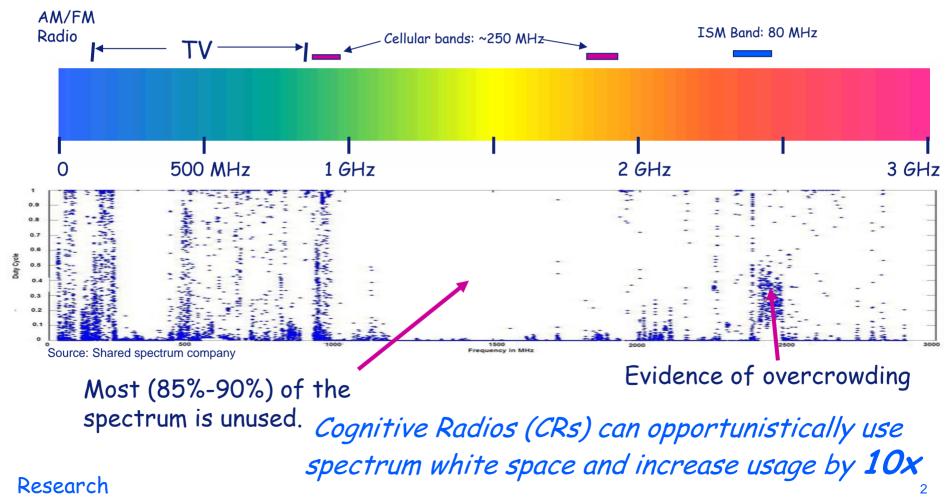
PHILIPS

Cognitive Radios: Present and Future Directions


Carlos Cordeiro

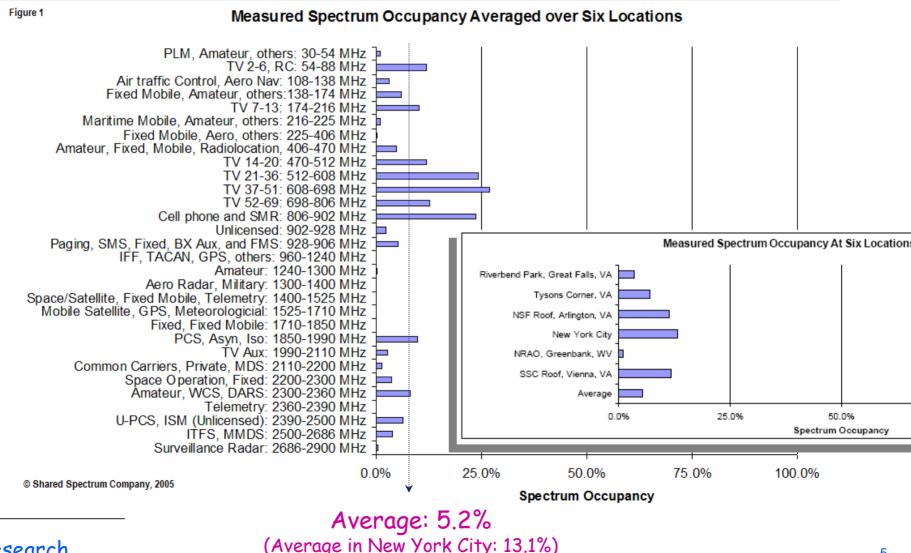
Wireless Communications and Networking (WiCAN) Philips Research North America Carlos.Cordeiro@philips.com

UCLA - 21 July 2006

Motivation

Wireless industry (\$12 Billion) from a small part of the spectrum

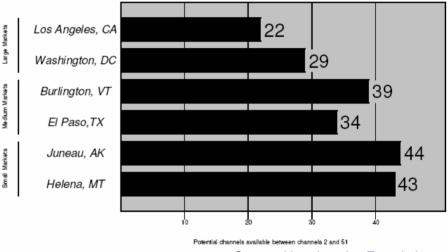
Outline


- Spectrum usage today and tomorrow
- Cognitive radios demystified
- Application scenarios
- The IEEE 802.22 standard
 - Spectrum Sensing, PHY, and MAC
- Conclusions and future directions

Outline

- Spectrum usage today and tomorrow
- Cognitive radios demystified
- Application scenarios
- The IEEE 802.22 standard
 - Spectrum Sensing, PHY, and MAC
- Conclusions and future directions

