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Abstract—While electric vehicles (EVs) have great potential
in reducing greenhouse gas emissions, successful EV adoption
depends largely on the availability of public charging stations.
The lack of charging stations poses an even more serious
problem for the adoption of commercial EVs (e.g., trucks used
for freight transportation), because the (commercial EV) fleet
planner needs to build their own specialized charging stations,
requiring additional investment in commercial EV purchase. This
paper presents a first mathematical model and rigorous analysis
for incentivizing the adoption of commercial EVs. We propose an
intervention policy for the social planner (e.g., the government)
to promote commercial EV adoption. The intervention policy
includes a subsidy for EV purchase (i.e., expenditure) and a
carbon tax for gas emissions (i.e., income). We propose provably
fast algorithms for the social planner to find the optimal budget-
balanced intervention policy. We analyze in detail the effect of
the intervention policy on commercial EV adoption, and prove
that the proposed intervention policy achieves higher commercial
EV adoption rates.

I. INTRODUCTION

According to the latest report by U.S. Environmental Pro-
tection Agency (EPA) [1], transportation contributed to 28%
of total U.S. greenhouse gas (GHG) emissions in 2012. A
promising solution for reducing GHG emissions is to replace
traditional gas vehicles (GVs) with zero-emission electric
vehicles (EVs). However, despite the great efforts in promoting
the EV adoption, the market share of EVs in the new vehicle
market remains at an extremely low level (about 0.73% as
reported in [2]).

One hurdle for EV adoption may be the lack of public
infrastructure for EV charging. In [3], it is shown that in the
case of residential EV adoption, the profit-seeking investors
(e.g., vendors of charging stations, car companies) tend to
underinvest in building EV charging stations, compared to the
socially optimal investment level. This underinvestment in EV
charging stations negatively affects the consumers’ decisions
towards purchasing EVs.

While most research has focused on residential EVs, it is
equally important to study the adoption of EVs in commercial
fleets, which are used in airport transportation and supply
chains owned by large companies (e.g., Walmart, Amazon,
and so on). The lack of EV charging stations poses an even
more serious problem in commercial EV adoption. This is
because the vehicles used in commercial fleets are usually

heavy-duty vans and trucks with shorter driving ranges and
longer distances to destinations, and require more expensive
charging stations with higher capacity on the road. Hence,
the fleet owners may need to upgrade existing or even build
new charging stations for their special needs. This additional
investment on charging stations by the EV buyers (which,
in this case, are the fleet owners) makes the adoption of
commercial EVs even harder.

A. Our Contribution

To the best of our knowledge, our work presents the first
mathematical modeling and rigorous analysis of commercial
EV adoption.

We model the commercial EV adoption as a game between
a social planner (e.g., the government) and a fleet planner (i.e.,
the owner of the fleet). The social planner aims to maximize
the social welfare (e.g., the percentage of EVs in the fleet,
or the percentage of mileages traveled by EVs in the total
mileages). It can improve the social welfare by an intervention
policy, which consists of subsidizing the initial purchase of
EVs and collecting a carbon tax for GHG emissions from GVs.
The social planner needs to achieve this goal while maintaining
a balanced budget (i.e., the expenditure on subsidy is equal to
the income from the carbon tax). The social planner’s decision
problem is challenging due to the budget balance constraint.
On one hand, the social planner cannot subsidize too little
to promote the EV adoption. On the other hand, the social
planner cannot subsidize so much that the fleet planner does
not purchase GVs at all, in which case the social planner
cannot collect any carbon tax to offset its expenditure.

The fleet planner needs to move a certain amount of freight
from a source to a destination through several possible routes.
It determines the numbers of EVs and GVs to purchase, and
allocates the EVs and GVs in each possible route. The fleet
planner aims to make the optimal decisions to minimize her
total cost while shipping all the freight. The total cost of the
fleet planner includes the cost (initial purchase and every-day
maintenance) of vehicles, the cost of building charging stations
on each route, and the cost of the carbon tax. Compared to
residential consumers, the fleet planner is faced with a more
challenging decision problem, due to the additional operational



decision (i.e., allocation of vehicles on each route) and its
coupling with the initial purchase decision.

Our major contributions are as follows. First, we propose
algorithms for the fleet planner to make optimal fleet manage-
ment decisions and for the social planner to find the optimal
budget-balanced intervention policy. Both algorithms converge
provably fast (i.e., in logarithmic time).

Second, we rigorously analyze the effect of the proposed
intervention policy. Our main finding is that the intervention
policy promotes commercial EV adoption, even when com-
pared to the case where the fleet planner does not need to build
charging stations but the social planner does not intervene.
Therefore, we prove the value of the proposed intervention
policy in commercial EV adoption: it overcomes the additional
challenge that the EV buyers (i.e., the fleet planner) need to
invest on building charging stations.

