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Abstract—Judiciously setting the base station transmit power
that matches its deployment environment is a key problem
in ultra dense networks and heterogeneous in-building cellular
deployments. A unique characteristic of this problem is the
tradeoff between sufficient indoor coverage and limited outdoor
leakage, which has to be met without explicit knowledge of the
environment. In this paper, we address the small base station
(SBS) transmit power assignment problem based on stochastic
bandit theory. We explicitly consider power switching penalties
to discourage frequent changes of the transmit power, which
causes varying coverage and uneven user experience. Unlike
existing solutions that rely on RF surveys in the target area,
we take advantage of the user behavior with simple coverage
feedback in the network. In addition, the proposed power
assignment algorithms follow the Bayesian principle to utilize
the available prior knowledge and correlation structure from
the self configuration phase. Simulations mimicking practical
deployments are performed for both single and multiple SBS
scenarios, and the resulting power settings are compared to the
state-of-the-art solutions. Significant performance gains of the
proposed algorithms are observed.

I. INTRODUCTION

The massive deployment of low-power low-cost small base
stations (SBS) has been viewed as an important solution to
address the challenge of exponential growth of the wireless
data traffic, particularly for indoor users [1]. In practice,
SBSs may be deployed in drastically different scenarios, from
large warehouses to small residential apartments and single-
office enterprises. Correspondingly, the transmit power that
determines the coverage range cannot be the same but must
be decided based on the individual deployment. Furthermore,
indoor enterprise deployments often have stringent access
and security constraints. As a result, judiciously setting the
SBS transmit power to automatically match the deployment
environment is among the most important challenges for in-
building SBS network deployment [2].

Several solutions for SBS transmit power self-optimization
have already been proposed under the general framework
of self-organizing networks (SON) [3]. Small Cell Forum
has defined a common network monitor mode [4], allowing
SBS to periodically measure the RF conditions and adjust
its transmit power. This solution is coarse and may cause
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RF mismatch. In [5], a heuristic solution was proposed to
determine the coverage based on RF survey. The solution
has some adaptability but still lacks accuracy. The authors
of [6] and [7] modeled dynamic SBS power management as a
reinforcement learning problem. The main objective, however,
is to adjust the transmit power in reaction to the fast-changing
circumstance, which makes it more of a power control problem
that has to be solved at a fast time scale.

In this work, we focus on setting the SBS transmit power
of an enterprise network in an unknown environment. We
limit our attention to the closed access mode, which is
commonly adopted in enterprise networks due to security and
management considerations. An adequate power assignment is
particularly crucial for this setting, as the power needs to be
large enough to provide sufficient coverage to the enterprise
users while small enough to not create significant interference
for the non-enterprise co-channel users.

Due to the unknown environment, a good solution must
complement the performance optimization problem with an
online learning approach to remove the uncertainty. The SBSs
have to balance the immediate gains (selecting a power level
that performs the best so far) and long-term performance (eval-
uating other options). We thus resort to multi-armed bandit
(MAB) theory [8] to address the resulting exploration and
exploitation tradeoff. However, as opposed to directly applying
classical MAB algorithms such as UCB [9], we leverage three
unique characteristics of practical SBS networks and develop
a novel algorithm. First, SBS power assignment falls into the
self-optimization category of SON, which typically follows
a self-configuration phase that already generates some prior
knowledge of the system. Second, in practice, performances
of similar power levels are often very similar, which means
that if we adopt the MAB model, nearby arms are highly
correlated. Intuitively, such correlation can be used to acceler-
ate the convergence to the optimal selection. Lastly, practical
deployment often wants to avoid frequent power switchings,
because it may cause frequent change of the coverage area and
result in uneven user experience. We thus explicitly penalizes
power change by adding a switching cost to the objective
function, thus discouraging frequent change of power levels in
the developed algorithm. These characteristics were not fully
utilized in classical MAB solutions of [8], [9], and has not



been utilized in wireless networks [6], [7], [10].
In this paper, we exploit these characteristics and develop a

