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Abstract—We study the power control problem in wireless ad
hoc networks with selfish users. Without incentive mechanisms,
selfish users transmit at their maximum power levels at the
Nash equilibrium (NE), causing significant interference to each
other. In order to induce users to transmit at desired power
levels, existing works have proposed pricing and auctions as
incentive mechanisms. With pricing or auctions, it is explicitly
stated or implicitly assumed that the users are obedient, in
that they adopt the utility functions designed by the system
and accept the prices as control signals. In this paper, we
use the intervention mechanism to incentivize selfish users to
achieve efficient outcomes as the (unique) NE. In the intervention
mechanism, a system designer prescribes a intervention rule
and uses a intervention device to execute it. Depending on
the monitoring technology and intervention capability of the
intervention device, we propose two types of intervention rules
with different performance and complexity tradeoffs. We study
the performance achievable by the proposed intervention rules,
as well as the design principles for different intervention rules.
We prove that all the Pareto boundary can be achieved as
the NE or even the unique NE of the game with intervention.
Simulation results demonstrate the performance improvement
achieved when using different intervention rules and illustrate
performance analysis on different intervention rules.

I. INTRODUCTION

Power control is the essential resource allocation scheme to
control the signal-to-interference-and-noise ratio (SINR) for
efficient transmission in wireless networks. Extensive studies
have been done on power control; see [1] and the reference
therein for an overview of this topic. The early works on
power control assign a fixed SINR requirement to each user,
where each user minimizes its transmit power subject to
the fixed minimum SINR requirement [1, Ch. 2] [2] [3].
This formulation is suitable for fixed-rate communications
with voice applications. However, with the growth of data
and multimedia applications, most recent works formulate
the problem in a network utility maximization framework. In
this framework, a central controller can calculate the optimal
transmit power levels, when the utility functions are such that
the network utility maximization problem is convex, and then
assigns the optimal power levels to the users. Assuming that
the users cooperate with the central controller, the problem
can also be solved in a distributed fashion [1, Ch. 4] [4]- [7].

Besides the network utility maximization framework, many
works use noncooperative games to model the distributed

power control problem, in which each user maximizes its
own utility, instead of maximizing the sum utility. In the
noncooperative game model, each user tends to transmit at
its maximum power level to get higher throughput, causing
significant interference to each other. This outcome may be far
from the global optimality of the social welfare [1] [5] [8], es-
pecially when the interferences are strong [9]. To improve the
non-cooperative outcome, several incentive schemes, such as
pricing and auctions, have been proposed [10]- [14]. However,
we argue that in the works with pricing or auction mechanisms,
noncooperative games are just used to model the distributed
power control problem, whereas the users are obedient but not
selfish.

Pricing mechanisms [10]- [13] and auction mechanisms [14]
impose cost in the users’ utility by charging for the transmit
power. In either mechanism, the prices are used as control
signals rather than real monetary exchanges. In this regard,
the users’s utility functions are designed by the system, so
that the outcome of the game can be efficient. Therefore, the
users are obedient, in that they maximize the utility functions
given by the system. On the contrary, if the users are selfish,
they should maximize their own innate utility functions such
as the throughput, ignoring such control signals as pricing if
by doing so they get better off.

If the pricing or auction mechanism does involve real
monetary charges to the selfish users, in order to achieve an
efficient outcome, the system designer needs to know how
each user values their Quality of Service (QoS) in money.
In other words, the designer needs to know the user’s utility
function, which is the private information that selfish users
have no incentive to expose.

Repeated game has been proposed in [15] [16] as another in-
centive mechanism to improve the non-cooperative outcomes.
However, in repeated games, the users have long-run frequent
interactions before the equilibrium is achieved, which usually
requires an infinite horizon and sufficiently patient users [21].

In this paper, we apply intervention mechanisms [17]- [20]
in power control games to enforce selfish users to transmit at
desired power levels. In intervention mechanisms, there is an
intervention device operating according to the intervention rule
designed by the system: it estimates the individual transmit
power of each user or the aggregate receive power at the



intervention device, and then transmits at a certain power
level, determined as a function of its estimation. If the users
are transmitting at the desired power levels, the intervention
device will transmit minimum, probably zero, power. Once
the users deviate, the intervention device will transmit at a
positive power level, which causes interference to the users and
directly reduces the users’ SINR. In this way, the intervention
mechanism presents a credible threat to the selfish users
without knowing their utility functions. It is worthwhile noting
that ideally, at the equilibrium, the intervention device will
not transmit due to the good behavior of the users. Hence,
there is no performance loss due to possible interference
from the intervention device. This can be achieved when
the intervention device has perfect monitoring and sufficient
intervention capability.

