantized) actions are available to each CU. Finally, in-
stead of the backward propagation approach, if misclassifica-
tion cost coefficients of C1 are determined randomly or based
on a heuristic average approach (e.g., λF

1 = (λF
2 +λ̄F

2)/2), the
resulting misclassification costs are 1.0108 and 0.8167 (for
Ai = 80), respectively. These are 139.5% and 112.7% of the
cost (0.7245) achieved by the proposed approach. The perfor-
mance degradation is caused because these approaches do not
consider the stream characteristics.

4.3. Quantification of End-to-End System Performance

In this section, we quantify the performance achieved by the
proposed tree configuration games in Fig 1. In this simula-
tion, we assume that each CU has 80 available actions. We
compare against the centralized solution using SQP in [9].
Since SQP is gradient descent based, we use 500 different
randomized starting points, and provide the minimum (best)
as well as the average cost (avg.). The results are shown in
Table 1.

It is clear that the proposed distributed approach always
outperforms the average performance of centralized approach
for different misclassification cost scenarios i.e., (λF =
λM = 1), (λF = 4, λM = 1), and (λF = 1, λM = 4).
These correspond to equal cost for false alarms and misses,
high costs for false alarms, and high costs for misses respec-
tively. Additionally, as the costs become unbalanced, the
distributed algorithm performance increasingly approaches
the optimal performance of the centralized algorithms. This
is reflected in the percentages in the table, computed as
(Costdist − Costcent

avg)/(Costcent
best − Costcent

avg)×100%.

5. CONCLUSIONS

In this paper, we model the configuration of classifier tree
topologies in distributed stream mining system as a tree con-
figuration game. We determine the minimum information
that needs to be exchanged across classifiers and propose a
novel scheme for determining the local utilities for interme-
diate classification units, which are required to successfully
design the tree configuration game. We analytically show
that the proposed approach guarantees a convergence to a
unique pure strategy Nash equilibrium in operating points of
each CU. Simulation results, performed on a semantic con-
cept detection application for sports image analysis, show
that the performance of the proposed approach is compa-
rable to a centralized solution – outperforming the average
performance, and closely approaching the optimal perfor-
mance (68%∼88.6% depending on misclassification cost
coefficients). We also show that the distributed algorithm
performance improves with the number of actions available
to each classifier, and with unbalanced costs for false alarms
and misses. A key direction for future research involves ex-
tending the current approach to the case where CUs have
additional information about their successive CUs. Based on
this information, a CU can form coalitions with other CUs
and can consider actions that maximize the coalition utility.

6. REFERENCES

[1] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and M. J.
Franklin, “Flux: An adaptive partitioning operator for continu-
ous query systems,” in ICDE, March 2003, pp. 25–36.

[2] R. Lienhart, L. Liang, and A. Kuranov, “A detector tree for
boosted classifiers for real-time object detection and tracking,”
in ICME, 2003.

[3] A. Ntoulas, M. Najork, M. Manasse, and D. Fetterly, “Detecting
spam web pages through content analysis,” in WWW, May 2006,
pp. 83–92.

[4] C. Olston, J. Jiang, and J. Widom, “Adaptive filters for contin-
uous queries over distributed data streams,” in SIGMOD, June
2003, pp. 563–574.

[5] L. Amini, H. Andrade, F. Eskesen, R. King, Y. Park, P. Selo, and
C. Venkatramani, “The stream processing core,” IBM T.J. Wat-
son Research Center, Tech. Rep. RSC 23798, November 2005.

[6] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Çetintemel, Y. Xing, and S. B. Zdonik, “Scalable distributed
stream processing,” in CIDR, January 2003.

[7] M. Balazinska, H. Balakrishnan, S. Madden, and M. Stone-
braker, “Fault tolerance in the borealis distributed stream pro-
cessing system,” in SIGMOD, June 2005, pp. 13–24.

[8] Y. Mao, X. Zhou, D. Pi, Y. Sun, and S. T. C. Wong, “Multiclass
cancer classification by using fuzzy support vector machine and
binary decision tree with gene selection.” Journal of Biomedical
Biotechnology, vol. 2005, no. 2, pp. 160–71, 2005.

[9] D. S. Turaga, B. Foo, O. Verscheure, and M. van der Schaar,
“Configuring topologies of distributed semantic concept clas-
sifiers for continuous multimedia stream processing,” in ACM
Multimedia 2008, 2008.

