MED-ADVANCE


Advancing Medicine through Data Science, Machine Learning and Artificial Intelligence

Research mission


Develop state-of-the-art data science, machine learning, artificial intelligence and decision theoretic methods aimed at revolutionizing the way medicine is practiced today, as well as advance the science behind understanding and practicing medicine.

Principal investigator

  • Prof. Mihaela van der Schaar (Email)

Students


Collaborators

  • Prof. John Danesh (Cardiovascular Disease, Univ. of Cambridge, UK)
  • Prof. Raffaele Bugiardini (Cardiovascular Disease, Univ. of Bologna, Italy)
  • Prof. Fiona Gilbert (Breast Cancer, Univ. of Cambridge, UK)
  • Dr. Scott Hu (Emergency Care, UCLA Medical Center)
  • Dr. Martin Cadeiras (Transplants, UCLA Medical Center)
  • Dr. Mindy Ross (Asthma, UCLA Medical Center)
  • Prof. Camelia Davtyan (Internal Medicine , UCLA Medical Center)
  • Prof. Paolo Emilio Puddu (Cardiology, Univ. of Rome La Sapienza, Italy)
  • Dr. Amitava Banerjee (Cardiology, University College London, Farr Institute, UK)
  • Dr. Thom Daniels (Cystic Fibrosis, Southampton University, UK)
  • Prof. William Zame (Economics and Mathematics, UCLA)
  • Prof. Andres Floto (Cystic Fibrosis, University of Cambridge)