novel algorithm to solve the enterprise power assignment prob-
lem. We design a Bayesian learning [11] based algorithm that
simultaneously incorporates both the prior estimates from the
self-configuration phase and correlation [12] among different
power levels that captures the similarity among nearby power
levels. Furthermore, we explicitly add a switching cost to the
performance function in order to discourage frequent change
of power levels, and develop a block allocation scheme that
combines the effect of switching cost and Bayesian learning.
For the proposed Correlated Bayesian Power Assignment with
Switching Cost (CBPA-SC) algorithm, rigorous analysis of
the performance loss with respect to the genie-aided global
optimization solution is carried out. Furthermore, we consider
the complexity issue associated with CBPA-SC in a multi-
SBS deployment, and introduce a clustering based solution
that utilizes the prior knowledge of the power levels. The
performance gain of CBPA-SC is verified by extensive system
simulations. In addition, the superior performance comes with
only one bit feedback per user location, as opposed to the full-
blown RF feedback that is required in the existing solutions.

The rest of the paper is organized as follows. The system
model is given in Section II. Section III presents the proposed
power assignment algorithm, with performance and complex-
ity analysis. Simulation results are presented in Section IV.
Finally, Section V concludes the paper.

II. SYSTEM MODEL

Both single-SBS and multi-SBS deployments are consid-
ered. Note that the former is suitable for modeling single-
office enterprises and other small deployment, while the latter
mainly applies to large warehouses, for which multiple SBSs
are installed to jointly cover the indoor users. The set of SBSs
is indexed as KSBS = {1, 2, ..,K}. Each SBS has a set of
candidate pilot power levels1, denoted as P = {p1, p2, .., pn}.
We assume that the users at measurement points inside the
enterprise building are served by the SBS network, while users
at points outside can only be served by one of the MBSs from
KMBS = {1, 2, ..,KM}, as Fig. 1 depicts. Our work only
requires UE to feed back whether it is covered at a location.
For non-enterprise UEs, we rely on the registration attempt to
determine the coverage events [5]. In this work, our model and
procedure on power assignment follow the common industry
SON operations [3]. Specifically, the power assignment policy
is executed at the central network controller.

We focus on the pilot power assignment problem where the
pilot power remains stable for a relatively long period of time
(e.g. minutes to hours). To formulate the problem, we first
denote the set of measurement points on the inside and outside
routes as Nin = {1, 2, .., nin} and Nout = {1, 2, .., nout},

1As the purpose of the long-term power assignment is to determine the
appropriate coverage that fits the deployment, we focus on setting the pilot
power instead of the power of data and control channels.

Fig. 1. An exemplary deployment of a multi-SBS setting.

respectively. The coverage and leakage criteria for a measure-
ment point can be formally defined as:

coverage: max
kS∈KSBS

SINRkS,n > SINRth, for n ∈ Nin, (1)

leakage: max
kM∈KMBS

SINRkM,n < SINRth, for n ∈ Nout, (2)

where SINRkS,n and SINRkM,n represent the SINR of the
measurement point n inside served by SBS kS and outside
served by MBS kM , respectively. Ns denotes the noise and
interference, and SINRth is the SINR threshold. The overall
system coverage and leakage are defined as the percentages
ηin, ηout of points satisfying the coverage condition (1) and
leakage condition (2), respectively. Note that a larger pilot
transmit power may simultaneously increase the coverage and
leakage percentage. Hence, the system performance indication
function (PIF) associated with each candidate power level must
balance coverage and leakage. Although any meaningful PIFs
that capture the tradeoff between coverage and leakage can be
used, we adopt a simple linear PIF in this work as

r = αηin − (1− α)ηout, (3)

where α is a parameter controlling the weight between cov-
erage and leakage. Strictly speaking, the function r in (3) is
a random variable for a given pilot power level due to the
random channel effect such as shadowing, fast fading and
other disturbance. We focus on a probabilistic model with
Gaussian random fluctuation around the mean. It is worth
noting that Gaussian process is a powerful and commonly
used tool, as it is generally accepted as the most flexible and
captures prediction under various uncertainty information [13].

III. POWER ASSIGNMENT ALGORITHM DESCRIPTION

A. Stochastic Bandit Model

We take a stochastic MAB approach to balance the short-
term and long-term performances. Specifically, we model the
set of candidate pilot power values P = {p1, p2, .., pn} as n
arms, denoted by Npow = {1, 2, .., n}. At the beginning of
each time slot t = 1, 2, .., T , a power value pa(t) ∈ P, a(t) ∈



Npow is selected. At the end of the time slot t, the SBS
observes a PIF feedback ra(t)(t) based on UE measurement
reports, corresponding to reward in the bandit theory. In
practice, switching the power value of SBS to another value
may lead to additional performance loss, e.g. interference and
user experience degradation like increasing dropped call rate.
To address this problem, we explicitly add a switching cost
when the power level changes. For the multi-SBS case, each
arm corresponds to a set of power levels of all K SBSs, and
switching cost is the sum of individual costs of all SBSs while
other definitions remain the same.

