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ABSTRACT 

We address the problem of multi-user video transmission over the uplink of multi-carrier networks from an 

information theoretic perspective. Under the constraints imposed by the underlying Physical (PHY) and Medium 

Access Control (MAC) layers, we exploit the unique property of state-of-the-art video coders that can provide inherent 

bitstream prioritization in terms of distortion impact and solve the problem of allocating wireless resources, i.e., 

power/rate and sub-carrier assignment, among multiple users such that the weighted sum of the overall video qualities 

is maximized. We focus on two different types of multiple access strategies and their corresponding achievable rate 

regions, i.e., Shannon capacity region and Frequency-Division Multiplexing Access (FDMA) capacity region, in the 

Gaussian multiple access channel. We propose two different approaches to optimize the multi-user multimedia 

transmission by considering the specific structures of both problems. First, for the general multiple access strategy, 

under the constraint of its Shannon capacity region, we propose an algorithm to describe the achievable convex utility 

region directly. Second, for the FDMA strategy, we study the problem by relaxing the original integer programming 

problem into a convex optimization problem, which makes it tractable to find near-optimal solution analytically. For 

both multiple access schemes, we start from the two-user case and develop algorithms for finding the (near) optimal 

resource allocation strategies. Inspired by the intuition gained from the two-user case, we extend the algorithms to the 

multiple-user case. Our numerical simulations show that the proposed resource allocation algorithms give significant 

performance improvements as compared to application-layer agnostic solutions that do not consider the quality 

impact. 
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I. INTRODUCTION 

Multi-carrier communication (in particular, Orthogonal Frequency Division Multiplexing (OFDM)) is becoming 

the leading physical layer technology for many existing and emerging wireless networks and standards [1]. An 

important application over these networks is bandwidth-intense multimedia streaming. Hence, the development of 

advanced resource allocation strategies for wireless multimedia applications has recently emerged as an important 

topic of research. In this paper, we study the problem of optimal resource allocation across multiple users transmitting 

video over the multi-carrier wireless network infrastructure from an information theoretic perspective. 

There has been significant research dedicated to studying resource allocation strategies in wireless networks. 

Recent research has shown that significant performance gains can be achieved by using dynamic resource allocation. 

Because of the time-varying property of wireless channels, the knowledge of channel state information can help to 

allocate limited resources in order to achieve better performance. One example is opportunistic communication, which 

can effectively exploit the multi-user diversity, and thus increase the total system throughput. The optimization 

problem for independent and identically-distributed (i.i.d.) fading channels is studied in [2] and [3], where the optimal 

power allocation over time is characterized. Knopp and Humblet [2] first show that if the channel state information 

(CSI) is perfectly known by all transmitters, the sum-rate is maximized by a simple strategy: always allocate the power 

and rate to the user with the best instantaneous channel. Taking into account individual power constraints for the users, 

Tse and Hanly [3] indicate how to find the power control and rate allocation policies that maximize the weighted sum 

of the rates, by exploiting the polymatroid structure of the capacity region. Another important result in the area of 

wireless resource allocation is determined based on a combination of information theory and queueing theory. Yeh and 

Cohen [4][5] find an optimum policy named “Longest Queue Highest Possible Rate” (LQHPR), which allows the 

system to obtain the highest stable throughput, the shortest average queue length per user, and thus the shortest average 

delay. Related cross-layer approaches on queueing stability, delay, and adaptive coding and modulation schemes can 

be found in [6]-[8]. Recent studies [9][10] show that for multimedia transmission, the approaches above are not 

optimal from a video quality perspective because the characteristics of video streaming also need to be considered into 
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the cross-layer framework. The optimal rate allocation policy, Largest Quality Improvement Highest Possible Rate 

(LQIHPR), is proposed to maximize the overall video quality in a single-carrier multiple access fading channel [10]. 

However, prior works [9][10] cannot be extended to multi-carrier systems directly because allocating power and rate 

across different sub-carriers in order to maximize the overall quality is non-trivial due to the underlying vector 

channels. For multi-carrier networks, OFDM systems in particular, most of the papers in the literature are dealing with 

the downlink rate-sum, downlink utility-sum, and uplink rate-sum maximization problems [11]-[16]. In downlink, the 

power constraint is imposed over the total transmission power rather than the power of an individual user. In such 

systems, it has been accepted as an optimal solution that each sub-carrier is allocated to the user with the best channel 

condition and power is allocated by the water-filling over sub-carriers [11][12]. However, the optimality in downlink 

does not hold for uplink because each user has its own power constraint. For uplink, joint sub-carrier and power 

allocation algorithms are proposed to maximize rate-sum capacity [15][16]. 

In this paper, we address the problem of optimal resource allocation (power, rate, and sub-carrier allocation) across 

multiple users transmitting video bitstreams. Most of the existing cross-layer research focuses on the interaction 

among Physical (PHY), Medium Access Control (MAC), and Network layers [2]-[8]. Alternatively, we study this 

problem using an integrated cross-layer approach that also considers the source coder employed at the Application 

(APP) layer and the resulting utility impact (i.e. the video quality). We exploit the unique property of state-of-the-art 

video coders that prioritize the encoded video streams based on overall distortion impact [17]. This prioritization 

results in a concave increase of the utility (in terms of video quality) as a function of the allocated rate. We develop a 

unified PHY-MAC-APP framework and study the optimal resource allocation policy which maximizes the weighted 

sum of video qualities across all users. More importantly, as opposed to conventional approaches, which usually 

perform optimization considering the capacity region, our approach focuses on explicitly describing the achievable 

utility region. The proposed solution has many applications in practical systems, where multiple wireless capturing 

devices are transmitting their content. Typical applications include multi-user video transmission (e.g. uploading 

movies) over wireless LAN or spectrum agile radio [18][19], video surveillance form wireless camera, and multimedia 

streaming in digital subscriber line (DSL) systems [20]. 

In particular, we focus on Gaussian multiple access channels using two different multiple access strategies. First, we 

consider the general multiple access strategy, which allows users to utilize the entire frequency band simultaneously. 
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Next, we discuss the Frequency-Division Multiplexing Access (FDMA) strategy in which users share the total 

bandwidth in an efficient manner [21]. Throughout this paper, we take an information theoretic approach in deriving 

the optimal resource allocation solutions. Since the capacity region is the fundamental characterization of the 

achievable rates, we can derive the limit of the achievable video quality of a specific video coder by using operational 

rate-distortion theory. Our main contributions in this paper are as follows.  

First, for the general multiple access strategy, we demonstrate the convexity of the achievable utility region 

measured in the Peak Signal to Noise Ratio (PSNR) performance achieved by the various receivers. Without requiring 

full knowledge of the entire Shannon capacity region, we propose a procedure to determine the utility region for the 

two-user case and extend it to the multiple-user case using a heuristic approach. The proposed algorithms take 

advantage of the characteristics of the Shannon capacity region, make it tractable to describe the entire utility region, 

and greatly reduce the complexity of maximizing the weighted sum of the utilities compared to the exhaustive search. 

Second, we also examine the case in which multiple users access sub-carriers in the FDMA fashion. In this case, the 

implementation is simplified, but the problem is converted into an integer programming problem, which makes it 

difficult to solve. Fortunately, convex optimization theory can provide near-optimal solution analytically. We develop 

an iterative search algorithm to find the optimal resource allocation strategy for the two-user case and extend it to the 

multiple-user case by a heuristic approach inspired by the intuition gained from the two-user case. 

The rest of this paper is organized as follows. Section II describes the considered model of multi-carrier wireless 

networks for multi-user video streaming. Section III explains the deployed end-to-end utility objective function and 

formulates the multi-user resource allocation into an optimization problem. In Section IV, for the general multiple 

access strategy, we propose a procedure to determine the achievable utility region mapped from Shannon capacity 

region, and we develop an iterative approach to find the optimal solution for maximizing the weighted sum of the video 

qualities. Section V discusses optimal resource allocation for the FDMA strategy in detail. Section VI gives simulation 

results of the proposed algorithms to verify the effectiveness of our algorithms. Conclusions are drawn in Section VII. 

II. MULTI-CARRIER NETWORKS FOR MULTI-USER MULTIMEDIA TRANSMISSION 

A. System Description 

In this paper, we focus on the Gaussian multiple access channel. A Gaussian multiple access channel refers to a 
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multiple access channel where the additive noise is Gaussian [22]. The system diagram of the multi-carrier wireless 

networks for multi-user multimedia transmission is shown in Figure 1.  
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Figure 1. System Structure 

Suppose there are N  users in the system. The entire frequency band is divided into K  sub-carriers and the 

available bandwidth of each sub-carrier is B . Each user experiences a flat fading channel within the bandwidth of each 

sub-carrier. We denote user i ’s channel gain at the j th sub-carrier as ijH . In Figure 1, the received signal at the j th 

sub-carrier is given by 

 ( ) ( ) ( )

1

N

j ij ij ij j

i

Y n H X n N nω
=

= +∑ , (1) 

where ( )ijX n is the transmitted symbol of user i  at j th sub-carrier at time n , ijω is an indicator of whether user i  

occupies the j th sub-carrier, and ( )jN n  is the additive white Gaussian noise (AWGN) with two-sided spectral density 

of 0 2N . Each user i  is subjected to a long-term average power constraint at the j th sub-carrier: ( )
2

ij ijE X n P  ≤  
.  

Here, we denote the CSI vector as ( )1 2, , , N= �H H H H in which ( )1 2, , ,i i i iKH H H= �H , the power allocation 

vector as ( )1 2, , , N= �P P P P in which ( )1 2, , ,i i i iKP P P= �P , the sub-carrier allocation vector as ( )1 2, , , N= �ω ω ω ω in 

which ( )1 2, , ,i i i iKω ω ω= �ω , and the achievable rate vector 1 2[ ]TNr r r= �r in which ir  is user i ’s achievable rate 

under current power and sub-carrier allocation. 