PHILIPS


Spectrum usage today

Research

Trend: TV bands for unlicensed use

- FCC has issued an NPRM on opening TV bands for unlicensed use
 - TV bands only sparsely used today (see graphic)
- Fewer and fewer US households rely on over-theair TV (from FCC report)
 - 33% in 1994
 - 15% in 2004
 - Among these, on average only a few channels watched
 - 0% in 2015??
- TV bands very suitable for long range, low power wireless networks

Potential Channels Available for Unlicensed Access*

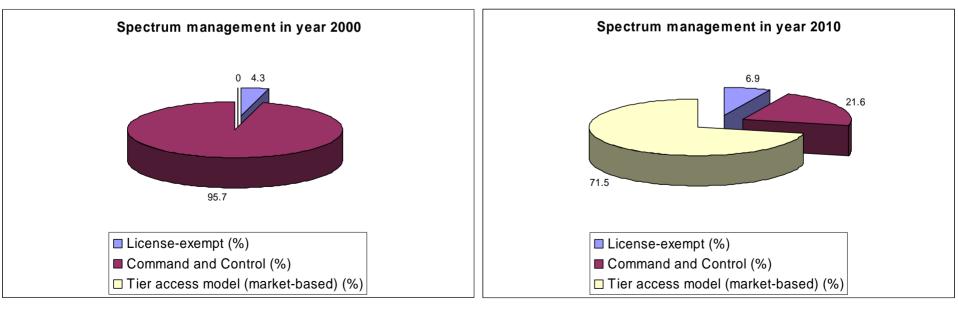

Source: New America Foundation

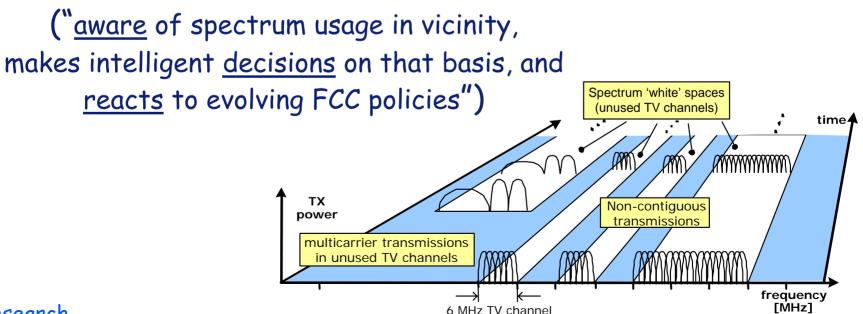
Table 1: Ho		4 ¹			
TV Households in the United States	Dec. 1994 (Millions)	Dec. 1994 (Share of All TV Households)	June 2004 (Millions)	15%	Change (%)
Over the Air Only	31.5	33%	16.1	85%	-48.9%
Total MVPD Subscribers*	63.9	67%	92.3		44.4%
Cable	59.7		66.1		
DBS	0.6		23.2		
Other	3.6		3.0		
*MVPD = Multichannel Video Programming Distributors are Cable, DBS, and other services					

Source: FCC. Reported by New America Foundation

Spectrum usage tomorrow

- More "open spectrum", and hence more opportunities
- Opening up the TV bands is only the first step

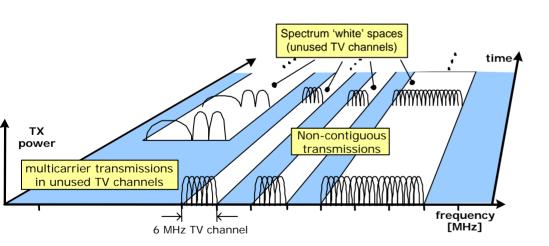
Outline

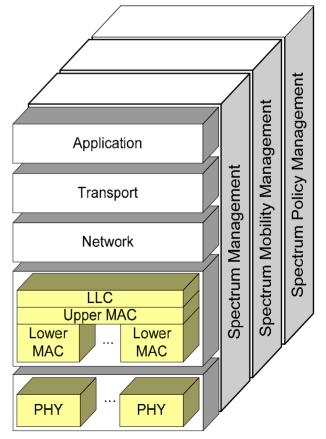

- Spectrum usage today and tomorrow
- Cognitive radios demystified
- Application scenarios
- The IEEE 802.22 standard
 - Spectrum Sensing, PHY, and MAC
- Conclusions and future directions