B. Related Works

1) Residential EVs: Most existing works on residential
EVs study the optimal EV charging strategies, given that
the charging stations have been built and that the EVs have
been purchased [4][5][6]. There are also works that study the
optimal deployment of public charging stations, again given
that the EVs have been purchased [7].

The analysis of residential EV adoption, which focuses
on the interplay between building charging stations and pur-
chasing EVs, was very recently studied in [3]. However, in
residential EV adoption [3], the consumers do not invest on
the charging stations and do not make decisions on vehicle
allocation.

2) Commercial EVs: Most works on commercial EV adop-
tion are empirical or simulation-based [8]. In contrast, our
work builds agent-based models for the fleet planner and the
government, and mathematically analyzes their decisions and
the impact of the intervention policy on the EV adoption.

II. MODEL

Consider a freight transportation system with a fleet planner
and a social planner. The fleet planner optimizes its decisions
on vehicle purchase and route selection in order to minimize
its operational cost. The social planner aims to incentivize the
fleet planner to purchase and use more electric vehicles. Next,
we describe the fleet planner and the social planner in detail.

A. The Fleet Planner

The fleet planner has the amount F ∈ R+ of freight
to transport from one source to one destination. There are
R ∈ N+ possible routes. The fleet planner needs to decide
the numbers of electric vehicles on each route, denoted by
a vector me = (me,1, . . . ,me,R) ∈ RR

+, and the numbers
mg = (mg,1, . . . ,mg,R) ∈ RR

+ of gas vehicles on each route.
Note that we should think of me,r and mg,r as the number
of vehicles normalized by the full load capacity. Hence, we
allow me,r and mg,r to be non-integers when some vehicles
are not fully loaded. For example, me,r = 1.4 means that
there are one fully-loaded EV and a 40%-loaded EV on route

r. Assuming that the full load of a EV and a GV are fe and
fg , the fleet planner needs to ensure that all the freight is
delivered, namely fe ·

∑
rme,r + fg ·

∑
rmg,r ≥ F .

The average cost of the fleet includes the initial pur-
chase cost and the every-day operational cost of the vehicles
among other costs that will be described later (such as the
cost/subsidies imposed by the social planner). Assuming that
time is slotted at 0, 1, 2, . . . and that the fleet planner discounts
future costs by δ ∈ [0, 1), the average cost of an EV is

pe(δ) = (1− δ) ·

[
(purchase) +

∞∑
n=1

δn · (operational)

]
= (1− δ) · (purchase) + δ · (operational). (1)

Similarly, we can write the average cost of a GV as pg(δ).
Since the EVs in the fleet are heavy-duty vehicles, the

residential charging stations do not have enough capacity. As
a result, the fleet planner needs to build new charging stations
(or upgrade existing ones) before the fleet operates. The cost
of building charging stations on route r depends on the number
and the capacity of the charging stations, which are ultimately
determined by the route (i.e., its length) and the number of EVs
allocated to this route. Hence, we write the cost of building
charging stations on route r as cr(me,r). We assume that cr
is strictly increasing, strictly convex, and satisfies cr(0) = 0,
and write the set of all such cr as C.

B. The Social Planner

The social planner subsidizes the initial purchase of a EV
by qe ≥ 0 per EV. It also charges an every-day carbon tax for
GVs running on route r. The carbon tax, written as tg,r(mg,r),
is a function of the number of gas vehicles. It also depends
on the route, because the social planner may want to reduce
GHG emissions more on some routes that go through heavily-
populated residential areas. The social planner requires the
carbon tax to be convex, in order to discourage excessive
emission.

We call the collection of the EV subsidy qe and the carbon
tax tg,r(·) the intervention policy. The social planner needs to
design an intervention policy that balances the budget (i.e., the
expenditure of the EV subsidy is equal to the collected carbon
tax), and that incentivizes the fleet planner to purchase more
EVs.

C. Problem Formulation

1) The Fleet Planner’s Fleet Management Problem: The
fleet planner’s goal is to minimize the average cost by de-
termining the numbers of electric and gas vehicles on each
route, subject to the constraint of delivering all the freight. We



formulate the fleet planner’s decision problem FP as follows:1

FP :

min
me,mg

∑
r

[pe,r(δ)− (1− δ)qe] ·me,r︸ ︷︷ ︸
cost of electric vehicles

(2)

+(1− δ) ·
∑
r

cr(me,r)︸ ︷︷ ︸
cost of charging stations

+
∑
r

pg,r(δ) ·mg,r︸ ︷︷ ︸
cost of gas vehicles

+ δ ·
∑
r

tg,r(mg,r)︸ ︷︷ ︸
cost of carbon tax

s.t. fe ·
∑
r

me,r + fg ·
∑
r

mg,r ≥ F, (3)

me,r ≥ 0, mg,r ≥ 0. (4)

We write the solution to the fleet planner’s problem FP as
m∗e(qe, tg) and m∗g(qe, tg). Note that the optimal allocation
of electric and gas vehicles on each route is a function of the
social planner’s intervention functions qe and tg .