Throughout this paper, we discuss two types of MAC strategies, i.e., the general multiple access strategy and the 

FDMA strategy. The optimal transmission strategy for the multiple access channel generally requires the entire 
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frequency band to be shared by all the users simultaneously. We name this transmission strategy as “general multiple 

access strategy”. Studying this strategy provides us with the upper bound of the utility. However, to achieve the 

Shannon capacity for a multiple access channel, joint decoding at the receiver is needed in general, which makes the 

implementation prohibitive. Although the FDMA strategy is not always optimal in the information theoretic sense, it is 

often desirable from a practical implementation point of view. FDMA transmission schemes allow different users to 

occupy orthogonal dimensions, so they can be separated at the receiver without joint decoding. This greatly simplifies 

the receiver design and it is especially suitable in OFDM systems. It allows exploring frequency multi-user diversity 

and also leads to good spectral efficiency. Hence, we also consider the FDMA strategy in our analysis.  

In the scenario of the general multiple access strategy, each user can transmit symbols using any sub-carrier. 

Therefore, 1, ,ij i jω = ∀ . In the case of the FDMA strategy, we have that or0 1ijω = , ,i j∀ , and 
1

1
N

ij

i

ω
=

≤∑ , j∀ . 

We assume that the N  users are streaming pre-compressed video content over a shared multi-carrier wireless 

infrastructure. The Central Spectrum Moderator (CSM) collects the accurate CSI H  and utility-rate functions from all 

users and performs resource allocation to maximize the overall video utility based on the collected information. To 

perform the resource allocation, the CSM needs to optimally determine the power allocation vector P . Here we 

assume each user is subjected to its maximum power constraint and the maximum allowable power for user i  is max
iP : 

 max

1

K

ij i

j

P P
=

≤∑ . (2) 

We denote ( )max max max
1 2, , , NP P P= �maxP . Note that if users share the whole frequency band in the FDMA fashion, the 

CSM also needs to determine ω  in order to allocate each sub-carrier to different users.  

B. Utility-Rate Functions 

In multimedia applications, the utility represents the video quality, which is determined by the bit rate, video 

sequences as well as video coder performance. Throughout this paper, we define the utility to be the video quality in 

terms of the PSNR, as this is the only widely accepted metric for assessing the video quality.  

It has been shown that partitioning the packets into different priority classes and correspondingly adjusting the 

transmission strategies for each class can significantly improve the overall received quality and provide graceful 

degradation [23][24]. Several operational utility-rate models for video coders based have been proposed [25][26]. It 
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has been shown that these utility-rate models can accurately capture the performance of various coders for different 

video sequence characteristics and practical video streaming considerations [25]-[27]. Our focus is to characterize the 

information-theoretic upper bounds for the performance for the achievable video quality region of operational video 

source schemes. In this paper, we use a popular utility rate model that is well-suited for the operational performance of 

state-of-the-art prioritized video coders [26]. Based on this model, the utility (PSNR) for user i  is given by  

 ( )
( )

( )

2
0

0 0

255
10 log i i

i i
i i i i

r R
U r

D r R c

−
=

− +
, (3) 

where 0 0, ,i i iR D c  are the parameters for this model, which are dependent on the video sequence characteristics and 

operational encoder-selected parameters. It is easy to see that this is a continuous utility-rate function with a 

continuously decreasing positive slope, reflecting the inherent prioritization of the video bitstreams
1
. Throughout this 

paper, we assume that 0i ir R> . 

III. PROBLEM FORMULATION 

In this section, we formulate the multi-user resource allocation into an optimization problem, briefly review the 

results on achievable capacity regions for the general multiple access strategy and the FDMA strategy from prior 

literature, and highlight the main challenges in solving the optimization problem in the utility domain for both multiple 

access strategies.  

,P ω

H

( ),C maxP ω ( ),U maxP ω

max
u

uβ

 
Figure 2. Problem Interpretation 

Figure 2 shows the basic idea in formulating this problem, which can be summarized into two steps. First, for any 

given power allocation P  and sub-carrier allocation ω  that satisfy the constraints, there will be a corresponding 

achievable rate vector r  within the capacity region ( ),C maxP ω , i.e., ( ),C∈ maxr P ω  [22][28]. Second, by mapping 

the rate vector r  into the utility vector u  based on the utility-rate functions ( )i iU r , we can obtain the corresponding 

utility region ( ),U maxP ω  , which is defined as follows: 

 ( ) ( ) ( ) ( )( ) ( ) ( ){ }1 1 2 2 1 2, , , , : , , , ,n n nU U r U r U r r r r C= ∈� �ω ωmax maxP P  (4) 

1Please note that all the results in this paper can be extended to other applications with utility-rate functions that are monotonically increasing 

and strictly concave. 
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It should be pointed out that  ( )i iU r  depends on the video sequence characteristics and operational encoder-selected 

parameters. The objective function that we aim to maximize is the weighted sum of all the users’ video qualities: 

 ( )max , . . ,s t U∈ max

u
u u Pβ ω , (5) 

where with
1

, 1NR+∈ =β β , is a given weighted vector that indicates the importance of the various users. Note that 

β  can also be interpreted as the bargaining power of the Nash bargaining solution [30], where the possible strategies 

and effects of assigning bargaining powers in discussed in details. 

Figure 2 highlights that, in order to determine an adequate solution for the optimization problem in (5), it is essential 

to determine whether we can describe the capacity region of each multiple access strategy. 

Here we first briefly review the results on the capacity regions for both the general multiple access strategy and the 

FDMA strategy in Gaussian multiple access channels. For Gaussian multiple access channels with inter-symbol 

interference (ISI), the optimal multiple access strategy is the general multiple access strategy, which results in the 

Shannon capacity region. The Shannon capacity region for multiple access multi-carrier system was characterized in 

[29]. Because each user has different channels, finding the optimal allocation of power over the frequencies is not a 

trivial task. The optimal power allocation for different points in the capacity region can be found numerically and 

efficiently [28][29]. In the case of the FDMA strategy, especially in the discrete version, the resource allocation 

problem is essentially a sub-carrier assignment problem. Unfortunately, an exact solution for this sub-carrier 

assignment problem usually involves an exhaustive search, which is computationally prohibitive when the number of 

sub-carriers is large. Therefore, the exact corresponding FDMA capacity region is generally hard to describe [15]. 

Based on whether or not the capacity regions of both multiple access strategies can be accurately and efficiently 

described, we propose two approaches to solve the optimization problem in (5).  

The first idea is to characterize the achievable capacity region ( ),C maxP ω , map it into the utility region ( ),U maxP ω  

using the deployed utility-rate functions and find the corresponding optimum on the boundary of ( ),U maxP ω . This 

approach is desirable in the general multiple access strategy, where the capacity region can be accurately and 

efficiently described. However, in the FDMA case, because the capacity boundary is hard to describe in general [15], 

this approach is not desirable. Moreover, in general, this approach requires the knowledge of the entire capacity 

boundary to find the optimal solution. Since the capacity boundary consists of infinite number of points and usually 
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lacks closed form expression, the computation complexity of optimal solution is prohibitive and low-complexity 

method is needed. We will discuss this approach in Section IV in detail. 

The second approach is quite straightforward. We can describe the corresponding utility vector u  as a function of 

ijP  and ijω  analytically, and then maximize the weighted sum of the utilities directly. For example, in the FDMA case, 

for any given sub-carrier allocation patternω , we can get the closed form expression of the utility vector u , and 

subsequently formulate the optimization problem. In Section V, in the context of the FDMA strategy, we will discuss 

this approach and its continuous relaxation thoroughly. Although the problem could also be formulated in a similar 

manner for the general multiple access strategy, this approach is not suitable because in this case, when performing 

channel decoding, we have to consider decoding order with a total number of !N  possibilities to derive the achievable 

rate vector r  and the objective function in (5) is non-convex in the power allocation vectorP .  

IV. OPTIMAL RESOURCE ALLOCATION FOR THE GENERAL MULTIPLE ACCESS STRATEGY 

In this section, for the general multiple access strategy, we explain the first approach in solving problem (5) in detail. 

Based on the fact that the Shannon capacity region under the general multiple access strategy is convex and the 

utility-rate functions are monotonically increasing and concave, we demonstrate the convexity of achievable utility 

region. Then we derive the optimality condition for achieving the utility boundary. For the two-user case, we develop 

a computationally efficient solution, which requires no full knowledge of the entire Shannon capacity region, to 

determine the boundary of achievable utility region. Subsequently, we extend it to the multiple-user case by heuristic 

approach. Based on these algorithms, we can solve the original maximization problem in the weighted sum of the 

utilities and these algorithms could be extended to some other utility fairness criteria (see e.g. [30]).  

Note that for the general multiple access strategy, 1, ,ij i jω = ∀ . In this section, we neglect ω  and simply denote the 

capacity region ( ),C maxP ω  and the utility region ( ),U maxP ω  as ( )C maxP  and ( )U maxP . We denote ( )PR  and 

( )PU  as the rate vector and utility vector associated with a power allocation vector P . We also denote the utility 

vector associated with a rate vector 1 2[ ]TNr r r= �r  as ( )U r , where ( ) ( ) ( ) ( )1 1 2 2[ ]TN NU r U r U r= �U r .  

A. Convexity of the Achievable Utility Region 

In this subsection, we show that the achievable utility region ( )U maxP  of the general multiple access strategy is 
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convex. 

Lemma 1:  If a rate vector ( )1 2, , , NR R R= �R is achievable, any rate vector ( )1 2, , , NR R R′ ′ ′ ′= �R  that satisfies 

, 1,2, ,i iR R i N′ ≤ ∀ = �  is also within the achievable capacity region ( )C maxP . 