We adopt a general switching loss function sij = f(|pi −
pj |), a non-decreasing function of the difference between the
two power values. sij is incurred whenever SBS changes its
pilot power value between pj and pi. Therefore, the actual
cumulative PIF excluding the switching cost up to a given
time horizon T > 0 can be denoted formally as:

GS
T = GT − SC(T ) =

T∑
t=1

ra(t)(t)−
T∑

t=2

sa(t)a(t−1). (4)

In multi-armed bandit theory, expected cumulative regret [8]
is often used to characterize the performance, representing
the cumulative difference between the reward of the selected
arms and the maximum expected reward. We comment that
minimizing regret is equivalent to maximizing cumulative
reward and the regret is equivalent to the performance loss of
any power assignment problem due to learning. Therefore, our
objective is to develop an efficient power assignment solution
to minimize the expected cumulative PIF loss with minimum
switches. We define the cumulative PIF loss as

RT = G∗T −GS
T = max

i∈Npow

(
T∑

t=1

ri(t)

)
−

T∑
t=1

ra(t)(t)+SC(t).

(5)
Here the optimal power level can be obtained by a genie-
aided solution, e.g. a global optimization of the expected PIF
with complete RF information from the technician survey. Our
focus is the PIF loss of the system RT (5) for any given time
horizon T . The expected PIF loss can be written as:

E[RT ] = Tµ∗ − E
T∑

t=1

µa(t) =

n∑
i=1

∆iE[Ni(T )], (6)

where µ∗ = max
i∈Npow

µi is the true mean PIF of the optimal

power level and ∆i = µ∗ − µi measures the mean PIF gap
between the chosen power level and the optimum. Ni(T )
represents the number of times power level pi is selected.
According to the ground-breaking work of Lai and Robbins
[14], if the expected loss E[RT ] of our proposed algorithms
can be upper bounded by O(log T ), an asymptotically optimal
performance is achieved in the sense that the convergence rate
is of the same order as the optimum.

B. Correlated Bayesian Power Assignment Algorithm

Our algorithm utilizes the prior knowledge of the PIF before
the algorithm is invoked. In practice, the most common form

for the prior knowledge comes from the self-configuration
phase of SON, which is performed during network initial-
ization. The self-configuration phase can provide us some
prior estimations and structure of the PIFs as it typically
tries different power levels before settling on one. The prior
knowledge we import involves PIF estimations and the corre-
lation structure. The PIFs of similar transmit power levels are
generally correlated due to the slow and continuous changing
nature of RF propagation. It is worth noting that the proposed
algorithm also works with none or part of prior knowledge, at
the expense of slower convergence.

We adopt the well-known Bayesian principle [11] that
integrates the prior distribution and quantiles of the posterior
distribution. Let N (µ0,Σ0) be a correlated prior assumption
while Σ0 is a positive definite matrix capturing the correlation
structure. We define {φt ∈ RN}t∈{1,..,T} as the indicator
vector to reveal the currently selected power value pa(t), i.e.,

(φt)k =

{
1 k = a(t),
0 otherwise.

(7)

The estimation of the mean PIFs and correlation of the PIF
(µt,Σt) is updated following the Bayesian principle [15]:

qt =
rtφt

σ2
0

+ Λ̂t−1µ̂t−1, Λ̂t =
φtφ

T
t

σ2
0

+ Λ̂t−1,

Σ̂t = Λ̂−1
t , µ̂t = Σ̂tqt = Λ̂−1

t qt,

(8)

where rt is the PIF observed at time slot t. To derive a general
expression of the estimation, we introduce a diagonal matrix
P (t) with entries σ2

0/Ni(t), i ∈ Npow, and r̄t is the vector of
r̄i(t), i ∈ Npow. We first rewrite the expression of Λ̂t as:

Λ̂t =
φtφ

T
t

σ2
0

+ . . .+
φ1φ

T
1

σ2
0

+ Λ0 = P (t)−1 + Λ0. (9)

Then, µ̂t can be derived based on (9) as

µ̂t = Λ̂−1
t

(
rtφt

σ2
0

+
rt−1φt−1

σ2
0

+ . . .+
r1φ1

σ2
0

+ Λ0µ0

)
= (Λ0 + P (t))−1(P (t)−1r̄t + Λ0µ0). (10)

Therefore, the estimation at time slot t can be derived com-
bining equation (9) and (10).