Presentations

Activities

Featured Projects


Publications

  • A. Bellot, M. van der Schaar, "Multitask Boosting for Survival Analysis with Competing Risks," NIPS, 2018.
  • B. Lim, A. Alaa, M. van der Schaar, "Forecasting Treatment Responses Over Time Using Recurrent Marginal Structural Networks," NIPS, 2018.
  • J. Pohle, R. King, M. van der Schaar, R. Langrock, "Coupled Markov-switching regression: inference and a case study using electronic health record data," International Workshop on Statistical Modeling (IWSM), 2018. [Link] - Best student paper award
  • A. M. Alaa, M. van der Schaar, "Prognostication and Risk Factors for Cystic Fibrosis via Automated Machine Learning," Scientific Reports, 2018. [Link]
  • E. Giunchiglia, A. Nemchenko, M. van der Schaar, "RNN-SURV: a Deep Recurrent Model for Survival Analysis," International Conference on Artificial Neural Networks (ICANN), 2018. [Link]
  • A. Nemchenko, T. Kyono, M. van der Schaar, "Siamese Survival Analysis with Competing Risks," International Conference on Artificial Neural Networks (ICANN), 2018. [Link]
  • A. Bellot, M. van der Schaar, "Boosted Trees for Risk Prognosis," Machine Learning for Healthcare Conference (MLHC), 2018. [Link]
  • B. Lim, M. van der Schaar, "Disease-Atlas: Navigating Disease Trajectories using Deep Learning," Machine Learning for Healthcare Conference (MLHC), 2018. [Link] [Presentation] - Best Paper Award in IJCAI-BOOM Workshop
  • J. Jordon, J. Yoon, M. van der Schaar, "Measuring the quality of Synthetic data for use in competitions," 2018 KDD Workshop on Machine Learning for Medicine and Healthcare, 2018. [Link]
  • B. Lim, M. van der Schaar, ";Forecasting Disease Trajectories in Alzheimer's Disease Using Deep Learning," 2018 KDD Workshop on Machine Learning for Medicine and Healthcare, 2018. [Link]
  • O. Atan, W. R. Zame, M. van der Schaar, "Counterfactual Policy Optimization Using Domain-Adversarial Neural Networks," ICML 2018 Causal Machine Learning Workshop, 2018. [Link]
  • A. M. Alaa, M. van der Schaar, "Bayesian Nonparametric Causal Inference: Information Rates and Learning Algorithms," IEEE Journal of Selected Topics in Signal Processing (JSTSP), 2018. [Link]
  • J. Yoon, J. Jordon, M. van der Schaar, "GAIN: Missing Data Imputation using Generative Adversarial Nets," ICML, 2018. [Link] [Appendix]
  • J. Yoon, J. Jordon, M. van der Schaar, "RadialGAN: Leveraging multiple datasets to improve target-specific predictive models using Generative Adversarial Networks," ICML, 2018. [Link] [Appendix]
  • A. M. Alaa, M. van der Schaar, "AutoPrognosis: Automated Clinical Prognostic Modeling via Bayesian Optimization with Structured Kernel Learning," ICML, 2018. [Link]
  • A. M. Alaa, M. van der Schaar, "Limits of Estimating Heterogeneous Treatment Effects: Guidelines for Practical Algorithm Design," ICML, 2018. [Link]
  • A. Bellot, M. van der Schaar, "A Hierarchical Bayesian Model for Personalized Survival Predictions," IEEE J. Biomedical and Health Informatics, 2018. [Link] [Supplementary Materials]
  • A. M. Alaa, D. J. Llewellyn, C Routledge, M. van der Schaar, "Mnemosyne: A Decision Support System for Early Detection of Dementia," Submitted, 2018. [Link]
  • E. Cenko, J. Yoon, S. Kedev, G. Stankovic, Z. Vasiljevic, G. Krljanac, O. Kalpak, B. Ricci, D. Milicic, O. Manfrini, M. van der Schaar, L. Badimon, R. Bugiardini, "Sex Differences in Outcomes After STEMI: Effect Modification by Treatment Strategy and Age," JAMA Internal Medicine, 2018. [Link]
  • J. Yoon, W. R. Zame, A. Banerjee, M. Cadeiras, A. Alaa, M. van der Schaar, "Personalized survival predictions via Trees of Predictors: An application to cardiac transplantation," PloS One, 2018. [Link] [Calculator Link]
  • J. Yoon, W. R. Zame, M. van der Schaar, "ToPs: Ensemble Learning with Trees of Predictors," IEEE Transactions on Signal Processing (TSP), 2018. [Link]
  • J. Yoon, J. Jordon, M. van der Schaar, "GANITE: Estimation of Individualized Treatment Effects using Generative Adversarial Nets," ICLR, 2018. [Link]
  • J. Yoon, W. R. Zame, M. van der Schaar, "Deep Sensing: Active Sensing using Multi-directional Recurrent Neural Networks," ICLR, 2018. [Link]
  • A. Bellot, M. van der Schaar, "Tree-based Bayesian Mixture Model for Competing Risks," AISTATS, 2018. [Link]
  • J. Yoon, W. R. Zame, M. van der Schaar, "Estimating Missing Data in Temporal Data Streams Using Multi-directional Recurrent Neural Networks," 2017. [Link]
  • C. Lee, W. R. Zame, J. Yoon, M. van der Schaar, "DeepHit: A Deep Learning Approach to Survival Analysis with Competing Risks," AAAI, 2018. [Link] [Supplementary Materials]
  • O. Atan, J. Jordon, M. van der Schaar, "Deep-Treat: Learning Optimal Personalized Treatments from Observational Data using Neural Networks," AAAI, 2018. [Link]
  • M. K. Ross, J. Yoon, M. van der Schaar, "Discovering Pediatric Asthma Phenotypes Based on Response to Controller Medication Using Machine Learning," Annals of the American Thoracic Society, 2017. [Link]
  • A. M. Alaa, M. van der Schaar, "Deep Multi-task Gaussian Processes for Survival Analysis with Competing Risks," NIPS, 2017. [Link] - Selected as a spotlight paper
  • A. M. Alaa, M. van der Schaar, "Bayesian Inference of Individualized Treatment Effects using Multi-task Gaussian Processes," NIPS, 2017. [Link] [Supplementary Materials]
  • K. Ahuja, W. R. Zame, M. van der Schaar, "DPSCREEN: Dynamic Personalized Screening," NIPS, 2017. [Link][Poster]