2) The Social Planner’s Intervention Policy Design Prob-
lem: The social planner’s goal is to maximize the social
welfare by choosing the intervention policy (i.e., the amount of
subsidy for purchasing an EV and the carbon tax), subject to
the budget balance constraint. We define the social welfare as a
function of the numbers of electric and gas vehicles, denoted
by W (me,mg). It should be increasing in each me,r and
decreasing in each mg,r. Examples could be the percentage
of electric vehicles in the fleet, or the percentage of mileages
traveled by electric vehicles. We formulate the social planner’s
decision problem SP as follows:

SP :

max
qe,tg

W
(
m∗e(qe, tg),m

∗
g(qe, tg)

)
(5)

s.t. qe ·
∑
r

m∗e,r(qe, tg) =
∑
r

tg,r
(
m∗g,r(qe, tg)

)
,(6)

qe ≥ 0, tg,r positive and increasing. (7)

III. OPTIMAL FLEET PLANNING AND INTERVENTION

We propose algorithms for the fleet planner to optimize its
fleet management and for the social planner to find the optimal
budget-balanced intervention policy. Both algorithms converge
fast (i.e., linearly) in algorithmic time.2

Theorem 1: The fleet planner’s fleet management algorithm
in Table I converges linearly with rate 0.5 to the optimal
solution to FP in logarithmic time.3

1The objective (2) in FP is approximate, because the actual costs of electric
vehicles and gas vehicles should be

∑
r [pe,r(δ)− (1− δ)qe] · dme,re

and
∑
r pg,r(δ) · dmg,re, respectively (namely, we need to buy an integer

number of vehicles). However, the approximate cost of vehicles is within
max {pe,r(δ)− (1− δ)qe, pg,r(δ)} · R of the actual cost. The difference
is negligible when the number R of routes is much smaller than the number
(≥ F

max{fe,fg}
) of vehicles required, which is usually the case. Hence, we

use the approximate cost as the objective to make FP tractable.
2We say a sequence x1, x2, . . . converges linearly with rate ρ to x∗, if
‖xk+1−x∗‖
‖xk−x∗‖

≤ ρ. [9, Sec. 9.3.1]
3Due to space limitation, all the proofs are in our online appendix [10].

TABLE I
ALGORITHM FOR OPTIMAL FLEET MANAGEMENT.

Initialization: λ = 0, λ = 1, λ̄ = λ

% route selection given λ:

for r = 1, . . . , R

me,r=

 0 if pe(δ)−(1− δ)qe+(1− δ)c′r(0)≥λfe

(c′r)
−1
(
λfe−pe(δ)

1−δ + qe
)

otherwise

mg,r=

 0 if pg(δ) + δ · t′g,r(0)≥λfg(
t′g,r
)−1
(
λfg−pg(δ)

δ

)
otherwise

end for
% find the range of λ:

while fe ·
∑
rme,r + fg ·

∑
rmg,r < F

λ← 2 · λ, λ̄ = λ

route selection given λ

end while
λ = (λ+ λ̄)/2, route selection given λ

% bisection method to find the optimal λ:

while λ̄− λ > given precision

if fe ·
∑
rme,r + fg ·

∑
rmg,r < F

λ = λ

else
λ̄ = λ

end if
λ = (λ+ λ̄)/2, route selection given λ

end while

The social planner chooses the optimal intervention policy
from the policy space. Since the policy includes the carbon
tax function, the policy space is infinite-dimensional. For
tractability, we restrict to parametrized intervention policies. In
particular, we focus on linear carbon tax where tg,r(mg,r) =
tg,r ·mg,r. Then we have the following theorem.

Theorem 2: The social planner’s intervention policy design
algorithm in Table II converges linearly with rate 0.5 to the
optimal solution to SP (restricted to linear carbon tax) in
logarithmic time.

IV. ANALYSIS OF ELECTRIC VEHICLE ADOPTION

In this section, we analyze in detail the effect of the
proposed intervention policy on the EV adoption.

A. Impact on the Social Welfare

Since the social welfare W (me,mg) (e.g., the percentage
of electric vehicles in the fleet, or the percentage of EV
mileages) is increasing in me,r and decreasing in mg,r, it
serves as a good measure for the status of EV adoption.