The rest of the paper is organized as follows. In section II,
we will describe the system model and formulate the problem
of designing the intervention mechanisms. In section III, we
study the proposed intervention rules and provide guidelines
for the design of the proposed intervention rules. Simulation
results are shown in section IV. Finally, section V concludes
the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a wireless ad hoc network with N users (see
Fig. 1 for an example two-user network). The set of the users
is denoted by N � {1, 2, . . . , N}. Each user has a transmitter
and a receiver. Each user i chooses its transmit power pi in the
set Pi � [0, Pi], where Pi > 0 for all i ∈ N . The power profile
of the users is denoted by p = (p1, . . . , pN ) ∈ P �

∏N
i=1 Pi,

and the power profile of all the users other than user i is
denoted by p−i.

In the network, there is an intervention device that consists
of a transmitter and a receiver. The receiver of the intervention
device can monitor the power profile of the users, while the
transmitter can create interference to the users by transmitting
power. After observing the users’ power profile, the inter-
vention device chooses its own transmit power p0 in the set
P0 � [0, P0], where P0 > 0 is the intervention capability of
the intervention device.

We assume that all the users and the intervention device
transmit in the same frequency. Hence, no user can avoid
the interference (punishment) of the intervention device by
hopping to another frequency channel. If there were multiple
frequency channels available, the designer could place one
intervention device in each frequency channel. In this way,
the system with multiple channels can be decomposed into
independent single-channel systems studied in this paper. We
also assume that the

We index the intervention device by 0. For i, j ∈ N ∪ {0},
let hij > 0 be the channel gain from user j’s transmitter to
user i’s receiver, and let ni > 0 be the noise power at user i’s
receiver. When the intervention device chooses a power p0 and
the users choose a power profile p, the SINR of user i ∈ N

is given by

γi(p0,p) =
hiipi

hi0p0 +
∑

j �=i hijpj + ni
. (1)

We assume that each user i ∈ N has monotonic preferences
on its own SINR in the sense that it weakly prefers γi to
γ′

i if and only if γi ≥ γ′
i. Our analysis does not require any

other properties of preferences (for example, preferences do
not need to be represented by a concave utility function).

In our setting, the intervention device has a receiver to
measure the aggregate receive power from all the users.
Furthermore, if the receiver moves and takes measurement
at different locations, it can estimate the individual transmit
power of each user as well. Thus, in this paper we will focus
on two types of monitoring technology with which the inter-
vention device can estimate individual transmit powers p or
an aggregate receive power

∑N
i=1 h0ipi. Here we assume that

estimation is perfect; the scenarios with imperfect estimation
will be studied in future work.

The strategy of the intervention device can be represented
by a mapping f : P → P0, which is called an intervention
rule. The SINR of user i when the intervention device uses an
intervention rule f and the users choose a power profile p is
given by γi(f(p),p). With an abuse of notation, we will use
γi(f,p) to mean γi(f(p),p). Given an intervention rule f ,
the interaction among the users that choose their own power
levels selfishly can be modeled as a non-cooperative game,
whose strategic form is given by

Γf = 〈N , (Pi)i∈N , (γi(f, ·))i∈N 〉. (2)

We can predict the power profile chosen by the users given
an intervention rule using the concept of Nash equilibrium.

Definition 1: A power profile p∗ ∈ P is a Nash equilibrium
(NE) of the game Γf if

γi(f,p∗) ≥ γi(f, pi,p∗
−i) (3)

for all pi ∈ Pi, for all i ∈ N .
When a power profile p∗ is a NE of Γf , no user has an

incentive to deviate from p∗ unilaterally provided that the
intervention device uses intervention rule f . Moreover, if p∗ is
a unique NE of Γf , intervention has added robustness in that
we do not need to worry about coordination failure (i.e., the
possibility that the users get stuck in a “wrong” equilibrium).

B. Problem Formulation

In this paper, we assume that the designer desires to achieve
a target power profile, denoted by p�, as in [13], with
minimum possible intervention. Thus, the design problem is
to find an intervention rule f such that p� is the (unique) NE
of Γf and f(p�) = 0. For better exposition, we define the
concept of (strongly) sustainment as follows.