Proof: This property follows from the convex hull operation that forms the capacity region of a Gaussian multiple 

access channel [22].                                          ■ 
Lemma 2:  The utility-rate function in (3) is a monotonically increasing and concave function in ir . 

Proof: The monotonically increasing property is straightforward. The concavity can be proved by taking the second 

derivative of ( )i iU r : 

 
( ) ( )[ ]

( ) ( )[ ]

2
0 0

22 2
0 0 0

2
10

i i i i ii i

i i i i i i i

c D r R cd U r

dr r R D r R c

− +
= −

− − +
. (6) 

Therefore, if 0i ir R> , 
( )2

2
0i i

i

d U r

dr
< . The utility-rate function in (3) is concave in ir . Note that the monotonically 

increasing and concave property comes from the inherent prioritization of the video bitstream.         ■ 
This conclusion reflects the fact that efficient video coders prioritize the encoded video streams based on their 

impacts on the overall distortion, i.e., the more important bits would be sent before less important ones [27]. 

Proposition 1:  The achievable utility region ( )U maxP  of the general multiple access strategy is convex. 

Proof: The convexity of ( )U maxP  can be proven as a direct consequence of Lemma 1 and Lemma 2.  

First, let us consider two power vectors P  and ′P  that satisfy andmax max

1 1

, 1,2, ,
K K

ik i ik i

k k

P P P P i N
= =

′≤ ≤ ∀ =∑ ∑ � . 

Now, define ( )ˆ 1 , 0 1α α α′= + − ≤ ≤P P P . Obviously, for this convex combination to be in ( )U maxP , it must 

satisfy the power constraints:  

 ( ) max

1 1 1

ˆ 1 , 1,2, ,
K K K

ik ik ik i

k k k

P P P P i Nα α
= = =

 
 ′= + − ≤ ∀ = 
  

∑ ∑ ∑ � . (7) 

For Shannon capacity region of multi-carrier systems, the achievable rates are concave functions in P  [28], 

therefore 

 ( ) ( ) ( ) ( )( ) ( )ˆ1 1α α α α′ ′+ − + − =≺P P P P PR R R R . (8) 

By the concave and monotonically increasing property in Lemma 2, (8) can be converted into 
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( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( )( )( ) ( )

1 1

ˆ1 1

α α α α

α α α α

′ ′+ − = + −

′ ′+ − + − =≺ ≺

P P U P U P

U P P U P P P

U U R R

R R R U

. (9) 

By the monotonically increasing property of ( )i iU r , from (9), we know that there exists a rate vector r  satisfying 

( ) ( ) ( ) ( )1α α ′= + −U UU r P P . Obviously, ( )( )1α α ′+ −≺Rr P P . 

By Lemma 1, we can conclude that r  can be achieved directly by a certain power allocation vectorP : 

 ( )=Rr P . (10) 

Therefore, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , 0 1 1U Uα α α′ ′∀ ∈ ≤ ≤ ⇒ + − = ∈U U U U U
max maxP P P P P P P .  

Hence, we can conclude that the utility region is convex.                        ■ 

Thus, explicitly characterizing the entire achievable convex utility region ( )U maxP  is equivalent to solving the 

following optimization problem 

 ( )max s.t. U∈ max

u
u  u Pβ , (11) 

for all possible and 1 1NR+∈ =β β . The problem in (11) is exactly the same form as the weighted sum maximization. 

B. Optimality Condition 

Due to the monotonically increasing property of the utility rate function, for any given power allocation reaching the 

boundary of ( )C maxP , there exists a corresponding point on the boundary of ( )U maxP . In this subsection, we derive 

the mapping function that projects the normal vector to the tangent hyperplane at each boundary point from the 

capacity region ( )C maxP  to the utility region ( )U maxP . This mapping function provides the optimality condition 

under which the problem in (11) reaches the optimum. 

Conventional approaches in solving (11), such as Largest Quality Improvement Highest Possible Rate (LQIHPR), 

searches the optimum along the utility rate function continuously until reaching the boundary of the capacity region 

[10]. In the case of scalar non-fading AWGN channel and fading channel with given power control, the capacity 

regions exhibit the polymatroid structure, which makes it possible to characterize the entire boundary with finite 

inequalities. Therefore, by checking these inequalities, we can examine whether or not a certain rate vector reaches the 

capacity boundary. However, for multi-carrier networks, this approach is computationally intensive because it is in 

general impossible to describe the capacity region in finite inequalities and thus, all the points on the boundary surface 

of the capacity region need to be calculated in advance. Besides, how to characterize the feasible utility region is also 
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of great interest since it has never been described explicitly for the general case in previous approaches [10][30].  

In order to solve the problem in (11), we could take advantage of existing numerical algorithms in describing the 

Shannon capacity region of multi-carrier multiple access channel. For the general multiple access strategy, we can 

trace out the entire capacity region by efficiently solving the maximization of the weighted sum of the rates for all 

possible µ : 

 ( )max s.t. C∈ max

r
r  r Pµ , (12) 

in which with
1

, 1,NR+∈ =µ µ is a given weighted vector whose components represent the relative priority for each 

user. In this paper, we modify the iterative waterfilling algorithm for the Gaussian vector multiple access channel in 

[28] to solve (12). (See Appendix A for the details.) The problem now is reduced to finding the optimal solution of 

problem (11) efficiently, based on the assumption that we can already efficiently solve problem (12) for all possibleµ .  

We have already shown that the achievable utility region ( )U maxP  is convex. Therefore, every point on the utility 

boundary is Pareto optimal [32]. Recall that the utility-rate functions monotonically increase in ir . We can conclude 

that each point on the utility boundary is mapped from one point that lies on the capacity boundary. Now we derive the 

mapping function, which projects the normal vector to the tangent hyperplane at each boundary point from the capacity 

region ( )C maxP  to the utility region ( )U maxP . Suppose a power allocation P  reaches the boundaries of ( )C maxP  

and ( )U maxP . We denote the normal vectors to the tangent hyperplanes at the capacity and utility boundary points as 

( ) ( )
1 1

arg max
NR and+∈ =

=
µ µ

µ µP PR  and ( ) ( )
1 1

arg max
NR and+∈ =

=
β β

β βP PU  respectively. 

Proposition 2:  For any power allocation ( )1 2, , , N= �P P P P  that achieves the boundary of ( )U maxP and satisfies 

(11), the relation between ( )Pµ  and β  is given by  

 
( ) ( )

( ) ( )
( )

1

=
�

�

β λ
µ

β λ

P P
P

P P
, (13) 

in which ( )
( ) ( ) ( )

1 2

1 2

N

N

x r x r x r

U x U x U x

x x x= = =

 ∂ ∂ ∂ =  ∂ ∂ ∂  
�Pλ , ( )1 2[ ]TNr r r= =�r PR , and �  represents the 

Hadamard product [33]. 

Proof : Since the capacity region is convex, it can be described by infinite inequality constraints 
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 ( )
{ }

{ }
1

| , 1NC R and+= ≤ ∀ ∈ =∩ i
i

max i i i iP r r rµ
µ

µ µ µ µ , (14) 

where 
( )

arg max ,
C∈

=µ µi
max

i

r P
r r . Form the Lagrangian of (5) as follows: 

 ( ) ( ) ( )
1

, i

i

v v

∞

=

= + −∑ µβ µ µi
i ir P u r rL , (15) 

in which ( ) ( )( ) ( )= = =u P U P U rU R  and 0, 1,2,iv i≥ = � . Note that in general, for the Shannon capacity region 

of the Gaussian multiple access channel with ISI, ′≠r rµ µ , if ′≠µ µ . By using the Karush-Kuhn-Tucker (KKT) 

condition, we take the derivative of (15) with respect to r . At the optimum, only one inequality constraint in (14) holds 

with equality.  We denote that active constraint to be ≤ opt
opt optr rµµ µ . According to complementary slackness [32],  

0optv > , and  

 ( ) ( ) opt
optv=�P Pβ λ µ , (16) 

in which ( ) ( )
1 1

arg max
NR and+∈ =

= =opt P P
µ µ

µ µ µR . Note that (16) is identical to (13), because 

 
( ) ( )

( ) ( )
( )

1 1 1

opt opt
opt

opt opt
opt

v

v
= = =

�

�

P P
P

P P

µβ λ µ
µ

β λ µ µ
, (17) 

where ( )µ P  and ( )β P  are the normal vectors to the tangent hyperplanes at the boundary points of the capacity and 

utility region respectively, and ( )λ P  consists of the first order derivatives of the utility-rate functions. Therefore, this 

equality gives the optimality condition for linking the boundary points of capacity region and utility region.    ■ 

By the equality in (13), we can project the normal vector to the tangent hyperplane at each boundary point from the 

capacity region ( )C maxP  to the utility region ( )U maxP . This mapping process is illustrated by the right pointing 

arrow in Figure 3 for the two-user case. For and
1
1NR+∀ ∈ =µ µ , we solve the problem (12), get the boundary point 

r , and subsequently use (13) to calculate the normal vector β . The right pointing arrow provides a possible solution 

of the problem in (11), that is, enumerate all the possible µ until the normal vector after mapping coincides with the 

original β  in (11). This solution is impractical because there are infinite possible choices in µ . As illustrated by the 

left pointing arrow in Figure 3, if β  is given, we are more interested in how to search µ  until the optimality condition 

in (13) holds. 
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The problem is converted into how to find the power allocation P  that satisfies the optimality condition for a given 

β . As shown in Figure 4, suppose that we randomly choose a rate vector 1 2[ ]TNr r r= �r  on the capacity boundary, 

there will be a corresponding vector ′λ , which satisfies 
( ) ( ) ( )

1 2

1 2

N

N

x r x r x r

U x U x U x

x x x= = =

 ∂ ∂ ∂ ′ =  ∂ ∂ ∂  
�λ . We can get a 

new weighted vector ′µ  by the equality in (13). Then, we solve the problem in (12), and denote its solution as ′r . 