We propose a block allocation scheme to address the
switching costs. Block allocation schemes determine specific
intervals of time over which the selection is consistent. The
construction of the intervals should control the expected
number of switches to guarantee good performance [16].
The idea is graphically presented in Fig. 2. We first di-
vide time into frames whose last time slot is denoted as
Lf , f ∈ {1, 2...l}, l = d

√
log2 T e. Each frame is then

subdivided into bf = d(2f2 − 2(f−1)2)/fe blocks each of
which contains f time slots. Each block is identified by
(f, k), f ∈ {1, 2, .., l}, k ∈ {1, 2, .., bf}, with f and k
representing the frame number and block number within the
frame respectively. The beginning time slot of block k in the
f -th frame is denoted as τfk.
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Fig. 2. The block allocation scheme in CBPA-SC.

Algorithm 1 The CBPA-SC Algorithm
Input: Prior estimation of PIF mean: N (µ0,Σ0);

Initialize: Ni, r̄i, Qi = 0, µ̂i = µ0
i , Σ̂ = Σ0 for all i ∈ Npow,

1: for f ∈ {1, 2, .., l} do
2: for k ∈ {1, 2, .., bf} do
3: Set τfk = Lf−1 + 1 + f(k − 1);

4: Update Qi = µ̂i+σ̂i

√
n∑

j=1

ρ2
ijΦ
−1(1−1/(

√
2πeτ2

fk))

for each i ∈ Npow;

5: Determine a∗ = arg max{Qi|i ∈ Npow};
6: Use power value pa∗ for the next (nf − 1) slots;

7: Collect ra∗(t) without the switching loss sa(t)a(t−1)

for each t ∈ {τfk, τfk + 1, .., Te}, Te = τfk + f −
1, nf = f if τfk+f−1 6 T , otherwise Te = T, nf =

T − τfk + 1;

8: Update the following:

r̄a∗ =
Na∗ r̄a∗+

∑Te
t=τfk

(ra∗ (t)−sa(t)a(t−1))

Na∗+nf
,

Na∗ = Na∗ + nf ,

µ̂ = (Σ−1
0 + P−1)−1(P−1r̄ + Σ−1

0 µ0),

Σ̂−1 = Σ−1
0 + P−1.

9: end for
10: end for

The proposed Correlated Bayesian Power Assignment with
Switching Cost (CBPA-SC) algorithm is given in Algorithm 1.
CBPA-SC is based on three key ideas. The first is that the
utility function defined in step 4 is composed of an estimated
performance term and a measure of uncertainty, which reflects
the tradeoff between exploration and exploitation. More specif-
ically, Φ−1 : (0, 1)→ R is the inverse cumulative distribution
function (CDF) for a standard Gaussian random variable.
P(µi ≤ Qi(t)) = 1−1/(

√
2πet2) indicates that the true mean

PIF µi is more likely to be less than the estimation Qi as
time goes by, leading to the convergence to the optimal power
level. The second is that the correlation structure accelerates
the convergence. Intuitively, if a transmit power level results
in a bad PIF, then the algorithm does not need to waste much
exploration on the nearby power levels, as they are likely to
be bad as well. Finally, since the switching cost results in a
penalty in performance, the algorithm needs to “explore in
bulk”. The block size increases with time to take advantage
of the better knowledge about the optimal power level.

C. Reducing Complexity in The Multi-SBS Deployment

Algorithm 1 in a multi-SBS deployment will have a com-
plexity that grows exponentially with K. To reduce the
complexity, we first explore a practical constraint that the
neighboring SBSs are generally not allowed to have vastly
different pilot power levels. This is because otherwise they
result in significantly different coverage areas and lead to
uneven load distributions. Thus, we should only consider the
combinations in which neighboring SBS power levels are
different by no more than a certain threshold Pth.