Definition 2: An intervention rule f (strongly) sustains a
power profile p� if p� is a (unique) NE of the game Γf .

We use E(f) to denote the set of all power profiles sustained
by f . Then the design problem can be stated mathematically



as finding an intervention rule f such that p� ∈ E(f) (or
{p�} = E(f)) and f(p�) = 0.

Given a target power profile p�, there are potentially many
intervention rules f that satisfy the design criteria p� ∈ E(f)
and f(p�) = 0. Thus, below we propose three performance
metrics with which we can evaluate different intervention rules
satisfying the design criteria.

• Monitoring requirement: The information about the
power profile (individual transmit powers or aggregate
receive power) required for the intervention device to
execute a given intervention rule.

• Intervention capability requirement: The minimum in-
tervention capability needed for the intervention device
to execute a given intervention rule, i.e., supp∈P f(p).
(Even though there is no intervention at an equilib-
rium, the intervention device should have an intervention
capability P0 ≥ supp∈P f(p) in order to make the
intervention rule f credible to the users.)

• Strong sustainment: Whether a given intervention rule
strongly sustains the target power profile p�.

Without loss of generality, we can express an intervention
rule f satisfying f(p�) = 0 as f(p) = [g(p)]P0

0 , where [x]ba =
min{max{x, a}, b}, for some function g : P → R such that
g(p�) = 0. Also, since the designer desires to achieve p�,
it is natural to consider functions g that increase as the users
deviate from p�. Hence, we consider the following two simple
class of intervention rules,

FI(p�) =
{

fI : fI(p) =
[∑N

i=1 αi|pi − p�
i |

]P0

0
, αi ≥ 0

}
(4)

and

FA(p�) =
{

fA : fA(p) =
[
α0

∣∣∣(∑N
i=1 h0ipi

)
− p�

A

∣∣∣]P0

0

}
(5)

with α0 ≥ 0 and p�
A =

∑N
i=1 h0ip

�
i .

We call an intervention rule f ∈ FI(p�) a first-order
intervention rule based on individual transmit power, and
an intervention rule f ∈ FA(p�) a first-order intervention
rule based on aggregate receive power. As we can see from
their definitions, the distinction between these two classes of
intervention rules comes from the monitoring technology of
the intervention device. We could also define intervention rules
with higher orders by using |pi − p�

i |k, which contains more
intervention rules, but at the same time complexity increases.
Simple intervention rules are desirable for the designer, the
users, and the intervention device. Thus, our analysis mainly
focuses on first-order intervention rules.

Let F̃I(p�) (F̃s
I (p�)) be the set of first-order intervention

rules based on individual transmit powers that (strongly)
sustains p�, i.e., F̃I(p�) = {f ∈ FI(p�) : p� ∈ E(f)}
and F̃s

I (p�) = {f ∈ FI(p�) : {p�} = E(f)}. 1 We define
the minimum power budget for a first-order intervention rule

1For the intervention rules based on aggregate receive power, we use similar
definitions on F̃A(p�) (F̃s

A(p�)) and PBA(p�) (PBs
A(p�)). We omit them

due to the space limit.

based on individual transmit powers to (strongly) sustain p�

by

PBI(p�) = inf
f∈F̃I(p�)

sup
p∈P

f(p) (6)

and

PBs
I(p

�) = inf
f∈F̃s

I
(p�)

sup
p∈P

f(p). (7)

Thus, with an intervention capability P0 > PBI(p�) (P0 >
PBs

I(p
�)), there exists a first-order intervention rule based

on individual transmit powers that (strongly) sustains p�. We
set PBI(p�) = +∞ (PBs

I(p
�) = +∞) if there is no such

intervention rule that (strongly) sustains p�. The difference
PBs

I(p
�)−PBI(p�) can be interpreted as the price of strong

sustainment in terms of the minimum power budget.