Characteristics of cognitive/agile radios Cognitive/agile radio =

flexible re-configurable radio ("quickly <u>adapts</u> transmission characteristics")

+


smart



Architecture of a cognitive radio

• Requirement

Architecture

Key goals of a cognitive radio

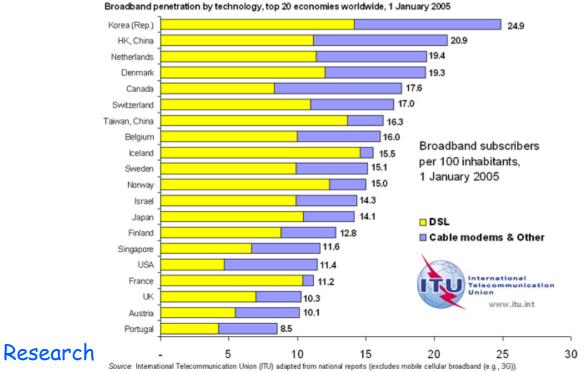
- The key goals of a CR is to enable:
 - Dynamic Spectrum Access (DSA)
 - Defined with respect to primary users
 - Dynamic Spectrum Sharing (DSS)
 - Defined with respect to other secondary users
 - Dynamic Spectrum Multi-Channel (DSM)
 - Must be spectrum-agile and provide (simultaneous) operation over multiple (non-)contiguous channels
- A number of architectural components are needed as to achieve these goals

PHILIPS

Research

Key goals of a cognitive radio (cont.)

Appl	ication	QoS requirements	User utility/Policy	QoS requirements	User utility/policy	QoS requirements	Multi-layer management
Tra	nsport	Spectrum handoff Delay/Jitter/Loss		Inter-system and inter-flow communication Spectrum Handof	Delay/Jitter/Loss	Delay/Jitter/Loss	Multi-flow management
Net	work	Spectrum aware routing Delay tolerant networking (DARPA DTN)	Policy Topology management for distributed sensing	Load (node & radio resource) balancing	Interference aware routing	Multi-channel assignment	Multi-channel and multi-path routing
		environment	Centralized (e.g., broker) or distributed (e.g., opportunistic)	Policy	Interference aware dynamic frequency selection	Multi-channel ass	signment
Link	LLC	PolicyInterference temperaturePower controlDynamic frequency selection (if channel vacation)		Power control Centralized (e.g., broker) or distributed (e.g., opportunistic)	Channel assignment		
	МАС	Coordination of queeperiods Directionality	uiet Spectrum sensing management	Space, time, and code division multiple access Fairness	(Non)-Coordinated resource sharing Directionality	(Non-) contiguous multi- channel operation Real-time and dynamic resource	Multi-channel
		Spectrum sensing algorithms	Low SNR signal detection	Adaptive modulation and	Multiple antenna beamforming and	allocation	ADC
Physical		Wideband or narrowband sensit	Multiple antenna beamforming and beamnulling	coding Waveform shapin	beamnulling	modulation	Programmable filters Bandwidth (RF,
		Beacon detection	DSA		DSS	antennas	BB) scalability

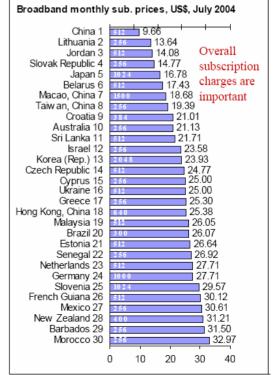

DOI

Outline

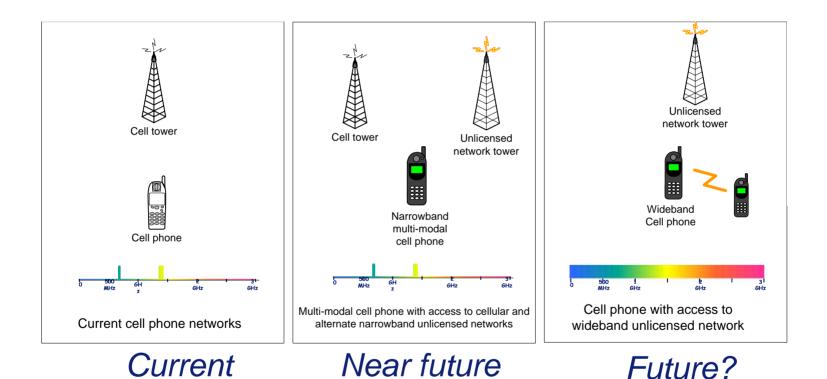
- Spectrum usage today and tomorrow
- Cognitive radios demystified
- Application scenarios
- The IEEE 802.22 standard
 - Spectrum Sensing, PHY, and MAC
- Conclusions and future directions