Generally, ≠r r' , otherwise the optimality condition holds. In the following, we will discuss how to search and find 

the optimal solution of (13) efficiently starting from the two-user case. However, if 2N > , the problem will be 

significantly more complicated. Based on the insights gained from the two-user case, we develop a low-complexity 

heuristic search algorithm to seek the optimum for the multiple-user case. 

µ µ

2C

1C

2r

1r

1

=
�

�

β λ
β µ

β λ

2U

1U1u

2u

impractical (infinite choices of     )

proposed approach

( ) ( )1 1 1 2 2 2,u U r u U r= =

 
Figure 3. Optimality Condition for the Two-user Case 

Below, we highlight several monotonic properties upon which the search algorithms of finding the power 

allocationP , which satisfies (13), are based. 

( )µ i
( )1 iλ′

( )2 iλ ′

2U

1U

2R

1R

2C

1C

( )2 ir

( )1 ir
( )2 ir

( )1 ir

( ) ( ) ( )1 1 2 2i iλ β λ β ′ ′ ′=   iµ

2C

1C( )1 ir ′

( )2 ir ′

 
Figure 4. Bisection Search Algorithm for the Two-user case 

Proposition 3:  For any given , , 0�µ λ β  satisfying 
1 1

1= =µ β  and 
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1

=
�

�

β λ
µ

β λ
,  

where 
( ) ( ) ( )

1 2

1 2

N

N

x r x r x r

U x U x U x

x x x= = =

 ∂ ∂ ∂ =  ∂ ∂ ∂  
�λ  and 1 2[ ]TNr r r= �r , if the m th component mr of r  is increased 

and the other components are held fixed, the m th component mµ in µ  decreases. 

Proof: The equality is identical to 

 
1 1 2 2

1 1 2 2
1

N N

N N

λ β λ β λ β

λ β λ β λ β

 
  =
 
  

�

�

µ .  

Suppose we increase ir  for any i  and fix all the other ( )jr j i≠ . Due to the monotonically increasing and concave 

property of the utility rate functions ( )i iU r , iλ  will decrease and 0iλ > , while all the other ( )j j iλ ≠  remain fixed. 

Consequently, iµ  will monotonically decrease.                              ■ 
Proposition 4:  Suppose 1 2= [ ] N

N Rµ µ µ +∈�µ , 
1 1=µ , and max=

r
r rµ µ . For all m , if the m th component 

mµ of the weighted vector µ is increased and the other components are held fixed, the m th component of the rate 

vector rµ  remains the same or increases while all the other components of rµ  decreases. 

Proof: See Lemma 6 in [34].                                     ■ 

C. Algorithm for Describing the Two-User Utility Region 

Now we consider the two-user case. For the Shannon capacity region, we are able to solve (12) for arbitrary 

2
1 2 1

and 1Rµ µ +
 = ∈ =  

µ µ and the utility functions of both users are available. Note that 1 21µ µ= − , hence solving 

µ  is equivalent to finding 1µ . Proposition 3 and 4 enable us to use the bisection algorithm, which does not require full 

knowledge of the entire capacity boundary, to solve the problem in (11) efficiently. 

As shown in Figure 4, suppose that the rate vector 1 2[ ]TNr r r= �r  is the maximizer of rµ  in the capacity region. 

Then, we take the corresponding vector 
( ) ( ) ( )

1 2

1 2

N

N

x r x r x r

U x U x U x

x x x= = =

 ∂ ∂ ∂ ′ =  ∂ ∂ ∂  
�λ  and get a new weighted vector 

′µ , by 
′

′ =
′

�

�

β λ
µ

β λ
. Denoting ( )1 1gµ µ′ =  and ( ) ( )1 1 1f gµ µ µ= − , the bisection search algorithm in describing the 

two-user utility region is summarized in Algorithm 1. 
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Proposition 5:  Algorithm 1 converges to the unique solution of problem (11). 

Proof: By the concavity of ( )i iU r  and proposition 3 and 4, ( )1g µ  is a monotonically decreasing function. Therefore, 

( )1f µ  is monotonic in 1µ . Moreover, for the convex utility region, there exist solutions for ( )1 0f µ = . The 

monotonicity of ( )1f µ  guarantees that there exists a unique zero of the function [ ]0,1f ∈ R . The convergence of the 

bisection search is guaranteed and we can use it to find the boundary point where the optimality condition in (13) holds 

[32].                                                ■ 

Algorithm 1: Two-user optimum search algorithm for the general multiple access strategy. 

Input: , ,maxH P β ; error tolerance ε ; both users’ utility rate models;  

Initialization: Take (0)µ  randomly which satisfies (0) 1
1=µ , 1i = , flag = 0 

Repeat:  

1) Use Algorithm 5 in Appendix A to find the point on the capacity boundary which maximizes ( )iµ r ; 

2) Denote the solution in 1) as ( ) 1( ) 2( )

T

i ir r =   ir  and get the corresponding slopes 1( ) 2( ),i iλ λ  on each utility rate 

curve; 

3) Calculate  ( ) 1( ) 1 2( ) 2 1( ) 1 2( ) 2
1

i i i i iλ β λ β λ β λ β   ′ =       
µ  and ( ) ( )1( ) 1( ) 1( ) 1( ) 1( )i i i i if gµ µ µ µ µ′= − = − ; 

4) If flag = 0 

         ( ) ( )(0) 1 0 (0) 1 0,a bµ µ′= = , flag = 1; 

Else 

If ( ) ( )( )( ) 1 0i if a f µ⋅ < , ( )1( 1) ( ) 1( ) ( 1) ( ) ( 1) 1( )2, ,i i i i i i ia a a bµ µ µ+ + += + = = ; 

If ( ) ( )( )( ) 1 0i if a f µ⋅ > , ( )1( 1) 1( ) ( ) ( 1) 1( ) ( 1) ( )2, ,i i i i i i ib a b bµ µ µ+ + += + = = ; 

5) 2( 1) 1( 1) ( 1) 1( 1) 2( 1)1 , , 1i i i i i i iµ µ µ µ+ + + + +
 = − = = +  

µ ; 

Until: ( )1( )if µ ε<  

Return: ( )ir  and its corresponding power allocation P  

Note that we choose bisection algorithm, because no closed form expression exists in general for ( )1f µ . Within the 

i th iteration in Algorithm 1, 1( )iµ lies in the interval ( ) ( ),i ia b 
  

 and 1( ) 2( ) 1( ) 2( ), , ,i i i ir r r r′ ′ are on the Shannon capacity 

boundary. The monotonic properties in proposition 3 and 4 ensure that both 1( ) 1( )i iµ µ′− and 2( ) 2( )i iµ µ′−  decrease 

after each iteration until the optimality condition holds. The number of iterations for this bisection search is upper 
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bounded by 2log 1/ε   . 

D. Low-Complexity Heuristic Algorithm for Describing the Multiple-User Utility Region 

Since proposition 3 and 4 only guarantee component-wise monotonicity, Algorithm 1 cannot be extended to the 

multiple-user case directly. In the multiple-user case, the only way to find the optimum is to characterize the entire 

capacity region ( )C maxP  first, solve the utility-maximization problem subject to the constraint of this capacity region, 

and find the optimal rate vector. This algorithm is impractical, because the boundary of ( )C maxP consists of infinite 

number of points and usually lacks closed form expression. In this subsection, we will discuss how to attempt to find 

the optimum by developing a heuristic search algorithm inspired by the intuition gained from the two-user search 

algorithm. 

In the two-user case, both 1( ) 1( )i ir r ′− and 2( ) 2( )i ir r ′− decrease after each iteration. Intuitively, in the multiple-user 

case, we should update µ  so that ( ) ( )n i n ir r ′−  decreases for 1,2,...,n N= . Similar to Algorithm 1, we still calculate 

( )iµ and ( )i′µ  within each iteration. Here, we denote the maximizers of ( )iµ r  and ( )i′µ r  as ( )ir  and ( )i′r , and the m th 

components of ( )iµ and ( )ir  as ( )m iµ  and ( )m ir . The basic idea of this N -user heuristic search algorithm is to partition 

the users into two groups according to the component-wise relationship between ( )ir  and ( )i′r , i.e., if ( ) ( )m i m ir r ′< , we 

put user i  in group 1, otherwise group 2. For users in group 1, because ( ) ( )m i m ir r ′< ,  we should update ( 1)i+µ  in order 

to cause ( 1)m ir + to increase. Similarly, we should decrease ( 1)m ir +  for users in group 2. From proposition 4, intuitively, 

we can infer that if we increase ( )m iµ , there is a high possibility that ( )m ir  also increases. Therefore, to update ( 1)i+µ , 

we can simply partition the users into two groups mentioned above, keep the ratio of ( )iµ within each group and adjust 

the ratio between the two groups. The new ( 1)i+µ  will cause ( ) ( )m i m ir r ′−  to decrease for all 1,2, ,m N= �  with large 

probability. We can repeat this procedure until the optimality condition in (13) holds. The low-complexity heuristic 

search for the general multiple access strategy in the multiple-user case is summarized in Algorithm 2. 

It should be pointed out that the step size δ  should be carefully chosen. The step size δ  not only affects the rate of 

convergence, but also determines the accuracy that the algorithm can achieve. Large step sizes δ  will have fast rates of 

convergence, but small step sizes δ  will result in better achieved accuracy. Therefore, the step size δ  could be chosen 
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according to the specific requirement of convergence-rate and desired accuracy. The step size δ  can also be updated 

adaptively at each iteration [35]. 

Algorithm 2: Multiple-user low-complexity heuristic search for the general multiple access strategy. 