III. DESIGN AND ANALYSIS OF FIRST-ORDER

INTERVENTION

A. Intervention Rules Based on Individual Transmit Powers

We consider first-order intervention rules of the form

fI(p) =
[∑N

i=1 αi|pi − p�
i |

]P0

0
. (8)

Under the above intervention rule, the intervention device
increases its transmit power linearly with the deviation of
each user from the target power, |pi − p�

i |, in the range of
its intervention capability. We call αi the intervention rate
for user i, which measures how sensitive intervention reacts
to a deviation of user i. Let Ñ (p�) = {i ∈ N : p�

i < Pi}.
Without loss of generality, we label the users in such a way that
i ∈ Ñ (p�) if and only if i ≤ N ′, where N ′ = |Ñ (p�)|. Since
the users have natural incentives to choose their maximum
powers in the absence of intervention, we need to provide
incentives only for the users in Ñ (p�). The following theorem
shows that when the intervention capability is sufficiently
large, the designer can always find intervention rates to have
a given target power profile p� sustained by a first-order
intervention rule.

Theorem 1: For any p� ∈ ∏
i(0, Pi], p� ∈ E(fI) if and

only if for all i ∈ Ñ (p�),

αi ≥ (
∑

j �=i hijp
�
j + ni)/(p�

i hi0) (9)

and

P0 ≥ (Pi − p�
i )(

∑
j �=i hijp

�
j + ni)/(p�

i hi0). (10)

Proof: See Appendix B of [23].
We can explain the minimum intervention rate for user i,

expressed in the right-hand side of (9), as follows. As hi0

is larger, intervention causes more interference to user i with
the same transmit power, and thus the intervention rate for
user i can be chosen smaller to yield the same interference.
When

∑
j �=i hijp

�
j + ni is large, interference to user i from

other users and its noise power are already strong, and thus
the intervention rate for user i should be large in order for
intervention to be effective. Hence, hi0/(

∑
j �=i hijp

�
j + ni)

can be interpreted as the effectiveness of intervention to user



i. Without intervention, the users have natural incentives to
increase their transmit powers. Thus, as the target power for
user i, p�

i , is smaller, the incentive for user i to deviate
is stronger, and thus a larger intervention rate is needed to
prevent deviation. In summary, αi should be chosen larger as
intervention is less effective to user i and user i has a stronger
incentive to deviate. Note that (Pi − p�

i ) is the maximum
possible deviation by user i (in the direction where it has a
natural incentive to deviate). The minimum intervention capa-
bility, expressed in the right-hand side of (10), is increasing
with the maximum possible deviation and the strength of the
incentive to deviate while decreasing with the effectiveness of
intervention. Note that the minimum intervention capability is
independent of the choice of intervention rates.

A first-order intervention rule fI satisfying the conditions
in Theorem 1 may have a NE other than the target power
profile p�. For example, if P0 ≤ ∑

j �=i αj(Pj − p�
j ) for all

i ∈ Ñ (p�), P is also sustained by fI . The presence of
this extra NE is undesirable since it brings a possibility that
the users still choose P while the intervention device causes
interference to the users by transmitting its maximum power
P0. Obviously, this outcome (P0,P) is worse for every user
than the outcome at the unique NE without intervention (0,P).
In order to eliminate this possibility, the designer may want to
choose an intervention rule that strongly sustains the target
power profile. The following theorem provides a sufficient
condition for a first-order intervention rule to strongly sustain
a given target power profile.

Theorem 2: For any p� ∈ ∏
i(0, Pi], {p�} = E(fI) if

αi >
1
p�

i

∑
j>i

αj(Pj − p�
j ) (11)

+

∑
j<i hijp

�
j +

∑
j>i hijPj + ni

p�
i hi0

and

P0 >
Pi

p�
i

∑
j>i

αj(Pj − p�
j ) (12)

+
(Pi − p�

i )(
∑

j<i hijp
�
j +

∑
j>i hijPj + ni)

p�
i hi0

for all i ∈ Ñ (p�).2

Proof: See Appendix C of [23].
By comparing Theorems 1 and 2, we can see that the

requirements for the intervention rates and the intervention
capability is higher when we impose strongly sustainment. For
any given power profile, the intervention rates can be chosen
sequentially to satisfy the condition (11) starting from user
N ′ down to user 1. We can set αi = 0 for all i /∈ Ñ (p�).
Unlike Theorem 1, the choice of the intervention rates affects
the minimum required intervention capability. For strong sus-
tainment, the intervention capability is required to be larger as
the designer chooses larger intervention rates.

2We define
∑

j∈J
xj = 0 and

∏
j∈J

xj = 1 if J is empty.