  • O. Atan, W. R. Zame, Q. Feng, M. van der Schaar, "Constructing Effective Personalized Policies Using Counterfactual Inference from Biased Data Sets with Many Features," Submitted, 2017. [Link]
  • J. Yoon, M. van der Schaar, "E-RNN: Entangled Recurrent Neural Networks for Causal Prediction," ICML 2017 - Workshop on Principled Approaches to Deep Learning., 2017. [Link]
  • A. M. Alaa, M. Weisz, M. van der Schaar, "Deep Counterfactual Networks with Propensity-Dropout," ICML 2017 - Workshop on Principled Approaches to Deep Learning., 2017. [Link]
  • J. Yoon, W. R. Zame, M. van der Schaar, "Multi-directional Recurrent Neural Networks: A Novel Method for Estimating Missing Data," ICML 2017 - Time Series Workshop., 2017. [Link]
  • A. M. Alaa, J. Yoon, S. Hu, and M. van der Schaar, "Individualized Risk Prognosis for Critical Care Patients: A Multi-task Gaussian Process Model," Big Data in Medicine: Tools, Transformation and Translation, Cambridge, 2017. [Link]
  • A. M. Alaa, S. Hu, and M. van der Schaar, "Learning from Clinical Judgments: Semi-Markov-Modulated Marked Hawkes Processes for Risk Prognosis," ICML, 2017. [Link]
  • A. Alaa, J. Yoon, S. Hu and M. van der Schaar, "Personalized Risk Scoring for Critical Care Prognosis using Mixtures of Gaussian Processes," IEEE Transactions on Biomedical Engineering, 2017. [Link]
  • A. M. Alaa, J. Yoon, S. Hu, M. van der Schaar, "A Semi-Markov Switching Linear Gaussian Model for Censored Physiological Data," NIPS - Workshop on Machine Learning for Health, 2016. [Link]
  • J. Yoon, A. M. Alaa, M. Cadeiras, M. van der Schaar, "Personalized Donor-Recipient Matching for Organ Transplantation," AAAI, 2017. [Link] [Poster]
  • A. Alaa and M. van der Schaar, "A Hidden Absorbing Semi-Markov Model for Informatively Censored Temporal Data: Learning and Inference," Journal of Machine Learning Research (JMLR), 2017. [Link]
  • C. Tekin, J. Yoon, and M. van der Schaar, "Adaptive Ensemble Learning with Confidence Bounds," IEEE Trans. Signal Process., 2016. [Link]
  • A. M. Alaa and M. van der Schaar, "Balancing Suspense and Surprise: Timely Decision Making with Endogenous Information Acquisition ," NIPS, 2016. [Link] [Poster]
  • W. Hoiles and M. van der Schaar, "A Non-parametric Learning Method for Confidently Estimating Patient's Clinical State and Dynamics ," NIPS, 2016. [Link] [Poster]
  • A. Alaa, K. H. Moon, W. Hsu and M. van der Schaar, "ConfidentCare: A Clinical Decision Support System for Personalized Breast Cancer Screening," IEEE Transactions on Multimedia - Special Issue on Multimedia-based Healthcare, 2016. [Link]
  • A. M. Alaa, J. Yoon, S. Hu, M. van der Schaar, "Personalized Risk Scoring for Critical Care Patients using Mixtures of Gaussian Process Experts," ICML 2016 - Workshop on Computational Frameworks for Personalization., 2016. [Link]
  • J. Yoon, A. M. Alaa, S. Hu, M. van der Schaar, "ForecastICU: A Prognostic Decision Support System for Timely Prediction of Intensive Care Unit Admission," ICML 2016. [Link]
  • E. Soltanmohammadi, M. Naraghi-Pour, and M. van der Schaar, " Context-based Unsupervised Ensemble Learning and Feature Ranking," Machine Learning, pp. 1-27, June 2016. [Link]
  • C. Tekin, J. Yoon, M. van der Schaar, "Adaptive ensemble learning with confidence bounds for personalized diagnosis," AAAI Workshop on Expanding the Boundaries of Health Informatics using AI (HIAI'16):Making Proactive, Personalized, and Participatory Medicine A Reality, 2016. [Link]
  • J. Yoon, C. Davtyan, M. van der Schaar, "Discovery and Clinical Decision Support for Personalized Healthcare," IEEE J. Biomedical and Health Informatics, 2016. [Link]
  • L. Song, W. Hsu, J. Xu and M. van der Schaar, "Using contextual learning to improve diagnostic accuracy: application in breast cancer screening," IEEE J. Biomedical and Health Informatics, 2015. [Link]
  • E. Soltanmohammadi, M. Naraghi-Pour, M. van der Schaar, "Context-based Unsupervised Data Fusion for Decision Making," ICML, 2015. [Link]
  • O. Atan, C. Tekin, J. Xu and M. van der Schaar, "Discovering Action-Dependent Relevance: Learning from Logged Data," Submitted, 2015. [Link]
  • C. Tekin, O. Atan and M. van der Schaar, "Discover the Expert: Context-Adaptive Expert Selection for Medical Diagnosis," IEEE Transactions on Emerging Topics in Computing, vol. 3, no. 2, pp. 220 - 234, 2015. [Link]
  • J. Xu, D. Sow, D. Turaga and M. van der Schaar, "Online Transfer Learning for Differential Diagnosis Determination," AAAI Workshop on the World Wide Web and Public Health Intelligence, 2015. [Link]
  • C. Tekin and M. van der Schaar, "Active Learning in Context-Driven Stream Mining with an Application to Image Mining," IEEE Trans. Image Process., vol. 24, no. 11, pp. 3666-3679, 2015. [Link]
  • O. Atan and M. van der Schaar, "Discover Relevant Sources : A Multi-Armed Bandit Approach," Submitted, 2015. [Link]
  • M. Wolf, M. van der Schaar, H. Kim and J. Xu, "Analysis and Decision-Making in Caring Environments for Adults with Special Needs Adults," IEEE Design & Test, Special Issue on Cyber-Physical systems for Medical Applications, vol. 32, no. 5, Oct. 2015. [Link]
  • J. Xu, J. Y. Xu, L. Song, G. Pottie, and M. van der Schaar, "Personalized Active Learning for Activity Classification using Wireless Wearable Sensors," IEEE Journal on Selected Topics in Signal Processing, 2016. [Link]