Wireless broadband (last-mile) access

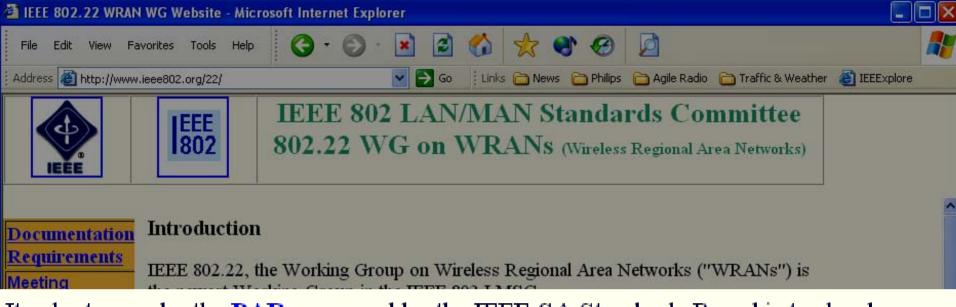
- Although internet access is ٠ widespread, broadband is not
 - According to ITU, US is #16
 - High subscription charges -



Broadband penetration

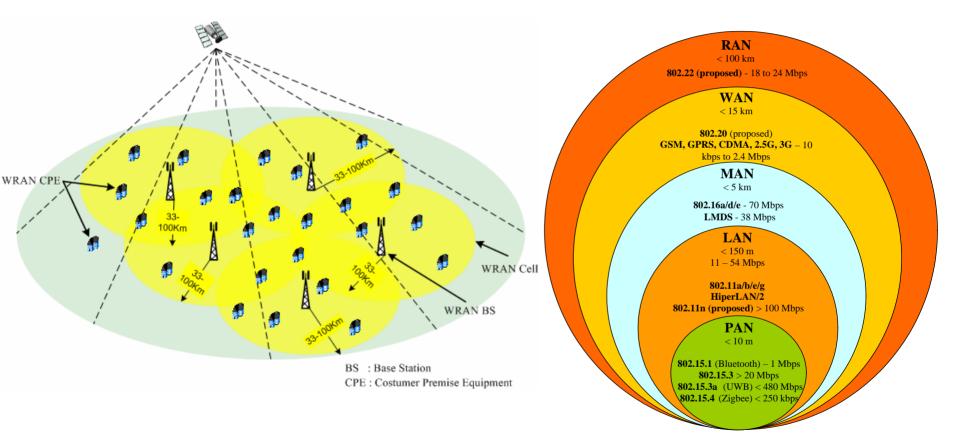

Hurdles for broadband penetration

- High infrastructure costs due to population density distribution
- Lack of competition, bundling DSL/Cable services


Broadband price

Application: Cellular service augmented with Agile Radio last-mile

Yellow coverage by cellular service, blue by unlicensed last-mile service. The right panel (future) shows cell phones with wideband.


Its charter, under the <u>PAR</u> approved by the IEEE-SA Standards Board is to develop a standard for a cognitive radio-based PHY/MAC/air_interface for use by license-exempt devices on a non-interfering basis in spectrum that is allocated to the TV Broadcast Service.

302.18 RR-TAG 302.19 Coexistence TA(302.20 Wireless Mobilit 302.21 Handover/Interoperabil 802.22 WRAN Homepage	The IEEE 802.22 WG held its first meeting at the November 2004 IEEE 802 plenary in San Antonio, TX, where the PAR was reviewed, IEEE Patent Policies were explained, WG Policies and Procedures were approved, the WG elected officers, and a decision was made to hold the WG interims in conjunction with the joint wireless interim meetings of 802.11, 802.15, 802.18, 802.19, 802.20, and 802.21 (and 802.16 when they choose to join the other wireless WGs).
802.22 e-mail reflector	Since then, we've had an interim meeting session in Monterey, CA, in January 2005.
Webmaster: Carl Stevenson	The next face-to-face meeting will be in conjunction with the IEEE 802 plenary in Atlanta, GA, in March.
	Masting description will be a sub-stand on a superstine basis on this website as as as