From Theorem 1, we obtain

PBI(p�) = max
i

(Pi − p�
i )(

∑
j �=i hijp

�
j + ni)

p�
i hi0

. (13)

Since Theorem 2 gives a sufficient condition for strong sus-
tainment, we obtain an upper bound on PBs

I(p
�),

PB
s

I(p
�) =

N∑
i=1

⎡
⎣

⎛
⎝i−1∏

j=1

Pj

p�
j

⎞
⎠ (14)

· (Pi − p�
i )(

∑
j<i hijp

�
j +

∑
j>i hijPj + ni)

p�
i hi0

]
.

Note that PBI(p�) ≤ PB
s

I(p�) with equality if and only if
N ′ ≤ 1. Combining these results, we can bound PBs

I (p�) by

PBI(p�) ≤ PBs
I(p

�) ≤ PB
s

I(p
�). (15)

By Theorems 1 and 2, we know that all the feasible power
profiles can be (strongly) sustained. This suggests that we gain
nothing by using higher-order intervention rules, in terms of
what power profile they can sustain.

B. Intervention Rules Based on Aggregate Receive Power

The results in this section so far relies on the ability of
the intervention device to estimate individual transmit powers.
However, estimating individual transmit powers requires larger
monitoring overhead for the intervention device than estimat-
ing aggregate receive power. In order to study intervention
rules that can be executed with the monitoring of aggregate
receive power, we consider the intervention rules based on
aggregate receive power

fA(p) =
[
α0

∣∣∣(∑N
i=1 h0ipi

)
− p�

A

∣∣∣]P0

0
(16)

with α0 ≥ 0. We call α0 the aggregate intervention rate,
and call p�

A the target aggregate power, which is set as
the aggregate receive power at the target power profile, i.e.,
p�

A =
∑N

i=1 h0ip
�
i . We first give a necessary and sufficient

condition for an intervention rule based on aggregate power
to sustain a target power profile.

Theorem 3: For any p� ∈ ∏
i(0, Pi], p� ∈ E(fA) if and

only if for all i ∈ Ñ (p�),

α0 ≥ (
∑

j �=i hijp
�
j + ni)/(h0ip

�
i hi0) (17)

and

P0 ≥ (Pi − p�
i )(

∑
j �=i hijp

�
j + ni)/(p�

i hi0). (18)

Proof: See Appendix H of [23].
The minimum intervention capability required to sustain

a target profile is not affected by using aggregate receive
power instead of individual transmit powers. However, the
aggregate intervention rate should be chosen high enough to
prevent a deviation of any user, whereas with the monitoring
of individual transmit powers the intervention rates can be
chosen individually for each user. This suggests that strong
sustainment is more difficult with intervention rules based
on aggregate power. For example, P is also sustained by



fA if P0 ≤ α0

∑
j �=i(h0jPj − p�

j ) for all i ∈ Ñ (p�),
which is weaker than the corresponding condition in the
case of intervention rules based on individual powers, P0 ≤∑

j �=i αj(Pj − p�
j ) for all i ∈ Ñ (p�). With the monitoring

of individual powers, a deviation of each user can be detected
and punished. This leads to the property that the best response
of user i is almost always either p�

i or Pi under first-order
intervention rules based on individual powers. This implies
that a power profile sustained by a first-order intervention
rule based on individual powers almost always belongs to the
set

∏
i{p�

i , Pi}. In contrast, with the monitoring of aggregate
power, only an aggregate deviation can be detected. This yields
a possibility that an intervention rule based on aggregate power
sustains a power profile that is different from the target but
yields the same aggregate power. This possibility makes the
problem of coordination failure more worrisome because if
the users are given only the target aggregate power p�

A they
may not know which power profile to select among those
that yield the aggregate power p�

A.3 The problem arising from
the increased degree of non-uniqueness can be considered
as the cost of reduced monitoring overhead. To state the
result formally, let αi

0 = (
∑

j �=i hijp
�
j + ni)/(h0ip

�
i hi0) and

P i
0 = (Pi − p�

i )(
∑

j �=i hijp
�
j + ni)/(p�

i hi0) for all i ∈ Ñ (p�).
Also, let ᾱ0 = maxi∈Ñ (p�) αi

0 and P̄0 = maxi∈Ñ (p�) P i
0.