Input: , ,max
H P β ; error tolerance ε ; step size δ ; all users’ utility rate functions; maximum iteration number maxI  

Initialization: Take (0)µ  randomly which satisfies (0) 1
1=µ , 1i =  

Repeat:  

1) Use Algorithm 5 in Appendix A to find the point on the capacity boundary which maximizes ( )iµ r ; 

2) Denote the solution in 1) as ( ) 1( ) 2( ) ( )[ ]Ti i i N ir r r= �r  and get the corresponding slopes ( ) 1( ) 2( ) ( )[ ]i i i N iλ λ λ= �λ  on 

each utility rate curve; 

3) Calculate  ( ) ( ) ( ) 1i i i
′ = � �µ β λ β λ ; 

4) Use Algorithm 5 in Appendix A to find the point on the capacity boundary which maximizes ( )i′ rµ  and denote the 

solution as ( ) 1( ) 2( ) ( )[ ]Ti i i N ir r r′ ′ ′ ′= �r ; 

5) Let ( ) 1( ) 2( ) ( )

T

i i i N ie e e =   
�e , where ( )( ) ( ) ( ) 0 , 1,2, ,n i n i n ie I r r n N′= − < = �  and ( )I i  is the indicator function; 

6) 
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( )

( 1)

( ) ( )
1

1 1

1 1

i i i i

i

i i i i

δ δ

δ δ
+

+ + − −
=

+ + − −

1

1

� �

� �

e e

e e

µ µ
µ

µ µ
, where [1 1 1]=1 � , 1i i= + ; 

Until: , 1,2, ,ni nir r n Nε′ − < = �  or maxi I=  

Return: ( )ir and its corresponding power allocation P  

The algorithms discussed in this section can also be applied to solve other utility-fair resource allocation problems. 

For example, in [30], the authors adopt the Kalai-Smorodinsky bargaining solution (KSBS) when performing the 

resource allocation in 802.11 Wireless LAN. The wireless resources are allocated so that in the application-specific 

utility domain the achieved utility of every participating station incurs the same quality penalty. By adjusting the 

weighted vector, our algorithm can provide an efficient solution to find an optimum in the context of KSBS bargaining 

without the need of calculating all the boundary points of utility region. 

V. OPTIMAL RESOURCE ALLOCATION FOR THE FDMA STRATEGY 

In the Gaussian multiple access channel, successive decoding is indispensable to achieve the boundary of capacity 

region. However, it will greatly increase the complexity of the receiver. Although the FDMA strategy is not optimal in 

the information theoretical sense, the frequency-division multiple access technique is often desirable from a practical 
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implementation point of view. A FDMA transmission scheme allows different users to occupy orthogonal dimensions, 

so they can be separated at the receiver without joint decoding. This scheme can utilize frequency multi-user diversity 

and lead to good spectral efficiency. In this section, we examine how to optimize the resource allocation in order to 

maximize the weighted sum of the utilities.  

If multiple users access the system in the FDMA fashion, the channel capacity at j th sub-carrier for user i  is 

determined by 

 

2

0

log 1
ij ij

ij ij
ij

P H
C B

N B
ω

ω

    = + 
    

. (18) 

The user i ’s achievable rate ir  cannot exceed its capacity, which leads to 

 
1

K

i i ij

j

r C C
=

≤ =∑ . (19) 

From an information theoretic point of view, the channel capacity defines the maximum achievable rate and hence, 

it determines the corresponding maximum video quality. Therefore, the resource allocation problem can be formulated 

as 

 

( )

( )
0

, 0 01

max

1

1

max log

. . ,

0 , ,

1 ,

ij ij

N
i i

i
P i i i ii

K

ij i

j

ij

N

ij

i

C R

D C R c

s t P P i

P i j

j

ω
β

ω

=

=

=

−

− +

≤ ∀

≥ ∀

≤ ∀

∑

∑

∑

, (20) 

or0 1 , ,ij i jω = ∀  

in which iC  satisfies
2
 

 

2

01

log 1
K

ij ij
i ij

ijj

P H
C B

N B
ω

ω=

    = + 
    

∑ . (21) 

Unfortunately, this power and sub-carrier assignment problem belongs to the class of integer programming problem, 

for which an exact solution usually requires an exhaustive search. However, this becomes unacceptable when the 

number of sub-carriers and users is large because it is generally computationally prohibitive. In the following 

subsection, we will discuss a feasible approach using continuous relaxation, which makes the problem tractable while 

2The rate models in (21) can be modified to approximate the real systems by adding a SNR-gap term [31], which defines the gap between a 

practical coding and modulation scheme and the channel capacity, into the expression of the Shannon capacity. 
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achieving a near-optimal performance. 

A. Continuous Relaxation 

Fortunately, we can approximate the original integer programming problem in (20) by its continuous relaxation. 

Instead of forcing the original optimization variable to be either 0 or 1, the last constraint in (20) can be relaxed to 

 0 1ijω≤ ≤ . (22) 

Mathematically, the continuous relaxation of the original problem in (20) can be posed as follows: 

 

( )

( )
0

, 0 01

max

1

1

max log

. . ,

1 ,

0 , ,

0 , ,

ij ij

N
i i

i
P i i i ii

K

ij i

j

N

ij

i

ij

ij

C R

D C R c

s t P P i

j

P i j

i j

ω
β

ω

ω

=

=

=

−

− +

≤ ∀

≤ ∀

≥ ∀

≥ ∀

∑

∑

∑ , (23) 

in which 
2

01

log 1
K

ij ij
i ij

ijj

P H
C B

N B
ω

ω=

   = + 
   

∑ .  

Lemma 3: The objective function in the optimization problem in (23) is a concave function in ( ),ij ijP ω . 

Proof: In [15], it has been shown that iC  is a two-dimensional concave function in ( ),ij ijP ω . Note that the utility 

functions ( )i iU r  are concave and monotonically increasing. By the property of operations which preserve convexity 

[32], the objective function here is still concave.                             ■ 

The constraint set in (23) is convex because the constraints in the optimization problem are linear. Hence, the 

essence of the problem is to maximize a concave function subject to a convex constraint. Several numerical search 

algorithms exist to obtain solutions efficiently [32]. However, these general numerical algorithms do not shed much 

insight on these resource allocation problems. Instead, we explore the specific problem structure in order to lead to 

intuitions on the structure of the optimal solution that cannot be gained from purely numerical methods. In the 

following, we again start with the two-user case, discuss its near-optimal solution, and gain intuition that can be used 

for a low-complexity heuristic solution for the multiple-user case. 
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B. Near-Optimal Solution for the Two-User Case 

If 2N = , the Lagrangian function of (23) can be written as a function of ,ij ijPω  

 

( )
( )

( )

2 2
0 1

0 01 1 1

2 2 2
2 max 1 2

1 1 1 1 1 1

, log 1
K

i i
ij ij i j ij

i i i ii j i

K K K

i ij i ij ij ij ij

i j i j i j

C R
P

D C R c

P P P

ω β κ ω

κ ν ν ω

= = =

= = = = = =

 −  = + −  − +  

  + − − −   

∑ ∑ ∑

∑ ∑ ∑∑ ∑∑

L

, (24) 

where 1 2 1, , ,j i ijκ κ ν and 2
ijν  are Lagrangian multipliers. Taking the derivative with respect to ijP  gives the KKT condition 

corresponding to the usual waterfilling solution, which means there exist positive constants iK , such that for all 

1,2i =  and for all 1,2, ,j K= � , if 0ijP > , then: 

 
( )

( )
0

2
0 0

1
log

ij i ii
i

ij ij i i i i ii

P C RB
K

g C D C R c

β

ω κ

 −∂  + = = − ⋅  ∂ − +  
, (25) 

and if 0ijP = , then 

 
1

i
ij

K
g

≥ , (26) 

in which 
2

0

ij
ij

H
g

N B
=  and the water-level iK  is actually a function of iβ  and iC . By using the KKT condition, we also 

take the derivative of (24) with respect to ijω , and have for all 1,2, , ,j K= � if 1 0jω >  and 2 0jω > , i.e., the j-th 

sub-carrier is by both users, then 

 
( ) ( )[ ] ( ) ( )[ ]

1 1 2 2

1 1 1 2 2 2

1 1 2 21 2

1 2
1 2

1 01 01 1 01 1 2 02 02 2 02 2

log 1 log 1

1 1

j j j j

j j j j j j

j j j jj j

j j

P g P g

P g P g

P g P g

C R D C R c C R D C R c

ω ω

ω ω

ω ω
β β

         + − + −   
         + +

=
− − + − − +

. (27) 

Denoting
( ) ( )[ ]0 0 0

i
i

i i i i i iC R D C R c

β
ρ =

− − +
, we have 

 ( ) ( )1 1 1 2 2 2
1 1 2 2

1 1
log 1 log 1j j

j j

g K g K
g K g K

ρ ρ
         + − = + −   
         

. (28) 

The equality is satisfied only if that sub-carrier is shared. Multimedia applications generally require high data rates 

to achieve reasonable quality. Therefore, the system usually operates at high SNR, and 
1

ij ig K
on either side of (28) 

approaches 0. We take the difference between the left-hand side and right-hand side as a function f of 1 2 1 2, , ,j jg g ρ ρ , 
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1 1 1

2 2 2

1 1 1
2 2 2 1

2 2 2

log log
j j

j j

g g K
f

g g K

ρ ρ ρ

ρ ρ ρ
ρ ρ

           ≈ + + −              
. (29) 

Similarly with the Theorem 2 in [15], the optimal frequency partition that maximizes 1 1 2 2U Uβ β+  consists of two 

contiguous frequency bands with user 1 using the lower frequency sub-carriers and user 2 using the higher frequency 

sub-carriers. Assume we pre-arrange the index of sub-carriers to make 1 2
1 2j jg gρ ρ  decreasing in j. Since for any fixed 

1ρ and 2ρ , 1 2
1 2j jg gρ ρ  decreases in j , we are able to decide the optimal sub-carrier allocation by checking whether or not 

( )1 2
1 2 0j jf g g
ρ ρ > . If ( )1 2

1 2 0j jf g g
ρ ρ > , that sub-carrier will be assigned to user 1, otherwise it should be assigned to user 2.  