Not surprisingly, our proposed intervention policy always
improves or maintains the social welfare, compared to that
under no intervention policy, and hence promotes the EV
adoption. This is simply because the proposed intervention
policy reduces the cost of EVs and charges the carbon tax
for using gas vehicles. Importantly, the proposed intervention
policy promotes the EV adoption while maintaining a balanced
budget.



TABLE II
ALGORITHM TO FIND THE OPTIMAL INTERVENTION POLICY.

Initialization: q
e

= 0, qe = 10−3, q̄e = pe

% find the range of qe:

while qe ·
∑
rme,r <

∑
r qg,r ·mg,r

qe ← 2 · qe, q̄e = qe

find me,r and mg,r using the algorithm in Table I

end while
λ = (λ+ λ̄)/2, find me,r and mg,r using Table I

% bisection method to find the optimal qe:

while q̄e − qe > given precision

if qe ·
∑
rme,r <

∑
r qg,r ·mg,r

q
e

= qe

else
q̄e = qe

end if
qe = (q

e
+ q̄e)/2, find me,r and mg,r using Table I

end while

Proposition 1: Our proposed intervention policy always
improves or maintains the social welfare, compared to that
under no intervention policy, namely

W
(
m∗e(q

∗
e , t
∗
g),m

∗
g(q
∗
e , t
∗
g)
)
≥

W
(
m∗e(qe = 0, tg ≡ 0),m∗g(qe = 0, tg ≡ 0)

)
.

Now imagine a scenario where there is no cost in building
the charging stations (entities other than the fleet planner build
them or subsidize all the cost). The absence of the cost in
charging stations would make it easier to adopt EVs. We
compare this imaginary scenario with no cost in building
charging stations and with no intervention, with the considered
scenario with costs and with the proposed intervention policy.
We can prove that the number of EVs purchased in the latter
scenario is always no smaller than and sometimes strictly
larger than that in the former scenario. This shows the great
value of intervention: it overcomes the special hurdle in
commercial EV adoption that the buyers need to build charging
stations. We summarize the above discussion in the following
theorem.

Since there are costs of charging stations involved, we
write the fleet planner’s optimal decision as m∗e(qe, tg, cr) and
m∗g(qe, tg, cr).

Theorem 3: For any cost cr ∈ C, we have

W
(
m∗e(q

∗
e , t
∗
g, cr),m

∗
g(q
∗
e , t
∗
g, cr)

)
≥

W
(
m∗e(qe = 0, tg ≡ 0, c′r ≡ 0),m∗g(qe = 0, tg ≡ 0, c′r ≡ 0)

)
.

In particular, when pe(δ) > pg(δ), we have

W
(
m∗e(q

∗
e , t
∗
g, cr),m

∗
g(q
∗
e , t
∗
g, cr)

)
>

W
(
m∗e(qe = 0, tg ≡ 0, c′r ≡ 0),m∗g(qe = 0, tg ≡ 0, c′r ≡ 0)

)
.

B. Emission Control

The social planner can control the numbers of GVs on each
route through the carbon tax. It can reduce the numbers of GVs
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Fig. 1. Percentage of EVs purchased versus the cost of charging stations.

on route r by imposing a large tg,r. To obtain sharp results on
the GHG emissions on each route, we focus on linear carbon
tax tg,r(mg,r) = qg,r ·mg,r. The following theorem proves that
the social planner can control the GHG emission on different
routes by setting qg,r properly.

Theorem 4: Under linear carbon tax, the gas vehicles only
travel on routes with the smallest pg,r(δ) + δ · tg,r, namely

m∗g,r

{
> 0, r ∈ argminr′ {pg,r′(δ) + δ · qg,r′}
= 0, otherwise

.

V. SIMULATION RESULTS

We consider the following simple, yet representative sce-
nario. A fleet planner with δ = 0.5 has freight that can be
transported with 10 vehicles (EVs and GVs have the same
full-load capacity). The average cost of a EV is normalized
to pe(δ) = 1 and that of a GV is pg(δ) = 2. There is
only one route. The cost of building charging stations is
c1 = c ·m2

e,r. We change the coefficient in the cost function
as c = 0, 0.1, 0.2, . . . , 1.0. In Fig. V, we show the percentages
of EVs purchases with no intervention and with the proposed
intervention policy. We can see that the proposed intervention
policy greatly improves the EV adoption, especially when the
cost of charging stations is high.

VI. CONCLUDING REMARKS

This work builds the first analytical model for commercial
EV adoption. We study a fleet planner’s decision on EV
adoption, which is influenced by its operational decisions of
route selection and vehicle allocation, as well as by the social
planner’s intervention policy. We propose fast algorithms to
find the optimal fleet management decision and the optimal
budget-balanced intervention policy. Our main result is that
the proposed intervention policy promotes commercial EV
adoption, overcoming the additional investment in charging
stations by the fleet planner.
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