Theorem 4: Suppose that, for p� ∈ ∏
i(0, Pi], there exist

i, j ∈ Ñ (p�) such that (i) ᾱ0 = αi
0 > αj

0 or αi
0, α

j
0 < ᾱ0, and

(ii) P̄0 = P i
0 > P j

0 or P i
0, P

j
0 < P̄0. Then for any fA such

that p� ∈ E(fA) and for any ε > 0, there exists p̃ 
= p� such
that p̃ ∈ E(fA),

∑N
i=1 h0ip

�
i =

∑N
i=1 h0ip̃i, and |p̃−p�| < ε.

Proof: See Appendix I of [23].
Theorem 4 provides a sufficient condition under which the

strong sustainment of a given target power profile is impossible
with intervention rules based on aggregate power. We argue
that the sufficient condition is mild. First, note that, for almost
all p� ∈ ∏

i(0, Pi], αi
0’s and P i

0’s can be ordered strictly. With
strict ordering of αi

0’s and P i
0’s, we can always find a pair of

users i, j ∈ Ñ (p�) satisfying the condition in Theorem 4
if there are at least three users in Ñ (p�). That is, strong
sustainment is generically impossible with intervention rules
based on aggregate power when |Ñ (p�)| ≥ 3.

IV. SIMULATION RESULTS

We consider a two-user network shown in Fig. 1. The
transmitter and the receiver of the intervention device are co-
located. User 2’s transmitter is near to user 1’s receiver, caus-
ing significant interference to user 1. The distance from user
1’s transmitter to its receiver is normalized to 1. Originally,
the distance from user 2’s transmitter to its receiver is 0.5.
The distance between the two users’ receivers is 0.5. Without
specific notice, we assume that the positions of the transmitters
and receivers of both users remain the same. In the simulation
for Fig. 2, we let user 2’s transmitter moves away from its
receiver (as shown by the dash left arrow), resulting in less

3A way to overcome this problem is to broadcast the target power profile
p� to the users in order to make p� as a focal point [22].
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Fig. 1. An example wireless ad-hoc network with two users.
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Fig. 2. The optimal social welfare achievable by intervention and the social
welfare at NE without intervention, when user 2’s transmitter moves away
from its receiver.

interference to user 1. We assume that the path loss exponent
is 3. The power budgets of both users are 10.

A. Improvement on Social Welfare by Intervention

Now we examine the performance improvement by using
intervention mechanisms. We let user 2’s transmitter moves
away from its receiver. In Fig. 2, we show the performance
achieved by intervention and that at the NE without inter-
vention, under two criteria for social welfare. The sum rate
is define by log (1 + γ1) + log (1 + γ2), and the fairness is
defined by log (1 + min {γ1, γ2}).

As we can see from Fig. 2, the sum rate achievable by
intervention doubles that at the NE without intervention in
all the cases. The fairness achievable by intervention is much
larger than that at the NE without intervention in most cases.
When the distance from user 2’s transmitter to its receiver is
1.0, the network is symmetric. Only at this point is the NE
without intervention optimal.

B. Minimum Power Budget

Now we show the power budget requirement for different
intervention rules. In Fig. 3-4, we show the contour of the
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Fig. 3. Contour of the minimum power budget of first-order intervention
that sustains a target power profile, when user 2’s transmitter is near to user
1’s receiver. Obtained by Theorem 1 and Theorem 3.
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Fig. 4. Contour of the minimum power budget of first-order intervention
based on individual transmit powers that strongly sustains a target power
profile, when user 2’s transmitter is near to user 1’s receiver. Obtained by
Theorem 2.

minimum power budget for different intervention rules under
different target power profiles, when user 2’s transmitter is at
its original location. As we expect, a larger power budget is
required to strongly sustain a target power profile.

V. CONCLUSION

In this paper, we studied the power control problem in
wireless ad hoc networks with selfish users. Without incentive
mechanisms, selfish users transmit at their maximum power
levels at the Nash equilibrium (NE), resulting in inefficient
operating points. To achieve efficient outcomes, we proposed
intervention mechanism to induce selfish users to transmit at
desired power levels. Different from other incentive mecha-
nisms such as pricing and auctions, intervention mechanism
punishes the users by directly decreasing their SINR’s, thus
provides a more credible threat to regulate the users’ behav-
iors. We proposed two types of intervention rules with different
monitoring technologies. We analyzed the performance of the
proposed intervention rules in terms of the intervention capa-
bility requirement and the strong sustainment, and provided the
design principles. All the Pareto boundary can be (strongly)

sustained with intervention. Simulation results demonstrated
the performance improvement achieved by using intervention
and validated the performance analysis on different interven-
tion rules.
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