Meeting documents will be posted, on a per meeting basis, on this website, as soon as

PHILIPS

IEEE 802.22 WRAN

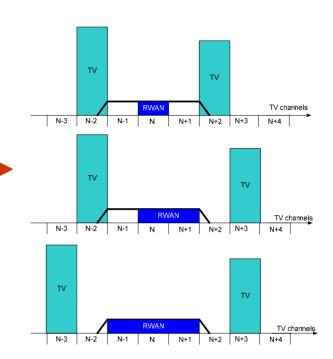
Exemplary 802.22 deployment configuration

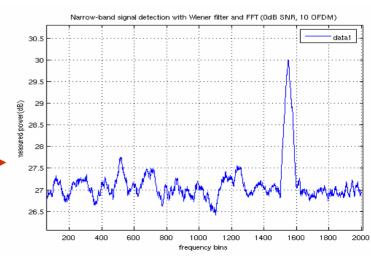
802.22 wireless RAN classification as compared to other popular wireless standards

Outline

- Spectrum usage today and tomorrow
- Cognitive radios demystified
- Application scenarios
- The IEEE 802.22 standard
 - Spectrum Sensing, PHY, and MAC
- Conclusions and future directions

IEEE 802.22

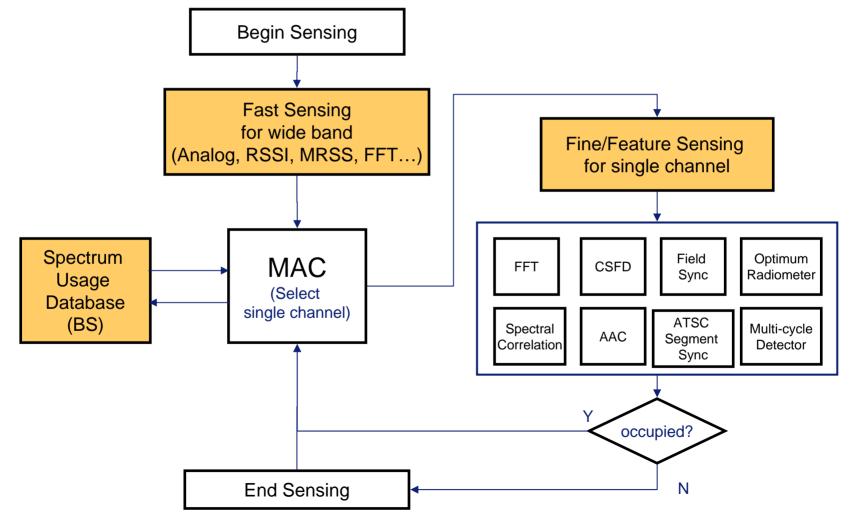

- IEEE 802.22 is the first worldwide cognitive radio based standard
 - Wireless broadband access
 - Reuse of TV broadcast bands on a non-interfering basis
- Draft standard version 0.1 is out
 - Version 1.0 is scheduled to be released in January/2007
 - Expected to become an official IEEE standard in January/2008
- Coexistence is key requirement
 - Primary sharing (e.g., NTSC, DTV)
 - Secondary sharing (e.g., with 802.22 itself)


Coexistence

- Two primary types
 - With incumbents (TV service and Part 74 devices)
 - With other overlapping similar networks
 - Self-Coexistence
- Measurements and Channel Management are key
 - Flexibility and efficiency is very important
- Coexistence is achieved by a joint application of:
 - PHY
 - Spectrum sensing, suitable modulation, coding, etc.
 - MAC
 - Spectrum management (frequency and power)
 - "Interference-free" traffic scheduling (time)

PHY Layer

- Some PHY issues
 - Quick and robust detection
 - Dynamic bonding of contiguous TV channels
 - Flexible modulation scheme
 - Spectrum sharing using (Spread) OFDMA
- DTV detection
 - Based on energy, matched filter, and feature detection
- Wireless microphones
 - Based on spectral estimation and statistics of the _____ estimated signal