We develop an iterative search algorithm to find the near-optimal resource allocation strategy for the two-user case. 

The basic idea is to update sub-carrier allocations, 1ρ and 2ρ  repeatedly. Within each iteration, we fix iρ  and use the 

optimality condition to achieve the desired point in the current achievable utility region. Then, we update iρ  according 

to the new sub-carrier allocation. The iterative algorithm converges when (27) is satisfied. The proposed algorithm is 

summarized in Algorithm 3. 

Algorithm 3  Two-user resource allocation algorithm for the FDMA strategy. 

Input: , ,max
H P β  

Initialization: Make an initial sub-carrier allocation so that 1 01C R> and 2 02C R> , calculate 1ρ and 2ρ  

Repeat:  

 (1) Sort the sub-carriers according to 1 2
1 2j jg gρ ρ  from the largest to the smallest. 

 (2) For j=0,…,K 

   water-fill for user 1 using sub-carrier 1 to j 

water-fill for user 2 using sub-carrier j+1 to K 

 (3) Choose the frequency partition boundary to be the one that maximizes 
( )

( )

2
0

0 01

log i i
i

i i i ii

C R

D C R c
β

=

−

− +
∑  

(4) Update iρ  according to 
( ) ( )[ ]0 0 0

i
i

i i i i i iC R D C R c

β
ρ =

− − +
 

Until: No improvement can be achieved in step (3) 

Return: Sub-carrier assignment ω  and power allocation P  

The difference between the proposed sub-carrier allocation and the continuous-relaxed optimal sub-carrier 

allocation is that only one sub-carrier is allocated differently. More specifically, the optimum of continuous-relaxed 

problem indicates that the sub-carrier satisfying (27) should be divided into two smaller bins and allocated to each user 
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separately, and our proposed algorithm assign it to only one user. Since the continuous-relaxation provides an upper 

bound of the optimum of original integer programming problem, the proposed algorithm can achieve near optimal 

performance. 

C. Low-Complexity Heuristic Solution for the Multiple-User Case 

If the number of users is larger than two, the continuous relaxation optimization problem in (23) can only be solved 

numerically. However, as stated before, pure numerical algorithms generally do not offer much insight into the original 

problem. Besides, most existing research works focus on solving the resource allocation problem in OFDM system in 

a centralized fashion [13]-[14], in which the computational complexity are generally high with an increasing number 

of sub-carriers and users. Note that in the case of multiple users, the original problem could be viewed as a composition 

of many two-user sub-problems. Without loss of generality, assuming N is even, the problem in (5) is identical to 
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where iK  is a set of the indices of the sub-carriers that are allocated to user 2i and 2 1i + , { }
1

2

0
1,2, ,

N

i
i

K K

−

=
∪ = �  and 

1
2

0

N

i
i

K

−

=
∩ = ∅ .  

Because the sub-carriers are allocated orthogonally among different users in FDMA systems, the optimal solution of 

the original problem in (5) also achieves the optimal solution of each two-user sub-problem. Therefore, we can 

decompose the multi-user sub-carrier allocation problem into multiple two-user resource allocation problems and 

apply Algorithm 3 to solve each sub-problem. Here, we propose a method based on the criteria of “serving the highest 

demand first”. We define the “demand value” iD  for each user as 

 
( )

i

i
i i

x r

U x
D

x
β

=

∂
=

∂
 (31) 
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Algorithm 4 N -user “serving the highest demand first” allocation algorithm for the FDMA strategy 

Input: , ,max
H P β  

Initialization: Make an initial sub-carrier allocation, sort 
( )

i

i
i

x r

U x

x
β

=

∂

∂
in the descending order, and construct 

sub-carrier exchange matrix A with 0, ,ijA i j= ∀  

Repeat:  

 Loop: For i =1,…,N  

  For j =1,…,N  ( )j i≠  

If 0ijA =  

Apply Algorithm 3 to re-allocate user i  and j ’s sub-carriers and calculate ( ) ( ){ }i i i j j jU r U rβ β∆ +  

      If  ( ) ( ){ } 0i i i j j jU r U rβ β∆ + >  

                       (1) Set 0,ik jk ki kjA A A A k= = = = ∀  

(2) Re-sort the “demand values” 
( )

i

i
i

x r

U x

x
β

=

∂

∂
in the descending order  

(3) Adjust the column and row of A  correspondingly 

(4) Go to Loop; 

         Else 

             Set 1ij jiA A= =  

Until: 1, ,mni j N and A m n= = = ∀  

Return: Sub-carrier assignment ω  and power allocation P  

The basic idea of “serving the highest demand first” is to allow the user with the largest value of iD  to negotiate its 

sub-carriers allocation with other users first. If the user with the highest demand cannot improve the weighted sum of 

the utilities by negotiating with other users, we consider the user with the second highest demand and let it negotiate 

with the other users, and so forth. If any exchange of sub-carrier between two users is made, we re-calculate the new 

value of iD  for those two users who exchanged their sub-carriers, re-sort their demand values, and restart the process 

of “serving the highest demand first”. We repeat this procedure iteratively until no further improvement can be made. 

This algorithm will results in a “local optimum” in the sense that the performance cannot be further improved by 

exchanging resources between any two users. Compared with the optimal algorithm of which the computational 

complexity is KN , the overall complexity for each iteration of our proposed scheme is at most ( )2 21 logN K K−  [12]. 

To further reduce the complexity of the algorithm, we introduce the sub-carrier exchange matrix A , whose entry 



 25 

ijA  indicates the history whether user i  and j  have negotiated with each other under the current sub-carrier allocation 

pattern. If these two users have negotiated before under the same sub-carrier allocation pattern, it means that no 

improvement can be made, thus we do not need to re-allocate sub-carriers between them. As soon as any exchange of 

sub-carrier is made between two users, the corresponding entries of those two users will be set to zero. The algorithm 

of “serving the highest demand first” is summarized in Algorithm 4. 

VI. SIMULATION RESULTS 

The performances of the proposed algorithms are examined in this section. For the purpose of illustration, we 

consider a multi-carrier system with only 8 sub-carriers. We assume the bandwidth of each sub-carrier is B = 50 kHz.  

Now we consider the two-user case. The channel conditions of the sub-carriers for the two users are given in Table 

I. We choose the weighted vector 0.9 0.1 =   
β for illustration and max 1.2 max 2

1 210 , 10P P= = . The parameter values for 

the utility-rate function deployed for these experiments are determined based on a state-of-the-art wavelet video coder 

[36]. In this case, we assume that user 1 wants to transmit the Mobile video (CIF, 15Hz) with 01 1D = , 01R = 44.04 

kbps, and 1c = 38230 kbps, while user 2 has the the Foreman video (CIF, 15Hz) for transmission with 02 1D = , 

02R = 20.72 kbps, and 2c =2760 kbps. 0 0, ,i i iR D c  are the parameters of the utility-rate model in (3). 

TABLE I 

CHANNEL CONDITION OF A TWO-USER SYSTEM ( 0 1N B = ) 

User 
2
1iH  2

2iH  2
3iH  2

4iH  2
5iH  2

6iH  
2
7iH  2

8iH  

User 1 ( )1i =  0.5718 1.4196 0.0466 1.3392 1.3138 2.3280 0.4179 2.2805 

User 2 ( )2i =  1.4406 1.3182 0.5150 0.6160 0.1048 0.0625 0.4122 1.0255 

First, we simulate the general multiple access strategy. As shown in Figure 5, by varyingµ and solving the problem 

in (12) via the iterative water-filling algorithm, we can obtain a series of rate vectors and trace out the corresponding 

Shannon capacity region.  

We apply Algorithm 1 to maximize uβ  and examine its convergence. As shown in Table II, Algorithm 1 converges 

after around 7 iterations. The rate vector which maximizes uβ is around [685.23 kbps 786.87 kbps]
T
 and it can be 

verified that it approximately satisfies the optimality condition in proposition 2. The optimal power allocation is given 

in Table III. Under this power allocation, user 1’s average PSNR is 30.5929dB, user 2’s average PSNR is 41.5009dB 
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and the weighted sum of PSNRs is 31.6837dB. As opposed to our algorithm, conventional sum-rate-maximizing 

approach that does not consider the video characteristics always chooses to maximize 1 2r r+  in the two-user system. 

The allocation outcome is that user 1 experiences an average PSNR of 28.1790dB, user 2 experiences an average 

PSNR of 42.7704dB, and the weighted sum of PSNRs is 29.6382dB. For user 1, the sum-rate-maximizing approach 

will result in an unacceptable video quality below 30dB. 
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Figure 5 The Shannon Capacity Region of a Two-User System 

Next, we consider the scenario of FDMA and still assume the same channel condition in Table I. We apply 

Algorithm 3 to derive the near-optimal power allocation and the solution is given in Table III. In the optimal power 

allocation scheme, users are allocated the sub-carriers at which they experience good channel condition and both of 

them water-fill their power across the sub-carriers assigned to them. Under this power allocation, user 1’s average 

PSNR is 30.5941dB,  user 2’s average PSNR is 37.5560dB and the weighted sum of PSNRs is 31.2903dB. 

As expected, under the same channel conditions, the weighted sum of the utilities in general multiple access strategy 

is larger than the FDMA strategy because the former one is optimal from the information theoretic view. Specifically, 

in this example, the weighted sum of PSNRs for the general multiple access strategy is only 0.3934dB larger than the 

FDMA strategy. Since the general multiple access strategy provides an upper bound of the optimal performance of 

FDMA strategy, the resource allocation scheme provided by Algorithm 3 can achieve near-optimal performance.  