Secondly, we note that for two power settings that differ
only slightly, the performances may be very similar. Thus,
if we can carefully group the power settings into a few
clusters, and only use the cluster center as the representative
power, we can achieve a good tradeoff between complexity
and performance for the algorithms. We adopt the K-medoids
clustering [17] based on the most central object. The choice
of the number of clusters N plays a critical role in the overall
performance which will be shown in Sec.IV.

D. Performance Analysis

To analyze the performance of CBPA-SC theoretically, we
focus on the cumulative PIF loss given in (5) and analyze the
convergence speed. Theorem 1 guarantees that the cumulative
PIF of CBPA-SC will converge to that of the global optimum
power value at a rate of O(log T/T ). Moreover, this upper
bound applies to any finite time T and any switching loss
function f(|pi − pj |) as long as f is non-decreasing finite.

Theorem 1. The expected cumulative PIF loss E[RSC
T ] of

CBPA-SC is bounded above as:

E[RSC
T ] 6

n∑
i=1,i6=i∗

∆iE[Ni(T )] + E[SC(t)]

6
n∑

i=1,i6=i∗

∆i(C
i
1 log T + Ci

2) +

n∑
i=1,i6=i∗

(s̃max
i +

s̃max
i∗ )E[Si(T )] + s̃max

i∗ ,

6
n∑

i=1,i6=i∗

∆i(C
i
1 log T + Ci

2) +

n∑
i=1,i6=i∗

(s̃max
i + s̃max

i∗ )(
log 2Ci

1

√
log2 T + (Ci

2 + log 2Ci
1)

(
1 +

π2

6

))
+ s̃max

i∗ ,

where

Ci
1 =

16σ2
0

∆2
i

+
log 2

2

(
e

3M2
i∗

2σ20 + e
3M2

i
2σ20

)
,

Ci
2 =

4σ2
0

∆2
i

log
√

2πe+

(
e
M2
i∗

3σ20 + e
M2
i

3σ20

)
,

δ2
i = σ2

0/σ
2
i−cond, and σ2

i−cond = σ2
0 − σi(0)Σ−1

∼i (0)σT
i (0).

Mi = σ2
0

√
1 + δ2

i

n∑
j=1

n∑
k=1

|λ0
kj ||µ0

j − µj | measures the accu-

racy of the prior knowledge, where λ0
kj is the component of Λ0.



TABLE I
SIMULATION PARAMETERS

Parameters Value
SBS transmit power -10dBm ∼ 20dBm
MBS transmit power 40dBm
Thermal noise density -174dBm/Hz
Bandwidth 20MHz
Carrier frequency 2GHz
Penetration loss(Low) 20dB

Shadowing effect
log-normal with
σ = 8dB,σ′ = 4dB

s̃max
i = maxj=1,..,n E[sij ] is the maximum expected switching

loss when SBS change power to pi.

The proof is omitted due to place limitations.

IV. SIMULATION RESULTS

We resort to numerical simulations to verify the effec-
tiveness of the power assignment algorithm. A system-level
simulator is developed, in which the indoor femto and outdoor
macro channel model of urban deployment from [18] is used
for UE-to-SBS and UE-to-MBS channels, respectively. Other
important simulation parameters are summarized in Table I.

For this simulation setting, the SINR can be calculated as:

SINRkS,n =
P r
kS ,n∑K

i=1,i6=kS
P r
i,n +

∑KM

j=1 P
Mr
j,n +Ns

,

SINRkM,n =
PMr
kM ,n∑K

i=1 P
r
i,n

∑KM

j=1,j 6=kM
PMr
j,n +Ns

,

for the inside and outside measurement points, respectively.
P r
i,n and PMr

j,n represent the received power at point n from
SBS i and MBS j respectively. The PIF r under each power
value can be calculated following the procedure in Sec. II.

In the single-SBS simulations, we simulate a warehouse
with size 30 × 30 square meters. We set the center of the
warehouse as origin and deploy a SBS at the grid point of
[12m, 8m] and an outside MBS at [100m, 100m]. The inside
and outside routes follow the concentric circles pattern, whose
radiuses are (2, 13) meters for the two indoor routes, and
(24, 30) meters for the two outdoor routes. We set the time
horizon as T = 3000 slots and run the system simulation to
generate PIFs measured by r for each power value in Npow

with α = 0.7. Here we adopt a simple linear function of
switching loss as sij = γ|pi − pj |, where γ is a tunable
parameter for different scenarios. Here we use the optimal
power with maximum expected PIF achieved by the global
optimization with complete RF information as the genie-aided
optimum to evaluate the algorithm’s performance.