PHY Layer: Sensing

• Key incumbent sensing requirements

Parameter	Value for Wireless Microphones	Value for TV Broadcasting
Channel Detection Time	\leq 2 sec	\leq 2 sec
Channel Move Time (In-service monitoring)	2 sec	2 sec
Channel Closing Transmission Time	100 msec	100 msec
Incumbent Detection Threshold	-107 dBm (over 200KHz)	-116 dBm (over 6MHz)

• Need to detect weak signals (negative SNR)

PHY Layer: Sensing

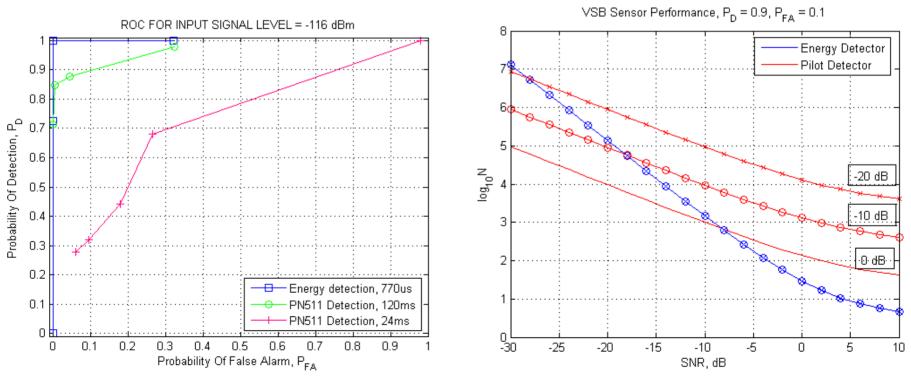
PHILIPS

Experimental setup for DTV detection

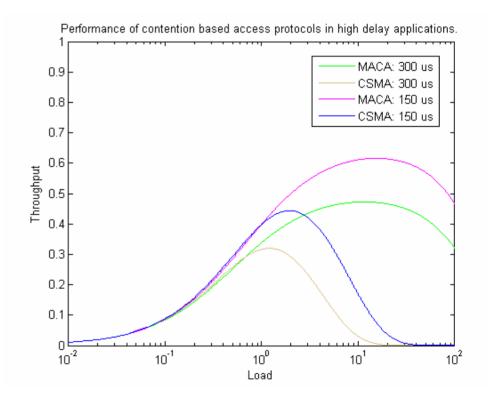
8VSB_SOURCE

MULTIPATH SIMULATOR

RECEIVER


ATTENUATOR

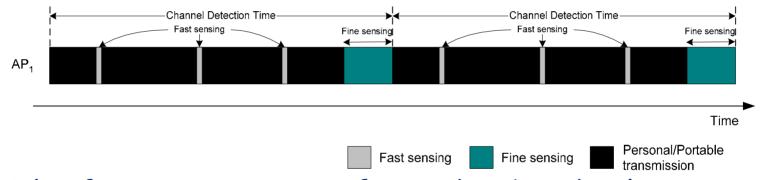
Experimental results


• Energy detection vs. feature detection

 Energy detection: full bandwidth vs. pilot

MAC Layer

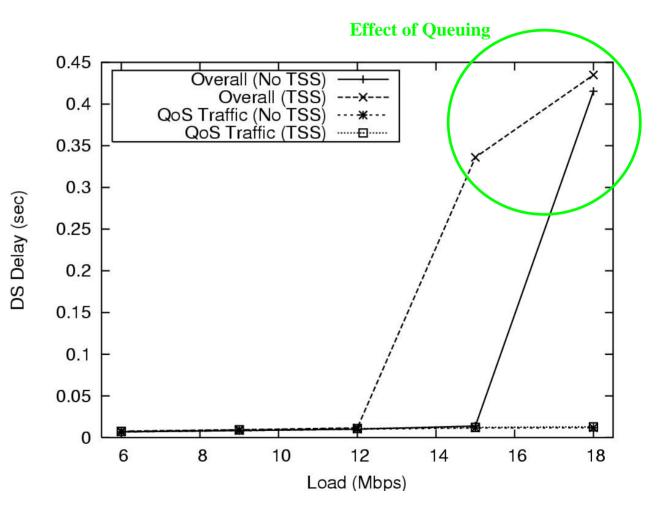
- Demand assigned multiple access TDMA MAC
- Some MAC Issues
 - Data communication
 - Superframe and Frame Structures
 - Network entry and initialization
 - Coexistence
 - Incumbents
 - Self-Coexistence
 - Clustering
 - Synchronization