In the following, we consider the multiple-user case with 3N =  users. The channel conditions of the sub-carriers 

for the three users are given in Table IV. We choose the weighted vector 0.3 0.3 0.4 =   
β  for illustration and 

max max 1.5 max 2
1 2 310, 10 , 10P P P= = = . We assume that user 1 wants to transmit the Foreman video (CIF, 15Hz) with 
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01 1D = , 01R = 20.72 kbps, and 1c = 2760 kbps, user 2 has the Coastguard video (CIF, 30Hz) for transmission with 

02D =4.3, 02R = 0 kbps, and 2c =6329.7 kbps, while user 3 wants to transmit the Foreman video (CIF, 30Hz) with 

03D =3, 03R = 55.08 kbps, and 3c = 4610 kbps. 

TABLE II 

AN EXAMPLE OF ALGORITHM 1 

Iteration ( )iµ  
( )
T
ir  (kbps) ( )i′µ  ( )

T
i
′r  (kbps) ( ) ( )[ ]i ia b  

1i =  [0.5391   0.4609] [601.39  934.16] [0.9509   0.0491] [685.33  785.25] [0.5391   0.9509] 

2i =  [0.7450   0.2550] [679.49  813.06] [0.9342   0.0658] [685.24  786.64] [0.7450   0.9509] 

3i =  [0.8479   0.1521] [684.10  795.66] [0.9321   0.0679] [685.23  786.82] [0.8479   0.9509] 

4i =  [0.8994   0.1006] [684.95  789.87] [0.9314   0.0686] [685.22  786.88] [0.8994   0.9509] 

5i =  [0.9251   0.0749] [685.18  787.44] [0.9312   0.0688] [685.22  786.91] [0.9251   0.9509] 

6i =  [0.9380   0.0620] [685.26  786.32] [0.9310   0.0690] [685.22  786.92] [0.9251   0.9380] 

7i =  [0.9316   0.0684] [685.23  786.87] [0.9311   0.0689] [685.22  786.91] [0.9251   0.9316] 

TABLE III 

POWER ALLOCATION OF THE TWO-USER SYSTEM 

MAC strategy User 1iP  2iP  3iP  4iP  5iP  6iP  7iP  8iP  

User 1 ( )1i =  1.4505 2.5221 0 2.5245 2.6773 3.0088 0.8308 2.8348 
General MAC 

strategy 
User 2 ( )2i =  19.454 17.249 18.783 13.612 0 0 17.456 13.445 

User 1 ( )1i =  0 3.0814 0 3.0392 3.0247 3.3563 0 3.3474 
FDMA 

strategy User 2 ( )2i =  34.326 0 33.079 0 0 0 32.595 0 

In the case of the general multiple access strategy, we apply Algorithm 2 to search the optimum. We set step size 

δ = 0.1. As shown in Table V, in this case, Algorithm 2 converges after around 20 iterations. Based on the result after 

the 20
th
 iteration, the rate vector which maximizes uβ  is approximately [586kbps 698.4kbps 937.1kbps]

T
. By 

choosing smaller step size δ , we can reach a more accurate solution at the expense of decreasing the speed of 

convergence. Under this power allocation, user 1’s average PSNR is 40.4379dB, user 2’s average PSNR is 36.8719dB, 

user 3’s average PSNR is 39.1417dB, and the weighted sum of PSNRs is 38.8496dB. Conventional 

sum-rate-maximizing approach with = 1/3 1/3 1/3 
  

µ will cause the weighted sum of PSNRs to be 36.2988dB, 
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which is of nearly 3dB degradation. 

TABLE IV 

CHANNEL CONDITION OF A THREE-USER SYSTEM ( 0 1N B = ) 

User 
2
1iH  2

2iH  2
3iH  2

4iH  2
5iH  2

6iH  
2
7iH  2

8iH  

User 1 ( )1i =  0.3758 4.1200 2.0213 1.7739 0.8033 1.7400 0.9460 0.2058 

User 2 ( )2i =  4.9634 7.3880 3.1333 0.9054 0.0961 4.4658 0.9182 0.4643 

User 3 ( )3i =  2.2758 0.3953 0.8065 1.6528 1.1393 0.4865 2.1461 3.4382 

TABLE V 

AN EXAMPLE OF ALGORITHM 2 

iteration ( )iµ  
( )
T
ir  (Mbps) ( )i′µ  ( )

T
i
′r  (Mbps) 

1i =  [0.6000  0.2000  0.2000] [0.5865  0.4967  1.1388] [0.4024  0.4130  0.1845] [0.2974  1.1308  0.7544] 

2i =  [0.5976  0.2032  0.1992] [0.5865  0.6845  0.9509] [0.4404  0.2995  0.2601] [0.5853  0.7081  0.9276] 

3i =  [0.5951  0.2065  0.1984] [0.5865  0.6886  0.9467] [0.4408  0.2973  0.2619] [0.5855  0.7055  0.9301] 

4i =  [0.5927  0.2098  0.1976] [0.5865  0.6914  0.9437] [0.4410  0.2959  0.2632] [0.5857  0.7036  0.9319] 

�  �  �  �  �  

20i =  [0.5507  0.2381  0.2112] [0.5864  0.6984  0.9363] [0.4415  0.2922  0.2663] [0.5860  0.6990  0.9366] 

Now consider the FDMA strategy under the same channel condition. We apply Algorithm 4 of “serving the highest 

demand first” to allocate sub-carriers and power among the three users. Our proposed scheme has the complexity of 

( )2 21 logN K K− = 96, which is only 1.46% of the complexity of optimal algorithm in which KN =  6561. With the 

increasing in the number of sub-carriers, e.g., in IEEE 802.11a, K = 48 [37], the reduction in complexity would be 

more substantial. The result is shown in Table VI. Similar to the two-user case, the users are allocated the sub-carriers 

at which they experience good channel conditions and all of them water-fill across the sub-carriers assigned to them. In 

this case, Algorithm 4 converges to a power allocation scheme with the achievable rate vector =r [480.08kbps 

856.34kbps 1125kbps]
T
 and it achieves almost the same performance as the general multiple access strategy. Under 

this power allocation, user 1’s average PSNR is 39.6746dB, user 2’s average PSNR is 37.4521dB, user 3’s average 

PSNR is 39.6195dB, and the weighted sum of PSNRs is 38.9858dB. Note that the weighted sum of PSNRs here is 

slightly larger than in the general multiple access strategy case above, because we can only provide the optimal 
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solution approximately by Algorithm 2. 

TABLE VI 

POWER ALLOCATION OF THE THREE-USER SYSTEM 

MAC strategy User 1iP  2iP  3iP  4iP  5iP  6iP  7iP  8iP  

User 1 ( )1i =  0 2.077 1.921 1.995 1.167 1.581 1.259 0 

User 2 ( )2i =  5.307 8.709 8.445 0 0 9.162 0 0 

General 

MAC 

strategy 
User 3 ( )3i =  11.683 0 0 20.772 21.818 0 22.498 23.229 

User 1 ( )1i =  0 0 0 0 0 10 0 0 

User 2 ( )2i =  5.969 5.7852 5.9029 4.9998 5.0153 0 3.9507 0 
FDMA 

strategy 

User 3 ( )3i =  0 0 0 0 0 0 0 100 

VII. CONCLUSIONS 

In this paper, we address the problem of multi-user video transmission in multi-carrier wireless networks. Focusing 

on two types of MAC strategy, i.e., the general multiple access strategy and the FDMA strategy, we propose two 

approaches to maximize the weighted sum of video qualities of all the users’. For the general multiple access strategy, 

we propose a general procedure to determine the achievable utility region under the constraints of a given capacity 

region. In the FDMA scenario, we resort to continuous relaxation to seek near-optimal solutions analytically. For both 

MAC schemes, we first develop iterative search algorithms to find the optimal resource allocation strategies for the 

two-user case. Subsequently, inspired by the intuition gained from the two-user case, we extend them to the 

multiple-user case using low-complexity heuristic approaches. Numerical experiments show that all these algorithms 

achieve significant performance improvements by explicitly considering the video utility impact and the specific 

rate-distortion performance of the operational video coder deployed. 

REFERENCES 

[1] A. R. S. Bahai, B. R. Saltzberg, M. Ergen,  Multi-carrier digital communications: Theory and applications of OFDM. New 
York: Springer, 1999. 

[2] R. Knopp and P. A. Humblet, “Information capacity and power control in single-cell multiuser communications,” in Proc. 
IEEE ICC, vol. 1, pp. 331–335, June 1995. 

[3] D. Tse and S. Hanly, “Multiaccess fading channels-part I: polymatroid structure, optimal resource allocation and throughput 
capacities,” IEEE Trans. Info. Theory, vol. 44, pp. 2796–2815, Nov. 1998. 



 30 

[4] E. Yeh and A. Cohen, “Delay optimal rate allocation in multiaccess fading communications,” in Proc. of the Allerton Conf., 
Monticello, IL, pp. 140–149, Sep.-Oct. 2004. 

[5] ——, “Throughput optimal power and rate control for multiaccess and broadcast communications,” in Proc. of the ISIT, 
Chicago, IL, p.112, June 2004. 

[6] E. Telatar and R. Gallager, “Combining queueing theory with information theory for multiaccess,” IEEE J. Select. Areas 
Commun., vol. 13, pp. 963–969, Aug. 1995. 

[7] S. Raj, E. Telatar, and D. Tse, “Job scheduling and multiple access,” DIMACS Series in Discrete Mathematics and Theoretical 
Computer Science, March 2003. 

[8] Q. Liu, S. Zhou, and G. B. Giannakis, “Queuing with adaptive modulation and coding over wireless links: Cross-layer analysis 
and design,” IEEE Trans. Wireless Commun., vol. 4, no. 3, pp. 1142–1153, May 2005. 