We first verify the performance of CBPA-SC algorithm
with different quality of prior knowledge. Fig. 3 reports
the cumulative loss over time for CBPA-SC and two other
algorithms – BPA-SC which utilizes only the prior estimations

0 500 1000 1500 2000 2500 3000
Time Slot

0

50

100

150

200

250

300

C
um

ul
at

iv
e 

Lo
ss

 (
%

)

UiPA-SC
CBPA-SC
BPA-SC

Improvement: 25.14%

Improvement: 4.51%

Fig. 3. Cumulative loss in a single-SBS deployment with α = 0.7 and
γ = 0.2.

0 500 1000 1500 2000 2500 3000
Time Slot

0

50

100

150

200

250

300

350

C
um

ul
at

iv
e 

Lo
ss

 (
%

)
UiPA-SC γ=0.2
CBPA-SC γ=0.2
BPA-SC γ=0.2
Industrial γ=0.2
UiPA-SC γ=0.4
CBPA-SC γ=0.4
BPA-SC γ=0.4
Industrial γ=0.4

Fig. 4. Comparison of the industrial solution to UiPA-SC, BPA-SC and
CBPA-SC in a large warehouse.

with a diagonal correlation matrix, and UiPA-SC which uses
no prior knowledge. We can see that all three algorithms
converge to the optimal power value asymptotically, but with
different speed. Leveraging both the prior knowledge and the
correlation structure significantly accelerates the convergence.
Furthermore, in terms of minimizing the total PIF loss, CBPA-
SC outperforms BPA-SC which performs better than UiPA-SC.

Next, we compare the proposed algorithm with the industry
solution and report the results. The industrial heuristic sticks
to a power value long enough to obtain the near-perfect PIF
estimation, based on which it either increases or decreases the
power value by some step size. Clearly, this method trades
off fast convergence for certainty and is hardly influenced by
switching cost. Fig. 4 and 5 reports the numerical comparison
with a maximum 20dBm and step size 2dB. We can see that
the industrial solution adapts poorly to different deployments,
while our algorithms are stable due to the online learning and
tradeoff between exploration and exploitation.

For the multi-SBS case, the size of the enterprise is set to
be larger. The sample routes can be either ellipse or circle.
We consider K = 4 in the simulations. The power value
difference threshold is set to be Pth = 5dB. The power
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Fig. 6. Per-slot loss in K = 4 SBSs deployment with α = 0.7 and γ = 0.2.

value for each SBS is selected from {−10,−5, .., 15, 20}dBm.
It results in n = 149 power settings. We thus employ the
clustering strategy in Sec. III-C and study two cases where
the number of clusters is N = 20 and N = 40, respectively.
The PIF loss normalized by time is shown in Fig. 6. We can
see that all algorithms exhibit a decaying loss per slot. The
effect of N can be analyzed from the figure. For all the three
algorithms, larger cluster number results in worse performance
in the initial period. This is because initially more power
settings lead to more exploration and thus sub-optimal power
settings are selected more. While a larger cluster number
means one of the selected clustering medoids is closer to the
global optimal power setting, a large N results in a better
performance asymptotically.

V. CONCLUSION

We have studied the pilot power assignment problem as-
sociated with indoor enterprise closed-access SBS networks,
in which the focus is on achieving optimal balance between
providing sufficient coverage for the intended indoor users and
suppressing leakage that causes interference to outdoor MBS
users. We explicitly took into account the power switching
cost, and proposed a block allocation scheme to reduce fre-

quent power-switchings required for exploration. We formu-
lated the performance criterion and modeled power assign-
ment as an online learning problem. We adopted a Bayesian
approach that leverages the prior information regarding the
Gaussian distribution and proposed bandit-inspired power as-
signment algorithm. The CBPA-SC algorithm makes use of
both prior knowledge of the mean and variance of each arm as
well as the dependency of PIFs across different power values,
outperforming other algorithms use less statistical information.
Furthermore, a sub-linear upper bound for performance loss is
proved for the algorithm. For the multi-SBS deployment, we
proposed to use K-medoids clustering to reduce the complexity
of the algorithm while maintaining the performance. When the
cluster number is not very small, the algorithms can be close
to the global optimal power setting for all K SBSs.
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