MAC Layer: Sensing

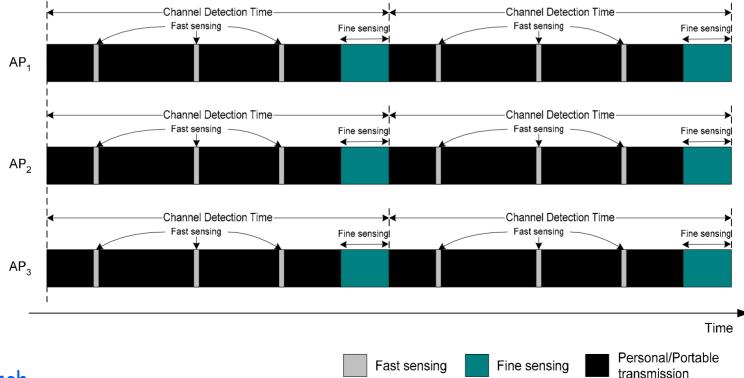
- Background
 - A potentially very large number of channels have to be periodically sensed for the presence of incumbents
 - At the same time, support to QoS traffic requires delays as low as 20ms
- Question
 - How is sensing done as to meet these requirements?
- Answer
 - Two-stage spectrum sensing (TSS) mechanism
 - Stage 1: Fast sensing (e.g., energy detection)
 - Stage 2: Only if needed, perform fine sensing (e.g., feature detection)

MAC Layer: Sensing

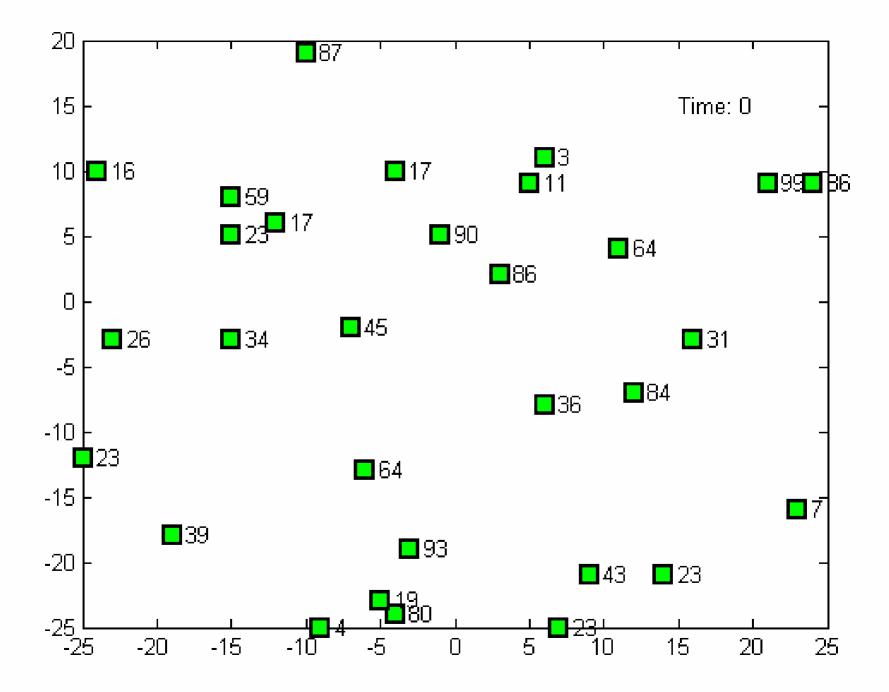

• Quiet period structure of TSS

- The fast sensing is performed in-band only
 - May or may not be scheduled
 - Consolidated reports on the fast sensing outcome is sent to moderator
 - Moderator then determines the need for the next fine sensing and how much time is required