[9] A. Scaglione and M. van der Schaar, “Cross-layer resource allocation for delay constrained wireless video transmission”, in 
Proc. of ICASSP, vol. 5, pp.909-912, Mar. 2005. 

[10] C. Shen and M. van der Schaar, “Optimal Resource Allocation in Wireless Multiaccess Video Transmissions”, ICC 2007, to 
appear. 

[11] J. Jang and K. B. Lee, “Transmit power adaptation for multiuser OFDM systems,” IEEE J. Select. Areas Commun., vol. 21, 
pp.171-178, Feb. 2003. 

[12] G.-C. Song and Y. (G.) Li, “Cross-layer optimization for OFDM wireless networks–Part I: theoretical framework,” IEEE 
Trans. on Wireless Commun., vol. 4, no. 2, pp. 614 – 624, March 2005. 

[13] C. Y. Wong, R. S. Cheng, K. B. Letaief, and R. D. Murch, “Multiuser OFDM with adaptive subcarrier, bit, and power 
allocation,” IEEE J. Select. Areas Commun., vol. 17, no. 10, pp. 1747-1758, Oct. 1999. 

[14] W. Rhee and J. M. Cioffi, “Increase in capacity of multiuser OFDM system using dynamic subchannel allocation,” in Proc. 
IEEE VTC, pp. 1085-1089, 2000. 

[15] W. Yu and J. M. Cioffi, "FDMA Capacity of Gaussian Multiple access Channels with ISI", IEEE Trans. on Commu., vol. 50, 
no.1, pp.102-111, Jan. 2002. 

[16] K. Kim, Y. Han, and S.-L. Kim, "Joint subcarrier and power allocation in uplink OFDMA systems," IEEE Commun. Letter, 
vol.9, no.6, pp.526–528, 2005. 

[17] J.R. Ohm, M. van der Schaar, J. Woods, “Interframe wavelet coding-Motion Picture Representation for Universal Scalability”, 
EURASIP Signal Processing: Image Communication, Special issue on Digital Cinema, 2004. 

[18] FEDERAL COMMUNICATIONS COMMISSION (2003a), “Notice for Proposed Rulemaking (NPRM 03 322): Facilitating 
Opportunities for Flexible, Efficient, and Reliable Spectrum Use Employing Cognitive Radio Technologies”, ET Docket No. 
03 108. Dec 2003.  

[19] J. Mitola, “Cognitive radio for flexible mobile multimedia communications,” Mobile Networks and Applications, vol. 6, Sep. 
2001. 

[20] T. Bostoen, R. Oehen, J. Verlinden, "Optimizing DSL for Multimedia Services", Alcatel Telecommunications Review, pp. 
155-159, 2nd Quarter 2005 

[21] L.J. Cimini and N.R. Sollenberger, “OFDM with Diversity and Coding for Advanced Cellular Internet Services,” in Proc. of 
IEEE GLOBECOM, pp. 305-309, Nov. 1997. 

[22] T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: Wiley, 1991. 

[23] A. Albanese, M. Luby, “PET-priority encoding transmission,” High-Speed Networking for Multimedia Application, Kluwer 
Academic Publishers, 1996 

[24] M. van der Schaar, D. S. Turaga, “Cross-layer packetization and retransmission strategies for delay-senstive wireless 
multimedia transmission,” IEEE Trans. On Multimedia, vol. 9, pp. 185-197, Jan 2007. 

[25] M. Wang and M. van der Schaar, “Operational Rate-Distortion Modeling for Wavelet Video Coders, ” IEEE Trans. on Signal 
Processing, vol. 54, pp. 3505-3517, Sep 2006 



 31 

[26] K. Stuhlmuller, N. Farber, M. Link, and B. Girod, “Analysis of video transmission over lossy channels,” IEEE J. Select. Areas 
Commun., vol. 18, pp. 1012–1032, June 2000. 

[27] A. Ortega and K. Ramchandran, “Rate-Distortion Methods for Image and Video,” IEEE Signal Processing Mag., vol. 15, no. 
6, pp. 23–50, Nov. 1998. 

[28] W. Yu, “Competition and Cooperation in Multi-user Communication Environments”, Ph.D. Dissertation, Stanford University, 
Jun. 2002. 

[29] R. S. Cheng and S. Verdu, “Gaussian multiaccess channels with ISI: Capacity region and multiuser water-filling,” IEEE Trans. 
Inform. Theory, vol. 39, no. 3, pp. 773–785, May 1993. 

[30] H. Park and M. van der Schaar, "Bargaining Strategies for Networked Multimedia Resource Management," IEEE Trans. Signal 
Processing, vol. 55, no. 7, pp. 3496-3511, July 2007. 

[31] X. Qiu and K. Chawla, “On the performance of adaptive modulation in cellular systems,” IEEE Trans. Commun., vol. 47, no. 6, 
pp. 884–895, Jun. 1999. 

[32] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004. 

[33] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1994. 

[34] G. Wunder and T. Michel, “Optimal Resource Allocation for OFDM Multiuser Channels”, http://arxiv.org/abs/cs/0608023 

[35] D. P. Bertsekas, Nonlinear programming, 2nd Edition. Belmont, MA: Athena Scientific, 1999. 

[36] Y. Andreopoulos, A. Munteanu, J. Barbarien, M. van der Schaar, J. Cornelis, and P. Schelkens, “In-band motion compensated 
temporal filtering,” Signal Processing: Image Communication (special issue on ”Subband/Wavelet Interframe Video 
Coding”), vol. 19, no. 7, pp. 653–673, Aug. 2004. 

[37] IEEE 802.11a-1999: High-speed physical layer in the 5 GHz band, 1999. 

[38] H. Boche, E. A. Jorswieck, “Optimization of matrix monotone functions: saddle-point, worst case noise analysis, and 
applications”, Proc. of ISIT, pp.62, Jun 2004 

APPENDIX A 

In this appendix, we discuss how to describe the Shannon capacity region of the Gaussian multiple access channels 

with ISI. We modify the iterative waterfilling solution for the Gaussian vector multiple access channel to describe the 

Shannon capacity region of the multi-carrier Gaussian multiple access channels efficiently. 

Multi-carrier multiple access systems could be viewed as simplified Gaussian vector multiple access channels. The 

input optimization problem for the Gaussian vector multiple access channel has been studied in the literature for 

several special cases. The capacity region of a Gaussian multiple access channel with ISI was characterized in [29]. For 

the multiple access channel with ISI, the input optimization problem can be formulated as a problem of optimal power 

allocation over frequencies, which leads to the multi-user waterfilling solution. In [28], it was shown that a reduction in 

computational complexity can be realized for the multiple access channel rate sum maximization problem by 

extending the single-user water-filling to the multi-user case. However, no similar efficient algorithm has been 

reported in characterizing the capacity region of the multi-carrier Gaussian multiple access channel with ISI. 
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As discussed in Section IV, for the convex Shannon capacity region, characterizing the entire capacity boundary is 

equivalent to solving (12). For a N -user Gaussian vector multiple access channel, in which each user is subjected to its 

power constraint max max
1 , , NP P� ,  the input distributions that maximize 

1

N

i i

i

Rµ
=
∑ , with 10 Nµ µ≤ ≤ ≤�  and 

1

1
N

i

i

µ
=

=∑ , 

are Gaussian distributions whose covariance matrices 1, , NS S�  can be found by solving the following optimization 

problem [28], which is the equivalent expression for (12): 
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where ( )tr A represents the trace of matrix A and A  represents the determinant of matrix A . 

The iterative water-filling algorithm is proposed to solve the sum rate maximization problem [28], in which 

1 1 1 =   
�µ . However, it cannot be extended to general µ . In the multi-carrier multiple access networks, iH  are 

diagonal matrices because users occupy channels orthogonally in the frequency domain, which means 

( )1 2, , ,i i iKdiag H H H= �iH . For the simplicity of illustration, we assume that the noise at different sub-carriers are 

independent and have the same noise variance 2
nσ , 2

nσ=zzS I . According to [38], the problem in (32) can be further 

converted into 
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In the case of multi-carrier multiple access networks, iterative waterfilling in [28] can be modified to describe all the 

boundary points. At each step of updating a specific user’s power allocation, we can simply view the sum of all the 

other users’ signals as noise. For user i , using Lagrange multipliers, the objective function in (33) can be rewritten as 
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Differentiating with respect to ikP , we have 
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in which 
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Defining ( )
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∑  which monotonically decreases in ikP , ( )1f − i  is an injection function. 

Noting that 0mkP ≥ , the optimal power is given by the KKT conditions 

 ( )( )1
ikP f λ

+−= . (37) 

where ( )x +  denotes the positive part of x, i.e., ( ) { }max , 0x x+ = .  

The procedure of iterative waterfilling algorithm is summarized in Algorithm 5. 

Algorithm 5 Iterative water-filling algorithm in describing the capacity region of the multi-carrier multiple access channel 

Input: 2, , , nσµ
maxH P  

Initialization : , 1,2, , , 1,2, ,ikP i N k K= =� �  

Repeat: 

for 1i =  to N  

 

( )

( )

2 2 2
1 2 1

1 1,

2 2 2
1

2 1 ,

, , , log

log

K N

i i iK ik ik mk mk n

k m m i

i K N

j j ik ik mk mk n

j k m j m i

f P P P P H P H

P H P H

µ σ

µ µ σ

= = ≠

−

= = = ≠

   = ⋅ + +       

     + − ⋅ + +         

∑ ∑
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�

 

Use optimality condition in (35)-(37) to solve  

{ }
{ }

( )
1 2

max
1 2 1 2

, , ,
1

, , , arg max , , , , . . , 0, 1, ,
i i iK

K

i i iK i i iK ik i ik
P P P

k

P P P f P P P s t P P P i N
=

= ≤ ≥ =∑
�

� � �  

end 

Until: the desired accuracy is reached 

Return: Power allocation P  

 