  • Clinical Abstract

  • C. Lee, M. van der Schaar, A. Floto, T. Daniels, "A Deep Learning Approach for Dynamic Survival Analysis with Competing Risk in CF," North American Cystic Fibrosis Conference, 2018.
  • B. Lim, T. Daniels, A. Floto, M. van der Schaar, "Forecasting Clinical Trajectories in Cystic Fibrosis using Deep Learning," North American Cystic Fibrosis Conference, 2018.
  • A. Alaa, M. van der Schaar, T. Daniels, A. Floto, "Machine Learning-Based Predictions of Prognosis in Cystic Fibrosis," North American Cystic Fibrosis Conference, 2018.
  • W. R. Zame, J. Yoon, F. Asselbergs, M. van der Schaar, "Interpretable Machine Learning Identifies Risk Predictors in Patients with Heart Failure," American Heart Association (AHA) Scientific Sessions, 2018. [Link]
  • A. M. Alaa, T. Bolton, E. D. Angelantonio, J. H. F. Rudd, M. van der Schaar, "Cardiovascular Disease Risk Prediction Using Machine Learning: A Prospective Cohort Study of 423,604 Participants," American Heart Association (AHA) Scientific Sessions, 2018. [Link]
  • A. M. Alaa, F. J. Gilbert, Y. Huang, M. van der Schaar, "Machine Learning for Identifying the Value of Digital Breast Tomosynthesis using Data from a Multicentre Retrospective Study," Radiological Society of North America (RSNA), 2018. [Link]
  • Q. Feng, J. Yoon, M. van der Schaar, "ACW-RNN: Adaptive Clockwork Recurrent Neural Networks for Early Warning Systems in Hospitals," AI Med Europe Abstract Competition, 2018. [Link]
  • A. Bellot, M. van der Schaar, "Boosting Competing Risks," AI Med Europe Abstract Competition, 2018. [Link]
  • E. Cenko, O. Manfrini, S Kedev, G Stankovic, Z Vasiljevic, M. van der Schaar, J. Yoon, M. Vavlukis, O. Kalpak, D. Milicic, A. Koller, L. Badimon, R. Bugiardini, "Sex difference in the impact of delay to reperfusion on coronary blood flow and outcomes in ST-segment elevation myocardial infarction," European Society of Cardiology, 2018. [Link]
  • R. Bugiardini, E. Cenko, J. Yoon, B. Ricci, D. Milicic, S. Kedev, Z. Vasiljevic, O. Manfrini, M. van der Schaar, L. Badimon, "Late PCI in STEMI: A Complex Interaction between Delay and Age," American College of the Cardiology (ACC) - 67th Annual Scientific Session & Expo - Orlando; Journal of the American College of Cardiology, 71 (11 Supplement) A44, Mar 2018. [Link]
  • A. Banerjee, J. Yoon, W. R. Zame, M. Cadeiras, A. M. Alaa, M. van der Schaar, "Personalized Risk Prediction using Predictive Pursuit Machine Learning: A Pilot Study in Cardiac Transplantation," European Society of Cardiology Congress, 2017.- Selected as Best Posters in Advanced Heart Failure.
  • J. Yoon, W. R. Zame, A. Banerjee, M. Cadeiras, A. M. Alaa, M. van der Schaar, "Personalized Risk Prediction using Predictive Pursuit Machine Learning: A Pilot Study in Cardiac Transplantation," Evidence Live Conference, 2017. [Link]
  • M. K. Ross, J. Yoon, K. Moon, M. van der Schaar, "A Personalized Approach to Asthma Control Over Time: Discovering Phenotypes Using Machine Learning," American Thoracic Society (ATS) International Conference, 2017. [Link]
  • B. Ricci, M. van der Schaar, J. Yoon, E. Cenko, Z. Vasiljevic, M. Dorobantu, M. Zdravkovic, S. Kedev, O. Kalpak, D. Milicic, O. Manfrini, L. Badimon, R. Bugiardini, "Machine Learning Techniques for Risk Stratification of Non-ST-Elevation Acute Coronary Syndrome: The Role of Diabetes and Age," American Heart Association Scientific Session, 2017 - Circulation, 2017; 136:A15892. [Link]