Impact on QoS

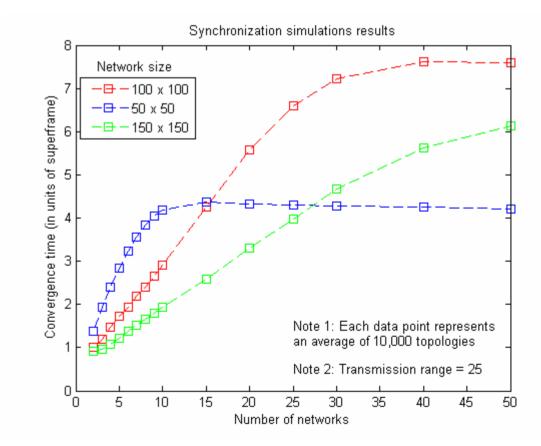

- The overall impact of TSS on downstream delay is negligible
 QoS can still be satisfied
 A similar
- conclusion can be obtained for the upstream delay

PHILIPS

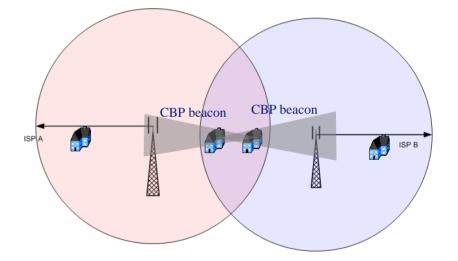

MAC Layer: Sensing with overlapping unlicensed networks

 Quiet periods from overlapping networks are synchronized

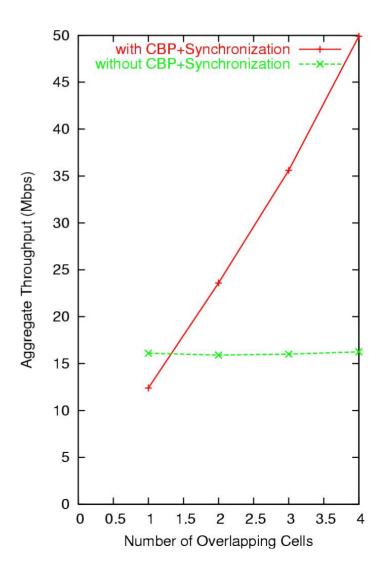
MAC Layer: Synchronization of Overlapping Networks


- A total of 30 networks are considered
- All networks power up at the same time (worst case analysis)
- Nodes have a radio range of 20 Km

PHILIPS


MAC Layer: Synchronization of Overlapping Networks (cont.)

- Comprehensive evaluation of the synchronization mechanism
 - Used for selfcoexistence as well as for quiet periods
- Results show the quick convergence and efficiency of the algorithm


Self-Coexistence

- Coexistence Beacon Protocol (CBP)
 - CBP is executed by CPEs but under BS control
 - CPEs transmit coexistence packets with information about
 - The cell
 - This CPE's reservations with the BS
 - Resource request
 - Channels from the active and candidate sets
 - Allows better TPC and sharing in both frequency and time

CBP/Synchronization

- Simple scheduler
- CBP together with Synchronization can provide significant performance improvements
 - Since CBP is under control of the BS, it can be made adaptive

Outline

- Spectrum usage today and tomorrow
- Cognitive radios demystified
- Application scenarios
- The IEEE 802.22 standard
 - Spectrum Sensing, PHY, and MAC
- Conclusions and future directions

Conclusions

- Spectrum-agile cognitive radios: a new paradigm in wireless communications
 - Currently, much of the spectrum allocated but unused
 - Spectrum allocation reform underway
 - Advanced (e.g., cognitive/agile) radios becoming available
- Agile radios enable new applications
 - IEEE 802.22 and Cellular applications discussed here
 - Cognitive radios techniques are being standardized faster than anticipated
 - "Spectrum is like disk-space, the more you have it, the more you will use it"
- A research topic with a number of technical challenges requiring a wide range of competencies

Future Directions

- There are a number of open issues at all levels
- RF and Antenna design
 - E.g., ADC, filters, wideband and real-time sensing
- PHY
 - E.g., Discontinuous channel operation, spectrum sensing, adaptation/reconfiguration
- MAC
 - E.g., When/whom/for how long to sense, coexistence and sharing, multi-channel operation
- Others
 - E.g., End-to-end routing, pricing, etiquette, incentives, security, etc.

Want to know more?

- IEEE ComSoc Technical Committee on Cognitive Networks
- A number of new publication venues
 - Conferences/Workshops: DySPAN, TAPAS, CrownCom, ...
 - Special Issues: IEEE J-SAC, IEEE Wireless Comm., ...
- IEEE 802.22
- DARPA and NSF programs

